

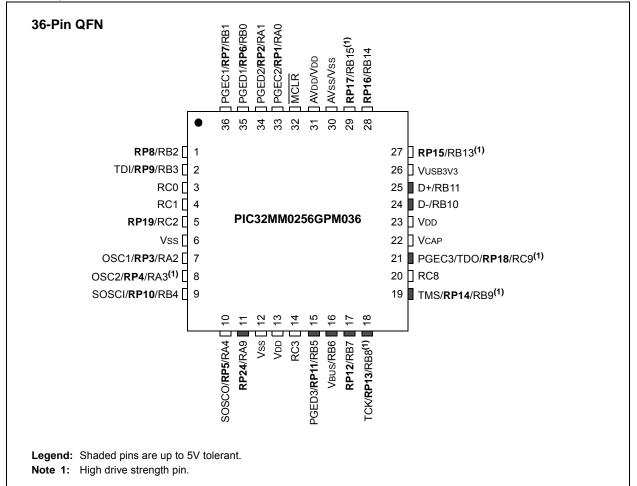
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 20x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0064gpm064-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 36-PIN QFN DEVICES

Pin	Function	Pin	Function
1	AN4/C1INB/RP8/SDA2/OCM2E/RB2	19	TMS/REFCLKI/RP14/SDA1/T1CK/T1G/U1RTS/U1BCLK/SDO1/OCM1B/INT2/RB9 ⁽¹⁾
2	TDI/AN11/C1INA/RP9/SCL2/OCM2F/RB3	20	AN14/LVDIN/C2INC/RC8
3	AN12/C2IND/T2CK/T2G/RC0	21	PGEC3/TDO/RP18/ASCL1 ⁽²⁾ /USBOEN/SDO3/RC9 ⁽¹⁾
4	AN13/T3CK/T3G/RC1	22	VCAP
5	RP19/OCM2A/RC2	23	VDD
6	Vss	24	D-/RB10
7	OSC1/CLKI/AN5/RP3/OCM1C/RA2	25	D+/RB11
8	OSC2/CLKO/AN6/C3IND/RP4/OCM1D/RA3 ⁽¹⁾	26	VUSB3V3
9	SOSCI/AN7/RP10/OCM3C/RB4	27	AN8/ RP15 /SCL3/SCK3/RB13 ⁽¹⁾
10	SOSCO/SCLKI/RP5/PWRLCLK/OCM3D/RA4	28	CVREF/AN9/C3INB/RP16/RTCC/U1TX/VBUSON/SDI1/OCM3B/INT1/RB14
11	RP24/OCM3A/RA9	29	AN10/C3INA/REFCLKO/RP17/U1RX/SS1/FSYNC1/OCM2B/INT0/RB15 ⁽¹⁾
12	Vss	30	AVss/Vss
13	Vdd	31	AVdd/Vdd
14	RC3	32	MCLR
15	PGED3/RP11/ASDA1 ⁽²⁾ /USBID/SS3/FSYNC3/OCM3E/RB5	33	PGEC2/VREF+/CVREF+/AN0/ RP1 /OCM1E/INT3/RA0
16	VBUS/RB6	34	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1
17	RP12/SDA3/SDI3/OCM3F/RB7	35	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0
18	TCK/RP13/SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾	36	PGEC1/AN3/C1INC/C2INA/ RP7 /OCM2D/RB1

Note 1: High drive strength pin.

2: Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

			Pin Number								
Pin Name	28-Pin SSOP	28-Pin QFN/ UQFN	36-Pin QFN	40-Pin UQFN	48-Pin QFN/ TQFP	64-Pin QFN/ TQFP	Pin Type	Buffer Type	Description		
RA0	2	27	33	36	21	11	I/O	ST/DIG	PORTA digital I/Os		
RA1	3	28	34	37	22	12	I/O	ST/DIG			
RA2	9	6	7	7	32	25	I/O	ST/DIG			
RA3	10	7	8	8	33	26	I/O	ST/DIG			
RA4	12	9	10	10	36	29	I/O	ST/DIG			
RA5	—	—	_	_	_	54	I/O	ST/DIG			
RA6	—	—	—	_	20	10	I/O	ST/DIG			
RA7	—	—	_	_	14	1	I/O	ST/DIG			
RA8	—	_	_	_	34	27	I/O	ST/DIG			
RA9	—	—	11	11	37	30	I/O	ST/DIG			
RA10	—	_	_	_	13	64	I/O	ST/DIG			
RA11	—	_	_	_	_	8	I/O	ST/DIG			
RA12	—	—	_	_	_	7	I/O	ST/DIG			
RA13	—	_	_	_	_	6	I/O	ST/DIG			
RA14	—	_	_	_	_	59	I/O	ST/DIG			
RA15	—	—	—	_	8	58	I/O	ST/DIG			
RB0	4	1	35	38	23	13	I/O	ST/DIG	PORTB digital I/Os		
RB1	5	2	36	39	24	14	I/O	ST/DIG			
RB2	6	3	1	1	25	15	I/O	ST/DIG			
RB3	7	4	2	2	26	16	I/O	ST/DIG			
RB4	11	8	9	9	35	28	I/O	ST/DIG			
RB5	14	11	15	15	45	43	I/O	ST/DIG			
RB6	15	12	16	16	46	44	I/O	ST/DIG			
RB7	16	13	17	17	47	46	I/O	ST/DIG			
RB8	17	14	18	18	48	48	I/O	ST/DIG			
RB9	18	15	19	20	1	49	I/O	ST/DIG			
RB10	21	18	24	27	9	60	I/O	ST/DIG			
RB11	22	19	25	28	10	61	I/O	ST/DIG			
RB13	24	21	27	30	12	63	I/O	ST/DIG			
RB14	25	22	28	31	15	2	I/O	ST/DIG			
RB15	26	23	29	32	16	3	I/O	ST/DIG			
Legend: S											

TABLE 1-1: PIC32MM0256GPM064 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer I2C = $I^2C/SMBus$ input buffer

DIG = Digital input/output ANA = Analog level input/output P = Power

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-1, HS	R/W-1, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0
31:24	PORIO	PORCORE			BCFGERR	BCFGFAIL	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_		—	_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
10.0	—	_	_		—	_	CMR	—
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR ⁽¹⁾	SWR ⁽¹⁾		WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ^(1,2)	BOR ⁽¹⁾	POR ⁽¹⁾

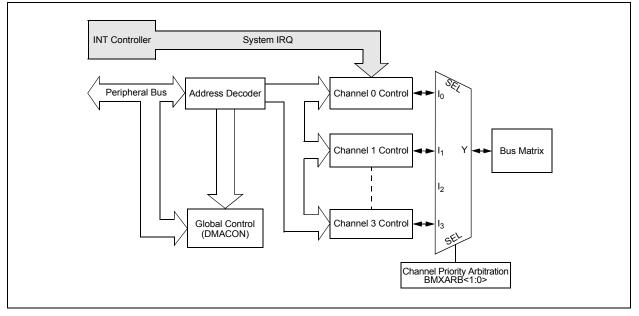
REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	PORIO: VDD POR Flag bit
	Set by hardware at detection of a VDD POR event.
	1 = A Power-on Reset has occurred due to VDD voltage
	0 = A Power-on Reset has not occurred due to VDD voltage
bit 30	PORCORE: Core Voltage POR Flag bit
	Set by hardware at detection of a core POR event.
	1 = A Power-on Reset has occurred due to core voltage
	0 = A Power-on Reset has not occurred due to core voltage
bit 29-28	Unimplemented: Read as '0'
bit 27	BCFGERR: Primary Configuration Registers Error Flag bit
	1 = An error occurred during a read of the Primary Configuration registers
	0 = No error occurred during a read of the Primary Configuration registers
bit 26	BCFGFAIL: Primary/Alternate Configuration Registers Error Flag bit
	1 = An error occurred during a read of the Primary and Alternate Configuration registers
	0 = No error occurred during a read of the Primary and Alternate Configuration registers
bit 25-10	Unimplemented: Read as '0'
bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = A Configuration Mismatch Reset has occurred
	0 = A Configuration Mismatch Reset has not occurred
bit 8	Unimplemented: Read as '0'
bit 7	EXTR: External Reset (MCLR) Pin Flag bit ⁽¹⁾
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit ⁽¹⁾
	1 = Software Reset was executed
	0 = Software Reset was not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾
	1 = WDT time-out has occurred
	0 = WDT time-out has not occurred
Note 1:	User software must clear these bits to view the next detection.

2: The IDLE bit will also be set when the device wakes from Sleep.

8.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note 1: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "DMA Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between peripherals and memory without CPU intervention. The source and destination of a DMA transfer can be any of the memory-mapped modules, that do not have a dedicated DMA, existent in the PIC32 (such as SPI, UART, PMP, etc.) or the memory itself.

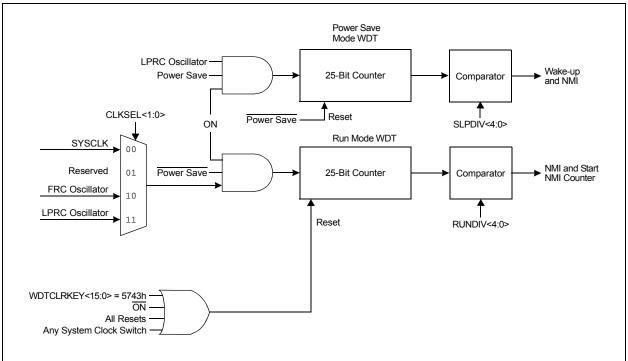
The following are some of the key features of the DMA Controller module:

- Four Identical Channels, Each Featuring:
 - Auto-Increment Source and Destination Address registers
 - Source and Destination Pointers
 - Memory to memory and memory to peripheral transfers
- Automatic Word Size Detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- FIGURE 8-1: DMA BLOCK DIAGRAM

- Fixed Priority Channel Arbitration
- · Flexible DMA Channel Operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA Requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA Channel Status Interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA Debug Support Features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable
- User Selectable Bus Arbitration Priority (refer to Section 4.2 "Bus Matrix (BMX)")
- 8 System Clocks Per Cell Transfer

TABLE 10-0.				10	
Value	RPn Pins	Pin Assignment	Value	RPn Pins	Pin Assignment
00001	RP1	RA0 Pin	01110	RP14	RB9 Pin
00010	RP2	RA1 Pin	01111	RP15	RB13 Pin
00011	RP3	RA2 Pin	10000	RP16	RB14 Pin
00100	RP4	RA3 Pin	10001	RP17	RB15 Pin
00101	RP5	RA4 Pin	10010	RP18	RC9 Pin
00110	RP6	RB0 Pin	10011	RP19	RC2 Pin
00111	RP7	RB1 Pin	10100	RP20	RC7 Pin
01000	RP8	RB2 Pin	10101	RP21	RA7 Pin
01001	RP9	RB3 Pin	10110	RP22	RA10 Pin
01010	RP10	RB4 Pin	10111	RP23	RC6 Pin
01011	RP11	RB5 Pin	11000	RP24	RA9 Pin
01100	RP12	RB7 Pin	11001-11111	Re	served
01101	RP13	RB8 Pin			

TABLE 10-3: REMAPPABLE INPUT SOURCES PIN ASSIGNMENTS⁽¹⁾


Note 1: All RPx pins are not available on all packages.

13.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 62. "Dual Watchdog Timer" (DS60001365) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. When enabled, the Watchdog Timer (WDT) can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

Some of the key features of the WDT module are:

- · Configuration or Software Controlled
- User-Configurable Time-out Period
- Different Time-out Periods for Run and Sleep/Idle modes
- Operates from LPRC Oscillator in Sleep/Idle modes
- Different Clock Sources for Run mode
- · Can Wake the Device from Sleep or Idle

FIGURE 13-1: WATCHDOG TIMER BLOCK DIAGRAM

REGISTER 15-1: SPIxCON: SPIx CONTROL REGISTER (CONTINUED)

bit 7	SSEN: Slave Select Enable (Slave mode) bit
	$1 = \overline{SSx}$ pin is used for Slave mode
	$0 = \overline{SSx}$ pin is not used for Slave mode, pin is controlled by port function
bit 6	CKP: Clock Polarity Select bit ⁽³⁾
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode
	0 = Slave mode
bit 4	DISSDI: Disable SDIx bit ⁽⁴⁾
	 1 = SDIx pin is not used by the SPIx module (pin is controlled by port function) 0 = SDIx pin is controlled by the SPIx module
bit 3-2	STXISEL<1:0>: SPIx Transmit Buffer Empty Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is not full (has one or more empty elements) 10 = Interrupt is generated when the buffer is empty by one-half or more 01 = Interrupt is generated when the buffer is completely empty 00 = Interrupt is generated when the last transfer is shifted out of SPIxSR and transmit operations are complete
bit 1-0	SRXISEL<1:0>: SPIx Receive Buffer Full Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is full 10 = Interrupt is generated when the buffer is full by one-half or more 01 = Interrupt is generated when the buffer is not empty
	00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
Note 1:	These bits can only be written when the ON bit = 0. Refer to Section 29.0 " Electrical Characteristics " for maximum clock frequency requirements.
2:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

- **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
- 4: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 10.9 "Peripheral Pin Select (PPS)" for more information).

REGISTER 15-3: SPIxSTAT: SPIx STATUS REGISTER (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB, is empty

0 = Transmit buffer, SPIxTXB, is not empty

Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

bit 2 Unimplemented: Read as '0'

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit has not yet started, SPIxTXB is full

0 = Transmit buffer is not full

Standard Buffer mode:

Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Set when CPU Write Pointer (CWPTR) + 1 = SPI Read Pointer (SRPTR); cleared otherwise.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB, is full

0 = Receive buffer, SPIxRXB, is not full

Standard Buffer mode:

Automatically set in hardware when the SPIx module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise.

TABLE 18-1: USB OTG REGISTER MAP (CONTINUED)

ess		æ									Bits								s
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8770	U1EP7	31:16	—	—	—		_	-	-	—	_	_	-	—		-	-	-	0000
0//0		15:0	—	—	—	_	—	—	_	—	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
8780	U1EP8	31:16	—	—	—	_	—	—	_	—	—	—	_	—	_	_	_	_	0000
0700	UILI U	15:0	—	—	—	_	—	_		—	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
8790	U1EP9	31:16	—	—	—	_	—	—	_	—	—	—	_	—	_	_	_	_	0000
0730	UTLI 9	15:0	—	—	—	_	—	—	_	—	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
87A0	U1EP10	31:16	—	—	—	_	—	_		—	_	—	—	—	_	_	_	_	0000
0770	UTELLIU	15:0	—	—	—	_	—	—	_	—	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
87B0	U1EP11	31:16	—	—	—	_	—	—	_	—	—	—	_	—	_	_	_	_	0000
07 00	UIEFII	15:0	—	—	—	_	—	—	-	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
87C0	U1EP12	31:16	_	_	—	_	—	—	-	—	_	—	—	—	-	-	-	_	0000
0/00	UTEL 12	15:0	_	_	—	_	—	—	-	—	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
87D0	U1EP13	31:16	—	—	—	_	—	—	-	—	—	—	—	—	-	-	-	-	0000
0/ 00	UTEL 15	15:0	_	_	—	_	—	—	-	—	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
87E0	U1EP14	31:16	—	—	—	—	—	—	_	—	—	—	_	—	_	—	_	_	0000
07 EU	UILF 14	15:0	—	—	_	_	—	—	_	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
87F0	U1EP15	31:16	—	_	—	-	—	—	-	—	_	—	-	—		-	-	-	0000
07F0	UILF IS	15:0	_	—	—	—	—	—	—	—	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for these bits is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	_	_	_	—
00.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	—	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	_	_	_	—
7.0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0
7:0	ID		LSTATE	_	SESVD	SESEND		VBUSVD

REGISTER 18-3: U1OTGSTAT: USB OTG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 ID: ID Pin State Indicator bit
 - 1 = No cable is attached or a "Type B" cable has been inserted into the USB receptacle 0 = A "Type A" OTG cable has been inserted into the USB receptacle
- bit 6 Unimplemented: Read as '0'
- bit 5 LSTATE: Line State Stable Indicator bit
 - 1 = USB line state (SE0 (U1CON<6> and JSTATE (U1CON<7>) has been stable for the previous 1 ms
 - 0 = USB line state (SE0 (U1CON<6> and JSTATE (U1CON<7>) has not been stable for the previous 1 ms
- bit 4 Unimplemented: Read as '0'
- bit 3 SESVD: Session Valid Indicator bit
 - 1 = The VBUS voltage is above VA_SESS_VLD (as defined in the USB OTG Specification) on the A or B-device 0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
- bit 2 SESEND: B-Device Session End Indicator bit

1 = The VBUS voltage is above VB_SESS_END (as defined in the USB OTG Specification) on the B-device 0 = The VBUS voltage is below VB_SESS_END on the B-device

bit 1 Unimplemented: Read as '0'

bit 0 VBUSVD: A-Device VBUS Valid Indicator bit

1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the USB OTG Specification) on the A-device 0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

PIC32MM0256GPM064 FAMILY

Bit Range	Bit Bit 31/23/15/7 30/22/14/6 2		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	_	_	—	_	_	_	_	—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	—	—	_		—		_	—						
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15:8	—	—	_	—	—	_	_	—						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0				FRML<7:0>										

REGISTER 18-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** 11-Bit Frame Number Lower bits These register bits are updated with the current frame number whenever a SOF token is received.

Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ____ _ ____ ____ _ ____ ____ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 ____ ____ ____ ____ ____ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 U-0 U-0 U-0 U-0 U-0 R-0 R-0 R-0 7:0 FRMH<2:0> — — — — —

REGISTER 18-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:				
R = Readable bit	W = Writable bit	t U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** Upper 3 Bits of the Frame Numbers bits These register bits are updated with the current frame number whenever a SOF token is received.

PIC32MM0256GPM064 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	—	—	—	_	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		CH0NA<2:0>				CH0SA<4:0>		

REGISTER 20-5: AD1CHS: ADC INPUT SELECT REGISTER

Leaend:	
Logona.	

Ecgenia.			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-5 CH0NA<2:0>: Negative Input Select bits
 - 111-001 = Reserved
 - 000 = Negative input is AVss
- bit 4-0 CH0SA<4:0>: Positive Input Select bits
 - 111111 = Reserved
 - 11110 = Positive input is AVDD
 - 11101 = Positive input is AVss
 - 11100 = Positive input is Band Gap Reference (VBG)
 - 11011 = VDD core
 - 10100-10110 = Reserved
 - 10011 = Positive input is AN19⁽¹⁾
 - 10010 = Positive input is AN18⁽¹⁾ 10001 = Positive input is AN17⁽¹⁾

 - 10000 = Positive input is AN16⁽¹⁾ 01111 = Positive input is AN15⁽²⁾

 - 01110 = Positive input is AN14⁽³⁾
 - 01101 = Positive input is AN13⁽³⁾
 - 01100 = Positive input is AN12⁽³⁾ 01011 = Positive input is AN11
 - 01010 = Positive input is AN10

 - 01001 = Positive input is AN9
 - 01000 = Positive input is AN8
 - 00111 = Positive input is AN7
 - 00110 = Positive input is AN6 00101 = Positive input is AN5
 - 00100 = Positive input is AN4
 - 00011 = Positive input is AN3
 - 00010 = Positive input is AN2
 - 00001 = Positive input is AN1
 - 00000 = Positive input is AN0
- Note 1: This option is not available in 28, 36, 40 or 48-pin packages.
 - 2: This option is not available in 28, 36 or 40-pin packages.
 - 3: This option is not available in 28-pin packages.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_	_	_	_	_	_	_		
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	—	—	—	G4POL	G3POL	G2POL	G1POL		
15:8	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0		
	ON	—	SIDL	_	INTP ⁽¹⁾	INTN ⁽¹⁾	_	—		
7:0	R/W-0	R-0, HS, HC	R/W-0	U-0	U-0	R/W-0 R/W-0		R/W-0		
	LCOE	LCOUT	LCPOL			MODE<2:0>				

REGISTER 21-1: CLCxCON: CLCx CONTROL REGISTER

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

bit 19	G4POL: Gate 4 Polarity Control bit
	1 = The output of Channel 4 logic is inverted when applied to the logic cell
	0 = The output of Channel 4 logic is not inverted
bit 18	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell
	0 = The output of Channel 3 logic is not inverted
bit 17	G2POL: Gate 2 Polarity Control bit
	 1 = The output of Channel 2 logic is inverted when applied to the logic cell 0 = The output of Channel 2 logic is not inverted
bit 16	G1POL: Gate 1 Polarity Control bit
	 1 = The output of Channel 1 logic is inverted when applied to the logic cell 0 = The output of Channel 1 logic is not inverted
bit 15	ON: CLCx Enable bit
	1 = CLCx is enabled and mixing input signals
	0 = CLCx is disabled and has logic zero outputs
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: CLCx Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode0 = Continues module operation in Idle mode
bit 12	Unimplemented: Read as '0'
bit 11	INTP: CLCx Positive Edge Interrupt Enable bit ⁽¹⁾
	 1 = Interrupt will be generated when a rising edge occurs on LCOUT 0 = Interrupt will not be generated
bit 10	INTN: CLCx Negative Edge Interrupt Enable bit ⁽¹⁾
	 1 = Interrupt will be generated when a falling edge occurs on LCOUT 0 = Interrupt will not be generated
bit 9-8	Unimplemented: Read as '0'
bit 7	LCOE: CLCx Port Enable bit
	1 = CLCx port pin output is enabled
	0 = CLCx port pin output is disabled
Note 1:	The INTP and INTN bits should not be set at the same time for proper interrupt function

Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

REGISTER 21-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER (CONTINUED)

bit 20	G3D3N: Gate 3 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 3
	0 = The Data Source 3 inverted signal is disabled for Gate 3
bit 19	G3D2T: Gate 3 Data Source 2 True Enable bit
	 1 = The Data Source 2 signal is enabled for Gate 3 0 = The Data Source 2 signal is disabled for Gate 3
bit 18	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 17	G3D1T: Gate 3 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 3 0 = The Data Source 1 signal is disabled for Gate 3
bit 16	G3D1N: Gate 3 Data Source 1 Negated Enable bit
bit to	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 2
1.11.4.4	0 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2
	0 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 2
	0 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 20 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
bit II	1 = The Data Source 2 signal is enabled for Gate 2
	0 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 2
hit O	0 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit 1 = The Data Source 1 signal is enabled for Gate 2
	0 = The Data Source 1 signal is disabled for Gate 2
bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 2
	0 = The Data Source 1 inverted signal is disabled for Gate 2
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit
	 1 = The Data Source 4 signal is enabled for Gate 1 0 = The Data Source 4 signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 1
	0 = The Data Source 4 inverted signal is disabled for Gate 1
bit 5	G1D3T : Gate 1 Data Source 3 True Enable bit
	 1 = The Data Source 3 signal is enabled for Gate 1 0 = The Data Source 3 signal is disabled for Gate 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5			Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	_				-	_	_
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	-	-	_	—	—	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	-	-	_	—	—	—
7.0	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
7:0					LPBOREN	RETVR	BORE	N<1:0>

REGISTER 26-3: FPOR/AFPOR: POWER-UP SETTINGS CONFIGURATION REGISTER

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Reserved: Program as '1'

bit 3 LPBOREN: Low-Power BOR Enable bit

1 = Low-Power BOR is enabled when main BOR is disabled

0 = Low-Power BOR is disabled

- bit 2 **RETVR:** Retention Voltage Regulator Enable bit
 - 1 = Retention regulator is disabled

0 = Retention regulator is enabled and controlled by the RETEN bit during Sleep

bit 1-0 BOREN<1:0>: Brown-out Reset Enable bits

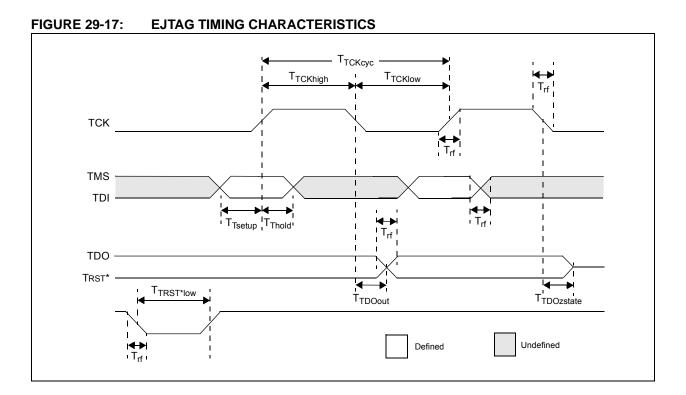
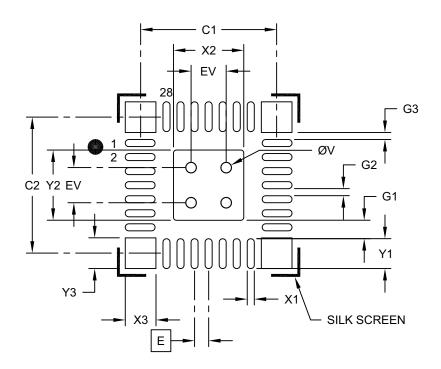

- 11 = Brown-out Reset is enabled in hardware; SBOREN bit is disabled
- 10 = Brown-out Reset is enabled only while device is active and disabled in Sleep; SBOREN bit is disabled
- 01 = Brown-out Reset is controlled with the SBOREN bit setting
- 00 = Brown-out Reset is disabled in hardware; SBOREN bit is disabled

TABLE 26-6: BAND GAP REGISTER MAP

ess		۵	Bits														s		
Virtual Addre (BF80_#) Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset	
2200	ANCFG ⁽¹⁾	31:16	—	_	—	-	-	_	-	_		—	-		-	_	—	_	0000
2300	ANCEG /	15:0	_	_	_			_		_		-				VBGADC	VBGCMP		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.


TABLE 29-37: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions		
EJ1	Ттсксус	TCK Cycle Time	25	—	ns			
EJ2	Ттскнідн	TCK High Time	10	_	ns			
EJ3	TTCKLOW	TCK Low Time	10	_	ns			
EJ4	TTSETUP	TAP Signals Setup Time before Rising TCK	5	—	ns			
EJ5	TTHOLD	TAP Signals Hold Time after Rising TCK	3	—	ns			
EJ6	Ттрооит	TDO Output Delay Time from Falling TCK		5	ns			
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK		5	ns			
EJ8	TTRSTLOW	TRST Low Time	25	_	ns			
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	_	_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

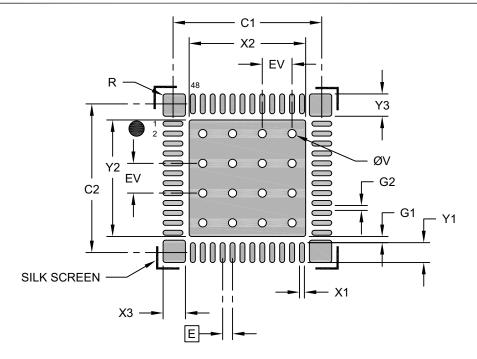
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Center Pad Width	X2			2.00
Center Pad Length	Y2			2.00
Contact Pad Spacing	C1		3.90	
Contact Pad Spacing	C2		3.90	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.85
Contact Pad to Center Pad (X28)	G1		0.52	
Contact Pad to Pad (X24)	G2	0.20		
Contact Pad to Corner Pad (X8)	G3	0.20		
Corner Anchor Width (X4)	X3			0.78
Corner Anchor Length (X4)	Y3			0.78
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2333-M6 Rev B

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	0.40 BSC		
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

NOTES: