

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpm048-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Pin Nu	mber					
Pin Name	28-Pin SSOP	28-Pin QFN/ UQFN	36-Pin QFN	40-Pin UQFN	48-Pin QFN/ TQFP	64-Pin QFN/ TQFP	Pin Type	Buffer Type	Description
RA0	2	27	33	36	21	11	I/O	ST/DIG	PORTA digital I/Os
RA1	3	28	34	37	22	12	I/O	ST/DIG	
RA2	9	6	7	7	32	25	I/O	ST/DIG	
RA3	10	7	8	8	33	26	I/O	ST/DIG	
RA4	12	9	10	10	36	29	I/O	ST/DIG	
RA5	—					54	I/O	ST/DIG	
RA6	—				20	10	I/O	ST/DIG	
RA7	—				14	1	I/O	ST/DIG	
RA8	—				34	27	I/O	ST/DIG	
RA9	—	_	11	11	37	30	I/O	ST/DIG	
RA10	—				13	64	I/O	ST/DIG	
RA11	—					8	I/O	ST/DIG	
RA12	—	_	_	_		7	I/O	ST/DIG	
RA13	—					6	I/O	ST/DIG	
RA14	—					59	I/O	ST/DIG	
RA15	—	_	_	_	8	58	I/O	ST/DIG	
RB0	4	1	35	38	23	13	I/O	ST/DIG	PORTB digital I/Os
RB1	5	2	36	39	24	14	I/O	ST/DIG	
RB2	6	3	1	1	25	15	I/O	ST/DIG	
RB3	7	4	2	2	26	16	I/O	ST/DIG	
RB4	11	8	9	9	35	28	I/O	ST/DIG	
RB5	14	11	15	15	45	43	I/O	ST/DIG	
RB6	15	12	16	16	46	44	I/O	ST/DIG	
RB7	16	13	17	17	47	46	I/O	ST/DIG	
RB8	17	14	18	18	48	48	I/O	ST/DIG	
RB9	18	15	19	20	1	49	I/O	ST/DIG	
RB10	21	18	24	27	9	60	I/O	ST/DIG	
RB11	22	19	25	28	10	61	I/O	ST/DIG	
RB13	24	21	27	30	12	63	I/O	ST/DIG	
RB14	25	22	28	31	15	2	I/O	ST/DIG	
RB15	26	23	29	32	16	3	I/O	ST/DIG	

TABLE 1-1: PIC32MM0256GPM064 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer I2C = $I^2C/SMBus$ input buffer

DIG = Digital input/output ANA = Analog level input/output P = Power

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0, HC	R/W-0	R-0, HS, HC	R-0, HS, HC	r-0	U-0	U-0	U-0
15:8	WR ^(1,3)	WREN ⁽¹⁾	WRERR ^(1,2)	LVDERR ^(1,2)		—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		NVMO	><3:0>	

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared r = Reserved bit				

bit 31-16 Unimplemented: Read as '0'

- bit 15 WR: Write Control bit^(1,3)
 - This bit cannot be cleared and can be set only when WREN = 1, and the unlock sequence has been performed. 1 =Initiates a Flash operation
 - 0 = Flash operation is complete or inactive

bit 14 WREN: Write Enable bit⁽¹⁾

- 1 = Enables writes to the WR bit and disables writes to the NVMOP<3:0> bits
- 0 = Disables writes to the WR bit and enables writes to the NVMOP<3:0> bits

bit 13 WRERR: Write Error bit^(1,2)

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation. 1 = Program or erase sequence did not complete successfully

0 = Program or erase sequence completed normally

bit 12 LVDERR: Low-Voltage Detect Error bit^(1,2)

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation. 1 = Low-voltage is detected (possible data corruption if WRERR is set)

- 0 = Voltage level is acceptable for programming
- bit 11 **Reserved:** Maintain as '0'

bit 10-4 Unimplemented: Read as '0'

- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other Reset sources.
 - 2: These bits are cleared by setting NVMOP<3:0> = 0000 and initiating a Flash operation (i.e., WR).
 - 3: This bit is only writable when the NVMKEY unlock sequence is followed. Refer to Example 5-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24				NVMDA	TAx<31:24>							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	NVMDATAx<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMDATAx<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMDA	ATAx<7:0>							

REGISTER 5-4: NVMDATAX: FLASH DATA x REGISTER (x = 0-1)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATAx<31:0>: Flash Data x bits

Double-Word Program: Writes NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the least significant instruction word.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other Reset sources.

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMSRCADDR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	NVMSRCADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMSRCADDR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMSRC	ADDR<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other Reset sources.

6.1 Reset Control Registers

TABLE 6-1: RESETS REGISTER MAP

ress)		e		Bits													s		
Virtual Add (BF80_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2650	DCON	31:16	PORIO	PORCORE			BCFGERR	BCFGFAIL			—			_		—			C000
20EU	RCON	15:0		_	_		—	_	CMR	_	EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR	0003
2650	DOWDOT	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
20FU	ROWROI	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SWRST	0000
0700		31:16	_	_	_	_	_	_	_	WDTR	SWNMI	_	_	_	GNMI	_	CF	WDTS	0000
2700	RININICON	15:0 NMICNT<15:0>								0000									
0740		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2110	FWRCON	15:0	_	_	_	_	_	_	_		_	_	_	_	_	SBOREN	RETEN	VREGS	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	—	—	_	_	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	_	_	_	RDWR	[DMACH<2:0>	

REGISTER 8-2: DMASTAT: DMA STATUS REGISTER

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3 RDWR: DMA Read/Write Status bit

1 = Last DMA bus access was a read

0 = Last DMA bus access was a write

bit 2-0 DMACH<2:0>: DMA Channel bits

These bits contain the value of the most recent active DMA channel.

REGISTER 8-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
01.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	1:24 DMAADDR<31:24>											
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:10	DMAADDR<23:16>											
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
10.0	DMAADDR<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				DMAADD	R<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

11.1 Timer1 Control Register

TABLE 11-1: TIMER1 REGISTER MAP

ress)		e								Bi	ts								s					
Virtual Addi (BF80_#	Registeı Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset					
8000	TICON	31:16	_	_	—	—	—	_		-	—	—	—	—	_	—		_	0000					
	TICON	15:0	ON	_	SIDL	TWDIS	TWIP	_	TECS	<1:0>	TGATE	_	TCKP	S<1:0>	_	TSYNC	TCS	_	0000					
0010	THE						31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0010	TIVIRT	15:0								TMR1<	<15:0>								0000					
0000	554	554	554	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000			
6020	PRI	15:0								PR1<1	5:0> ⁽²⁾								FFFF					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

2: PR1 values of '0' and '1' are reserved.

12.0 TIMER2 AND TIMER3

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-Bit Timer
- Synchronous Internal 16-Bit Gated Timer
- Synchronous External 16-Bit Timer

FIGURE 12-1:

A single 32-bit synchronous timer is available by combining Timer2 with Timer3. The resulting 32-bit timer can operate in three modes:

- · Synchronous Internal 32-Bit Timer
- · Synchronous Internal 32-Bit Gated Timer
- Synchronous External 32-Bit

12.1 Additional Supported Features

- Selectable Clock Prescaler
- Timers Operational during CPU Idle
- ADC Event Trigger (only Timer3)
- Fast Bit Manipulation using CLR, SET and INV Registers

Sync TMRx 14 ADC Event Comparator x 16 Trigger⁽¹⁾ Equal 介 PRx Reset 0 TxIF Event Flag 1 Q TGATE (TxCON<7>) Q TCS (TxCON<1>) TGATE (TxCON<7>) ON (TxCON<15>) TxCK x 1 Prescaler Gate 1, 2, 4, 8, 16, Sync 1 0 32, 64, 256 PBCLK 0 0 <u>3</u> TCKPS (TxCON<6:4>) Note 1: ADC Event Trigger is only available on Timer3.

TIMER2 AND TIMER3 BLOCK DIAGRAM (TYPE A, 16-BIT)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPDEN			D	EVADDR<6:0)>		

REGISTER 18-12: U1ADDR: USB ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7 LSPDEN: Low-Speed Enable Indicator bit

1 = Next token command to be executed at low speed0 = Next token command to be executed at full speed

bit 6-0 **DEVADDR<6:0>:** 7-Bit USB Device Address bits

PIC32MM0256GPM064 FAMILY

REGISTER 18-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	_		_		—
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
	UTEYE	UOEMON	_	USBSIDL	LSDEV	_		UASUSPND

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **UTEYE:** USB Eye Pattern Test Enable bit
 - 1 = Eye pattern test is enabled
 - 0 = Eye pattern test is disabled
- bit 6 **UOEMON:** USB OE Monitor Enable bit
 - $1 = \overline{OE}$ signal is active; it indicates intervals during which the D+/D- lines are driving
 - $0 = \overline{OE}$ signal is inactive
- bit 5 **Unimplemented:** Read as '0'
- bit 4 USBSIDL: USB Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 3 LSDEV: USB Low-Speed Device Enable bit
 - 1 = USB macro operates in Low-Speed Device Only mode
 - 0 = USB macro operates in OTG, Host or Fast Speed Device mode

bit 2-1 Unimplemented: Read as '0'

- bit 0 UASUSPND: Automatic Suspend Enable bit
 - 1 = USB module automatically suspends upon entry to Sleep mode; see the USUSPEND bit (U1PWRC<1>) in Register 18-5
 - 0 = USB module does not automatically suspend upon entry to Sleep mode; software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "RTCC with Timestamp" (DS60001362) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. Key features of the RTCC module are:

- Time: Hours, Minutes and Seconds
- · 24-Hour Format (military time)
- · Visibility of One-Half Second Period
- Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are Configurable for Half of a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week, 1 Month and 1 Year
- · Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- · Leap Year Correction
- · BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Uses External 32.768 kHz Crystal, 32 kHz Internal Oscillator, PWRLCLK Input Pin or Peripheral Clock
- Alarm Pulse, Seconds Clock or Internal Clock Output on RTCC Pin

FIGURE 19-1: RTCC BLOCK DIAGRAM

REGISTER 20-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 7-4	SSRC<3:0>: Conversion Trigger Source Select bits 1111 = CLC2 module event ends sampling and starts conversion 110 = CLC1 module event ends sampling and starts conversion 101 = SCCP6 module event ends sampling and starts conversion 100 = SCCP5 module event ends sampling and starts conversion 1011 = SCCP4 module event ends sampling and starts conversion 1010 = SCCP5 module event ends sampling and starts conversion 1010 = MCCP3 module event ends sampling and starts conversion 1001 = MCCP2 module event ends sampling and starts conversion 1000 = MCCP1 module event ends sampling and starts conversion 1010 = Timer1 period match ends sampling and starts conversion (auto-convert) 0111 = Timer1 period match ends sampling and starts conversion (will not trigger during Sleep mode) 0100-0011 = Reserved 0010 = Timer3 period match ends sampling and starts conversion 0010 = Timer3 period match ends sampling and starts conversion 0010 = Timer3 period match ends sampling and starts conversion 0001 = Active transition on INT0 pin ends sampling and starts conversion 0000 = Clearing the SAMP bit ends sampling and starts conversion
bit 3	MODE12: 12-Bit Operation Mode bit 1 = 12-bit ADC operation
	0 = 10-bit ADC operation
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit ⁽²⁾
	 1 = The ADC Sample-and-Hold Amplifier (SHA) is sampling 0 = The ADC SHA is holding When ASAM = 0, writing '1' to this bit starts sampling. When SSRC<3:0 = 0000, writing '0' to this bit will end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit ⁽¹⁾
	1 = Analog-to-Digital conversion is done
	0 = Analog-to-Digital conversion is not done or has not started Clearing this bit will not affect any operation in progress.
Noto 1	The DONE bit is not persistent in Automatic modes: it is cleared by bardware at the beginning of the

- **Note 1:** The DONE bit is not persistent in Automatic modes; it is cleared by hardware at the beginning of the next sample.
 - 2: The SAMP bit is cleared and cannot be written if the ADC is disabled (ON bit = 0).

PIC32MM0256GPM064 FAMILY

21.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCON
- CLCxSEL
- CLCxGLS

The CLCx Control register (CLCxCON) is used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select register (CLCxGLS) allows the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	-	—	—	—	—	-
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	
15:0	R/W-0	U-0	R/W-0	U-0	R/W-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
10.0	ON	—	SIDL	—	VDIR	BGVST	IRVST	HLEVT
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_		_		HLVDL	<3:0>	

REGISTER 24-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** HLVD Power Enable bit
 - 1 = HLVD is enabled
 - 0 = HLVD is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: HLVD Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12 Unimplemented: Read as '0'
- bit 11 **VDIR:** Voltage Change Direction Select bit
 - 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)
 - 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)
- bit 10 BGVST: Band Gap Voltage Stable Flag bit
 - 1 = Indicates that the band gap voltage is stable
 - 0 = Indicates that the band gap voltage is unstable
- bit 9 IRVST: Internal Reference Voltage Stable Flag bit
 - 1 = Internal reference voltage is stable; the High-Voltage Detect logic generates the interrupt flag at the specified voltage range
 - 0 = Internal reference voltage is unstable; the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled
- bit 8 HLEVT: High/Low-Voltage Detection Event Status bit
 - 1 = Indicates HLVD event is active
 - 0 = Indicates HLVD event is not active
- bit 7-4 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
31:24	USERID<15:8>									
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
23:10	USERID<7:0>									
45.0	R/P	R/P	r-1	r-1	r-1	r-1	r-1	r-1		
15.8	FVBUSIO	FUSBIDIO	—	-	—	—	_	—		
7.0	r-1	r-1	r-1	R/P	R/P	r-1	r-1	r-1		
7:0	_		_	ALTI2C	SOSCHP	_	_	_		

REGISTER 26-1: FDEVOPT/AFDEVOPT: DEVICE OPTIONS CONFIGURATION REGISTER

Legend:	r = Reserved bit	P = Programmable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-16 USERID<15:0>: User ID bits (2 bytes which can programmed to any value)

- bit 15 FVBUSIO: USB VBUS_ON Selection bit
 - 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 14 FUSBIDIO: USB USBID Selection bit
 - 1 = USBID pin is controlled by the USB module
 - 0 = USBID pin is controlled by the port function
- bit 13-5 **Reserved:** Program as '1'
- bit 4 ALTI2C: Alternate I2C1 Location Select bit
 - 1 = SDA1 and SCL1 are on pins, RB8 and RB9
 - 0 = SDA1 and SCL1 are moved to alternate I²C locations, RB5 and RC9
 - SOSCHP: Secondary Oscillator (SOSC) High-Power Enable bit
 - 1 = SOSC operates in normal power mode
 - 0 = SOSC operates in High-Power mode
- bit 2-0 Reserved: Program as '1'

bit 3

PIC32MM0256GPM064 FAMILY

FIGURE 29-6: MCCP AND SCCP INPUT CAPTURE MODE TIMING CHARACTERISTICS

TABLE 29-25: MCCP AND SCCP INPUT CAPTURE MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions		
IC10	TCCL	ICMx Input Low Time	[(12.5 ns or 1 TPBCLK)/N] + 25 ns	_	ns	Must also meet Parameter IC15		
IC11	ТссН	ICMx Input High Time	[(12.5 ns or 1 TPBCLK)/N] + 25 ns	_	ns	Must also meet Parameter IC15		
IC15	TCCP	ICMx Input Period	[(25 ns or 2 TPBCLK)/N] + 50 ns		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 29-7: MCCP AND SCCP OUTPUT COMPARE MODE TIMING CHARACTERISTICS

Note: Refer to Figure 29-2 for load conditions.

TABLE 29-26: MCCP AND SCCP OUTPUT COMPARE MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions	
OC10	TCCF	OCMx Output Fall Time		—		ns	See Parameter DO32	
OC11	TccR	OCMx Output Rise Time	_	—	—	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 29-27: MCCP AND SCCP PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical	Мах	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change		_	50	ns		
OC20	TFLT	Fault Input Pulse Width	10	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2	_	_	ns		
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	—		ns		
SP72	TscF	SCKx Input Fall Time		—	10	ns		
SP73	TscR	SCKx Input Rise Time	-	—	10	ns		
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾		—		ns	See Parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	—	_	ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	10	ns	VDD > 2.0V	
				—	15	ns	VDD < 2.0V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	0	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	7	—	-	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	88	—		ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	2.5	—	12	ns		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	—	_	ns		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	—	12.5	ns		

TABLE 29-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 10 pF load on all SPIx pins.

30.1 Package Marking Information (Continued)

40-Lead UQFN (5x5x0.5 mm)

48-Lead UQFN (6x6 mm)

48-Lead TQFP (7x7x1.0 mm)

64-Lead QFN (9x9x0.9 mm)

64-Lead TQFP (10x10x1 mm)

Example

Example

Example

Example

Example

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Center Pad Width	X2			2.00	
Center Pad Length	Y2			2.00	
Contact Pad Spacing	C1		3.90		
Contact Pad Spacing	C2		3.90		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.85	
Contact Pad to Center Pad (X28)	G1		0.52		
Contact Pad to Pad (X24)	G2	0.20			
Contact Pad to Corner Pad (X8)	G3	0.20			
Corner Anchor Width (X4)	X3			0.78	
Corner Anchor Length (X4)	Y3			0.78	
Thermal Via Diameter	V		0.30		
Thermal Via Pitch	EV		1.00		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2333-M6 Rev B