

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

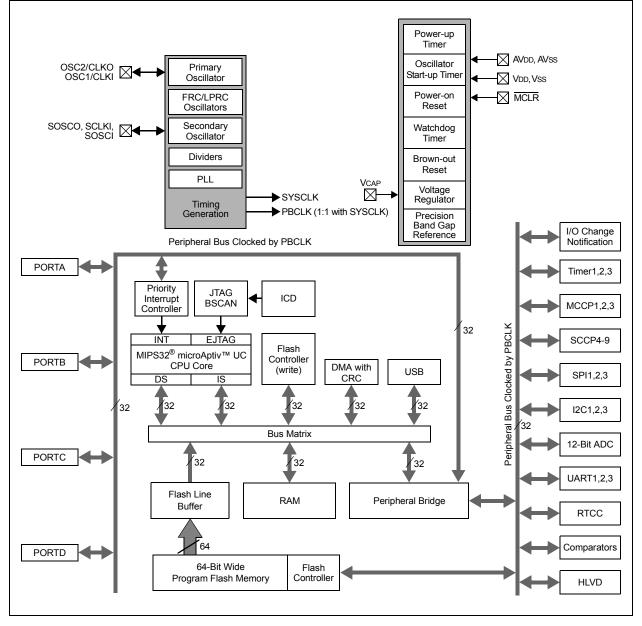
Details

ĿXFl

Detalls	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-SQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpm036t-i-m2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.0 DEVICE OVERVIEW

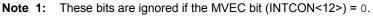
Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. This data sheet contains device-specific information for the PIC32MM0256GPM064 family devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MM0256GPM064 family of devices.

Table 1-1 lists the pinout I/O descriptions for the pins shown in the device pin tables.

FIGURE 1-1: PIC32MM0256GPM064 FAMILY BLOCK DIAGRAM

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER (CONTINUED)


- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

Bit Range	Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 2		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0			
		PRI7SS	<3:0>(1)		PRI6SS<3:0> ⁽¹⁾					
00.40	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0		
23:16		PRI5SS	<3:0> ⁽¹⁾		PRI4SS<3:0> ⁽¹⁾					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8		PRI3SS	<3:0> ⁽¹⁾		PRI2SS<3:0> ⁽¹⁾					
7.0	R/W-0 R/W-0 R/W-0 R/W-0				U-0	U-0	U-0	R/W-0		
7:0		PRI1SS	<3:0>(1)		—			SS0		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-28 PRI7SS<3:0>: Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_		IP3<2:0>		IS3<1:0>		
00.40	U-0	U-0	U-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	
23:16	_	_	_		IP2<2:0>	IS2<1:0>			
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_		IP1<2:0>		IS1<1:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	
7:0	_	_	_		IP0<2:0>		IS0<1:0>		

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x

Legend:

0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>:	Interrupt	Priority 3 bits

- - 00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

- bit 20-18 IP2<2:0>: Interrupt Priority 2 bits
 - 111 = Interrupt priority is 7
 - •
 - •
 - 010 = Interrupt priority is 2 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority 2 bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	-	_			_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	-	_	_	_	_	—	
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	
15:8	ON ⁽¹⁾	—	_	SUSPEND	DMABUSY	_	-	—	
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
7:0	_	_	_	_	_	_	_	_	

REGISTER 8-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled

bit 14-13 Unimplemented: Read as '0'

- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** The user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		—	—	—	—	—	—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:10		—	_	-	—	—	—	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	_	_	_	—	—	—	—	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				CHPDA	Γ<7:0>				

REGISTER 8-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:

Ecgena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits

Pattern Terminate mode: Data to be matched must be stored in this register to allow terminate on match. All Other modes: Unused.

REGISTER 9-6: OSCTUN: FRC TUNING REGISTER (CONTINUED)

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized, nor tested.

Note:	Writes to this register require an unlock sequence. Refer to Section 26.4 "System Registers Write
	Protection" for details.

11.1 Timer1 Control Register

TABLE 11-1: TIMER1 REGISTER MAP

ress)	b a	е		Bits										ts					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	TIOON	31:16	_	_	—	—	—	_	—	—	—	—	—	—	_	—	—	—	0000
8000	T1CON	15:0	ON	—	SIDL	TWDIS	TWIP	—	TECS	<1:0>	TGATE	_	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
0010	TMR1	31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
8010	TIVIRT	15:0								TMR1<	<15:0>								0000
8020	PR1	31:16	_	_	—	_	—	_		—	_	—	_	_		_		—	0000
0020		15:0								PR1<1	5:0> ⁽²⁾								FFFF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

2: PR1 values of '0' and '1' are reserved.

PIC32MM0256GPM064 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	—	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	_	—	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	_	—	_	_	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
7:0	TGATE		TCKPS<2:0>		—		TCS	—

REGISTER 12-2: T3CON: TIMER3 CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer3 On bit
 - 1 = Timer3 is enabled
 - 0 = Timer3 is disabled

bit 14 Unimplemented: Read as '0'

- bit 13 SIDL: Timer3 Stop in Idle Mode bit
 - 1 = Discontinues operation when device enters Idle mode
 - 0 = Continues operation even in Idle mode

bit 12-8 Unimplemented: Read as '0'

bit 7 **TGATE:** Timer3 Gated Time Accumulation Enable bit When TCS = 1:

This bit is ignored.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

bit 6-4 TCKPS<2:0>: Timer3 Input Clock Prescale Select bits

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value
- 000 = 1:1 prescale value

bit 3-2 Unimplemented: Read as '0'

- bit 1 TCS: Timer3 Clock Source Select bit
 - 1 = External clock is from the T3CK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'

TABLE 14-1: MCCP/SCCP REGISTER MAP (CONTINUED)

																		<u> </u>	
ress ()	-	e									Bits								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0020	CCP9STAT	31:16		—	—	_		—	_		—	_	_	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP	0000
0930	CCP95TAI	15:0	—	_	_	—	—	ICGARM	—		CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
0940	CCP9TMR	31:16								ΤN	1RH<15:0>								0000
0940	CCF91WK	15:0		TMRL<15:0> 0000													0000		
0950	CCP9PR	31:16		PRH<15:0> 0000											0000				
0950	COF9FR	15:0								Р	RL<15:0>								0000
0960	CCP9RA	31:16	—	—	—	—	—	—	—		_	—		—	_	—	—	—	0000
0900	CCF9RA	15:0								CN	/IPA<15:0>								0000
0970	CCP9RB	31:16	—	—	—	—	—	—	—		_	—		—	_	—	—	—	0000
0970	CCF9RD	15:0														0000			
0090	CCP9BUF	31:16		BUFH<15:0> 0000											0000				
0980	CCF9BUF	15:0		BUFL<15:0> 0000												0000			

PIC32MM0256GPM064 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	-	_	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	—	_	_	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SPISGNEXT	_	_	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	-	-	_	AUDMONO ^(1,2)		AUDMOD)<1:0> ^(1,2)

REGISTER 15-2: SPIxCON2: SPIx CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: SPIx Sign-Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign-extended
 - 0 = Data from RX FIFO is not sign-extended
- bit 14-13 Unimplemented: Read as '0'

bit 12	FRMERREN: Enable Interrupt Events via FRMERR bit
	1 = Frame error overflow generates error events
	0 = Frame error does not generate error events
bit 11	SPIROVEN: Enable Interrupt Events via SPIROV bit
	1 = Receive Overflow (ROV) generates error events
	0 = Receive Overflow does not generate error events
bit 10	SPITUREN: Enable Interrupt Events via SPITUR bit
	1 = Transmit Underrun (TUR) generates error events
	0 = Transmit Underrun does not generate error events
bit 9	IGNROV: Ignore Receive Overflow (ROV) bit (for audio data transmissions)
	 1 = A ROV is not a critical error; during ROV, data in the FIFO is not overwritten by receive data 0 = A ROV is a critical error which stops SPIx operation
bit 8	IGNTUR: Ignore Transmit Underrun (TUR) bit (for audio data transmissions)
	 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty 0 = A TUR is a critical error which stops SPIx operation
bit 7	AUDEN: Enable Audio Codec Support bit ⁽¹⁾
	1 = Audio protocol is enabled0 = Audio protocol is disabled
bit 6-4	Unimplemented: Read as '0'
bit 3	AUDMONO: Transmit Audio Data Format bit ^(1,2)
	 1 = Audio data is mono (each data word is transmitted on both left and right channels) 0 = Audio data is stereo
bit 2	Unimplemented: Read as '0'
bit 1-0	AUDMOD<1:0>: Audio Protocol Mode bits ^(1,2)
	11 = PCM/DSP mode
	10 = Right Justified mode
	01 = Left Justified mode 00 = I ² S mode
Note 1:	These bits can only be written when the ON bit = 0.
2:	These bits are only valid for AUDEN = 1.

REGISTER 18-6: U1IR: USB INTERRUPT REGISTER (CONTINUED)

- bit 0 URSTIF: USB Reset Interrupt bit (Device mode)⁽⁵⁾
 - 1 = Valid USB Reset has occurred
 - 0 = No USB Reset has occurred
 - DETACHIF: USB Detach Interrupt bit (Host mode)(6)
 - 1 = Peripheral detachment was detected by the USB module
 - 0 = Peripheral detachment was not detected
- **Note 1:** This bit is only valid if the HOSTEN bit is set (see Register 18-11), there is no activity on the USB for 2.5 μs and the current bus state is not SE0.
 - **2:** When not in Suspend mode, this interrupt should be disabled.
 - 3: Clearing this bit will cause the STAT FIFO to advance.
 - 4: Only error conditions enabled through the U1EIE register will set this bit.
 - 5: Device mode.
 - 6: Host mode.

TABLE 21-1: CLC1, CLC2 AND CLC3 REGISTER MAP

Properiod Properiod <		<u> </u>		<u>, o</u>																
h h	ess										E	Bits								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
Image: bit is informed bit informed bit informed bit is informed bit informe	2490		32:16		_	—	_		—	—	_	_	—	—		G4POL	G3POL	G2POL	G1POL	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2400	CLUTCON	15:0	ON	_	SIDL	_	INTP	INTN	—	_	LCOE	LCOUT	LCPOL	—	_	I	MODE<2:0	>	0000
Image: Finite Final Fina	2490	CLC1SEL	32:16	_	_	—	_		_	—	_	_	_	—	_		—	—	—	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2400	OLOTOLL	15:0	—		DS4<2:0>		—		DS3<2:0>		—		DS2<2:0>		—		DS1<2:0>		0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24A0	CLC1GLS	32:16	-	-			-	-	-	-				G3D3N					0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0101010		G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	-	-	-	-	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2500	CLC2CON								—	_				—	G4POL				-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ON	—	SIDL	—	INTP	INTN	—	—	LCOE	LCOUT	LCPOL	—	—	l l	MODE<2:0	>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2510	CLC2SEL		_	—		—	—			—		—		_		_	—	—	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				—	0.00.00		0.000	—			0.0.0		000.011		00001		00001	1	000.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2520	CLC2GLS		-	-			-	-	-	-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-	-			_	-	-	-		G1D4N			-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2580	CLC3CON																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-		_	-													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2590	CLC3SEL					_				_		_		_		_		_	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				G4D4T	G4D4N		G4D3N				G4D1N		G3D4N		G3D3N		G3D2N		G3D1N	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25A0	CLC3GLS			-			-	-	-	-									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-			_	-	-	-	-	-			-	-	-	-	-
2610 CLC4SEL 15:0 - DS4<2:0> - DS3<2:0> - DS2<2:0> - DS1<2:0> 0000 2620 CLC4GLS 32:16 G4D4T G4D3T G4D3T G4D3T G4D2T G4D2N G4D1T G4D1N G3D4T G3D4N G3D2T G3D2N G3D1T G3D1N 0000	2600	CLC4CON		ON	_		_	INTP	INTN	_	_	LCOE			_	_	1		>	-
15:0 - DS4<2:0> - DS3<2:0> - DS2<2:0> - DS2<2:0> - DS1 000 2620 CLC4GLS 32:16 G4D4T G4D4N G4D3T G4D3N G4D2T G4D2N G4D1T G4D1N G3D4T G3D3N G3D2T G3D2N G3D1T G3D1N 000			32:16	_	_		_	—	—	_	_	—			_	_		_	—	
2620 CLC4GLS	2610	CLC4SEL	15:0	_		DS4<2:0>				DS3<2:0>		_		DS2<2:0>		_		DS1<2:0>		0000
2620 CLC4GLS 15:0 G2D4T G2D4N G2D3N G2D2T G2D2N G2D1T G1D4T G1D4N G1D3N G1D2N G1D1T G1D1N 0000	0000		32:16	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
	2620	CLC4GLS	15:0	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_	_	_	_	_	_	_		
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	—	—	—	G4POL	G3POL	G2POL	G1POL		
15:8	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0		
	ON	—	SIDL	_	INTP ⁽¹⁾	INTN ⁽¹⁾	_	—		
7:0	R/W-0	R-0, HS, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	LCOE	LCOUT	LCPOL	_	—		MODE<2:0>			

REGISTER 21-1: CLCxCON: CLCx CONTROL REGISTER

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable	e bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

bit 19	G4POL: Gate 4 Polarity Control bit
	1 = The output of Channel 4 logic is inverted when applied to the logic cell
	0 = The output of Channel 4 logic is not inverted
bit 18	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell
	0 = The output of Channel 3 logic is not inverted
bit 17	G2POL: Gate 2 Polarity Control bit
	 1 = The output of Channel 2 logic is inverted when applied to the logic cell 0 = The output of Channel 2 logic is not inverted
bit 16	G1POL: Gate 1 Polarity Control bit
	 1 = The output of Channel 1 logic is inverted when applied to the logic cell 0 = The output of Channel 1 logic is not inverted
bit 15	ON: CLCx Enable bit
	1 = CLCx is enabled and mixing input signals
	0 = CLCx is disabled and has logic zero outputs
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: CLCx Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode0 = Continues module operation in Idle mode
bit 12	Unimplemented: Read as '0'
bit 11	INTP: CLCx Positive Edge Interrupt Enable bit ⁽¹⁾
	 1 = Interrupt will be generated when a rising edge occurs on LCOUT 0 = Interrupt will not be generated
bit 10	INTN: CLCx Negative Edge Interrupt Enable bit ⁽¹⁾
	 1 = Interrupt will be generated when a falling edge occurs on LCOUT 0 = Interrupt will not be generated
bit 9-8	Unimplemented: Read as '0'
bit 7	LCOE: CLCx Port Enable bit
	1 = CLCx port pin output is enabled
	0 = CLCx port pin output is disabled
Note 1:	The INTP and INTN bits should not be set at the same time for proper interrupt function

Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

REGISTER 21-1: CLCxCON: CLCx CONTROL REGISTER (CONTINUED)

- bit 6 LCOUT: CLCx Data Output Status bit 1 = CLCx output high 0 = CLCx output low
- bit 5 LCPOL: CLCx Output Polarity Control bit 1 = The output of the module is inverted 0 = The output of the module is not inverted
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Cell is a 1-input transparent latch with S and R
 - 110 = Cell is a JK flip-flop with R
 - 101 = Cell is a 2-input D flip-flop with R
 - 100 = Cell is a 1-input D flip-flop with S and R
 - 011 = Cell is an SR latch
 - 010 = Cell is a 4-input AND
 - 001 = Cell is an OR-XOR
 - 000 = Cell is a AND-OR
- Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

TABLE 25-2: PERIPHERAL MODULE DISABLE REGISTERS MAP

ess										Bits									
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
35B0	PMDCON	31:16		_	_		_	_	_	_				—	_	_		—	FFFF
3380	FINDCON	15:0	_	—	—	—	PMDLOCK	—	—	—	—	-	—	—	—	—	—	—	F7FF
35C0	PMD1	31:16	_	—	—	—	—	—	—	—	—	-	—	HLVDMD	—	—	—	—	FFEF
3300	FIVIDI	15:0	_	—	—	VREFMD	—	—	—	—	—	-	—	—	—	—	—	ADCMD	EFFE
35D0	PMD2	31:16	_	—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	-	—	—	—	—	—	—	FOFF
3300	FIVIDZ	15:0	_	—	—	—	—	—	—	—	—	-	—	—	—	CMP3MD	CMP2MD	CMP1MD	FFF8
35E0	PMD3	31:16	_	—	_	_	—	—	_	—	_	_	_	—	_	—	_	CCP9MD	FFFE
00L0	T WID5	15:0	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	_	_	—	—	_	—	_	—	00FF
35F0	PMD4	31:16	—	—	—	—	_	—	_	—	_	_	—	—	_	—	_	—	FFFF
331.0		15:0	—	—	—	—	_	—	_	—	_	_	—	—	_	T3MD	T2MD	T1MD	FFF8
3600	PMD5	31:16	—	—	—	—	_	—	_	USBMD	_	_	—	—	_	I2C3MD	I2C2MD	I2C1MD	FEF8
3000	T WID5	15:0	—	—	—	—	_	SPI3MD	SPI2MD	SPI1MD	_	_	—	—	_	U3MD	U2MD	U1MD	F8F8
3610	PMD6	31:16	—	—	—	—	_	—	_	—	_	_	—	—	_	—	_	—	FEFF
5010	i wiD0	15:0	_	—	_	_	—	—	_	REFOMD	_	_	_	—	_	—	_	RTCCMD	FEFE
3620	PMD7	31:16	_	—	_	_	—	—	_	—	_	_	_	—	_	—	_	—	FFFF
5020		15:0	_	—	_	—	—	—	_	—	_	—	—	DMAMD	_	—	_	_	FFEF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

TABLE 26-7: UNIQUE DEVICE IDENTIFIER (UDID) REGISTER MAP

ess		e								В	its							
Virtual Address (BF84_#)	Register Name	Bit Range	31/15	30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0										All Resets				
1840	UDID1	31:16 15:0								UDID Wo	rd 1<31:0>							xxxx xxxx
1844	UDID2	31:16 15:0																
1848	UDID3	31:16 15:0		UDID Word 2<31:0> xxxx UDID Word 3<31:0> xxxx												xxxx xxxx		
184C	UDID4	31:16 15:0		UDID Word 4<31:0>												xxxx xxxx		
1850	UDID5	31:16 15:0		UDID Word 5<31:0>														

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 26-8: RESERVED REGISTERS MAP

ess		Ð	Bits											ø					
Virtual Addre (BF80_#)	(BF80_#) Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2900	RESERVED1	31:16 15:0		Reserved Register 1<31:0>							0000								

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DC CHARA	CTERISTIC	S							
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions			
DC60	130	255	μA	-40°C					
	130	255	μA	+25°C	2.0V				
	145	265	μA	+85°C		Sleep with active main Voltage Regulator			
	130	255	μA	-40°C		<pre>(VREGS (PWRCON<0>) bit = 1, RETEN (PWRCON<1>) bit = 0)</pre>			
	130	265	μA	+25°C	3.3V				
	145	275	μA	+85°C					
DC61	3.5	12	μA	-40°C					
	4.5	22	μA	+25°C	2.0V	Sleep with main Voltage Regulator in			
	15	35	μA	+85°C		Standby mode			
	4	17	μA	-40°C	3.3V	(VREGS (PWRCON<0>) bit = 0,			
	5	30	μA	+25°C		RETEN (PWRCON<1>) bit = 0)			
	18	38	μA	+85°C					
DC62	4.3	_	μA	-40°C	2.0V				
	5	_	μA	+25°C		Sleep with enabled Retention Voltage Regulator			
	10	_	μA	+85°C					
	5	_	μA	-40°C		(RETEN (PWRCON<1>) bit = 1,			
	5.6	_	μA	+25°C	3.3V	RETVR (FPOR<2>) bit = 0)			
	12	—	μA	+85°C					
DC63	.3	_	μA	-40°C					
	.4		μA	+25°C	2.0V	Sleep with enabled Retention			
	3.5	_	μA	+85°C		Voltage Regulator (VREGS (PWRCON<0>) bit = 0,			
	0.35		μA	-40°C		= (VREGS(PWRCON<0>) bit = 0, RETEN (PWRCON<1>) bit = 1,			
	0.45		μA	+25°C	3.3V	RETVR(FPOR<2>) bit = 0)			
	4.5	_	μA	+85°C					

TABLE 29-6:POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC1 pin is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
- OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins (excepting OSC1) are configured as outputs and driven low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

АС СН	ARACTE	RISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Sympol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions			
SY10	TMCL	MCLR Pulse Width (Low)	2	—	_	μS				
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	1	_	μS	Device running or in Idle			
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μS	$VDD \leq VBOR$			
SY45	TRST	Internal State Reset Time	_	25	_	μS				
SY71	Трм	Program Memory Wake-up Time	_	22	—	μS	Sleep wake-up with VREGS = 0			
			_	3.8	_	μS	Sleep wake-up with VREGS = 1			
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	163	—	μS	Sleep wake-up with VREGS = 0			
			—	23	_	μS	Sleep wake-up with VREGS = 1			

TABLE 29-23: RESET AND BROWN-OUT RESET REQUIREMENTS

Note 1: Parameters are for design guidance and are not tested.

АС СНА	RACTERIST	rics	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2	_	_	ns			
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	_		ns			
SP72	TscF	SCKx Input Fall Time	_	_	10	ns			
SP73	TscR	SCKx Input Rise Time	_	_	10	ns			
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	_	—	—	ns	See Parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	_	_	ns	See Parameter DO31		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	—	10	ns	VDD > 2.0V		
			_	—	15	ns	VDD < 2.0V		
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	0	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	7	—		ns			
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	88	_	_	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	2.5	_	12	ns			
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	_	_	ns			
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	—	12.5	ns			

TABLE 29-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 10 pF load on all SPIx pins.

Operating	Conditions: 2.0	$V \le V$ DD ≤ 3.6 V, -40°C \le TA \le +85°C (unless)	otherwise stated)		
Param No.	Symbol	Characteristic	Min	Max	Units
	-	Reference Inputs		·	
AD05	VREFH	Reference Voltage High	AVss + 1.7	AVDD	V
AD06	VREFL	Reference Voltage Low	AVss	AVDD – 1.7	V
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	AVDD + 0.3	V
		Analog Inputs			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	VREFH	V
AD11	VIN	Absolute Input Voltage	AVss – 0.3	AVDD + 0.3	V
AD12	VINL	Absolute VINL Input Voltage	AVss - 0.3	AVDD + 0.3	V
AD17	RIN	Recommended Impedance of Analog Voltage Source	_	2.5K	Ω

TABLE 29-34: ADC MODULE INPUTS SPECIFICATIONS

TABLE 29-35: ADC ACCURACY AND CONVERSION TIMING REQUIREMENTS FOR 12-BIT MODE⁽¹⁾

Operatin	g Conditions: \	/dd = 3.3V, AVss = Vrefl = 0V, AVd	D = VREFH = 3.3	$3V$, $-40^{\circ}C \le TA \le$	≨+85°C	
Param No.	Symbol	Characteristic	Min	Typ ⁽²⁾	Мах	Units
		ADC Accu	uracy			
AD20B	Nr	Resolution	—	12	—	bits
AD21B	INL	Integral Nonlinearity	—	±2.5	±3.5	LSb
AD22B	DNL	Differential Nonlinearity	—	±0.75	+1.75/-0.95	LSb
AD23B	Gerr	Gain Error	_	+2	+3	LSb
AD24B	EOFF	Offset Error	—	+1	+2	LSb
	·	Clock Para	meters			
AD50B	TAD	ADC Clock Period	280	—	—	ns
AD61B	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad
		Conversion	n Rate			
AD55B	tCONV	Conversion Time	—	14	—	TAD
AD56B	FCNV	Throughput Rate	—	—	200	ksps

Note 1: Measurements are taken with the external VREF+ and VREF- used as the ADC voltage reference.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.