

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0128gpm028-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	TMS/ RP14 /SDA1/OCM1B/INT2/RB9 ⁽¹⁾	25	AN4/C1INB/RP8/SDA2/OCM2E/RB2
2	RP23/RC6	26	TDI/AN11/C1INA/ RP9 /SCL2/OCM2F/RB3
3	RP20/RC7	27	AN12/C2IND/T2CK/T2G/RC0
4	AN14/LVDIN/C2INC/RC8	28	AN13/T3CK/T3G/RC1
5	PGEC3/TDO/RP18/ASCL1 ⁽²⁾ /USBOEN/RC9 ⁽¹⁾	29	RP19/OCM2A/RC2
6	Vss	30	VDD
7	VCAP	31	Vss
8	RTCC/RA15	32	OSC1/CLKI/AN5/ RP3 /OCM1C/RA2
9	D-/RB10	33	OSC2/CLKO/AN6/C3IND/ RP4 /RA3 ⁽¹⁾
10	D+/RB11	34	SDO3/RA8 ⁽¹⁾
11	VUSB3V3	35	SOSCI/AN7/ RP10 /OCM3C/RB4
12	AN8/ RP15 /SCL3/RB13 ⁽¹⁾	36	SOSCO/SCLKI/ RP5 /PWRLCLK/OCM3D/RA4
13	RP22/SCK3/RA10 ⁽¹⁾	37	RP24/OCM3A/RA9
14	RP21/SDI3/RA7	38	REFCLKI/T1CK/T1G/U1RTS/U1BCLK/SDO1/RD0 ⁽¹⁾
15	CVREF/AN9/C3INB/RP16/VBUSON/SDI1/OCM3B/INT1/RB14	39	OCM2B/RC3
16	AN10/C3INA/REFCLKO/RP17/SS1/FSYNC1/INT0/RB15 ⁽¹⁾	40	OCM1E/INT3/RC4
17	AVss/Vss	41	AN15/OCM1D/RC5
18	AVdd/Vdd	42	Vss
19	MCLR	43	VDD
20	AN19/U1RX/RA6	44	U1TX/RC12
21	PGEC2/VREF+/CVREF+/AN0/ RP1 /RA0	45	PGED3/RP11/ASDA1 ⁽²⁾ /USBID/SS3/FSYNC3/OCM3E/RB5
22	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	46	VBUS/RB6
23	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0	47	RP12/SDA3/OCM3F/RB7
24	PGEC1/AN3/C1INC/C2INA/ RP7 /OCM2D/RB1	48	TCK/RP13/SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾

TABLE 6: **COMPLETE PIN FUNCTION DESCRIPTIONS FOR 48-PIN UQFN/TQFP DEVICES**

 Note 1:
 High drive strength pin.

 2:
 Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

			Pin Nu	ımber						
Pin Name	28-Pin SSOP	28-Pin QFN/ UQFN	36-Pin QFN	40-Pin UQFN	48-Pin QFN/ TQFP	64-Pin QFN/ TQFP	Pin Type	Buffer Type	Description	
U1BCLK	18	15	19	20	38	34	0	DIG	UART1 IrDA [®] 16x baud clock output	
U1CTS	17	14	18	18	48	6	Ι	ST	UART1 Clear-to-Send	
U1RTS	18	15	19	20	38	34	0	DIG	UART1 Ready-to-Send	
U1RX	26	23	29	32	20	10	Ι	ST	UART1 receive data input	
U1TX	25	22	28	31	44	40	0	DIG	UART1 transmit data output	
USBID	14	11	15	15	45	43	Ι	ST	USB OTG ID (OTG mode only)	
USBOEN	19	16	21	22	5	55	0	—	USB transceiver output enable flag	
VBUSON	25	22	28	31	15	2	0	—	USB host and On-The-Go (OTG) bus power control output	
VBUS	15	12	16	16	46	44	Р		USB VBUS connection (5V nominal)	
VUSB3V3	23	20	26	29	11	62	Р	_	USB transceiver power input (3.3V nominal)	
VCAP	20	17	22	24	7	56	Р	—	Core voltage regulator filter capacitor connection	
Vdd	13,28	10,25	13,23,31	13,26, 34	18,30, 43	17,23, 39,57	Р	—	Digital modules power supply	
VREF-	3	28	34	37	22	12	I	ANA	Analog-to-Digital Converter negative reference	
VREF+	2	27	33	36	21	11	Ι	ANA	Analog-to-Digital Converter positive reference	
Vss	8,27	5,24	6,12,30	6,12,33	6,17,31, 42	18,24, 38	Р	—	Digital modules ground	

TABLE 1-1: PIC32MM0256GPM064 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer I2C = $I^2C/SMBus$ input buffer DIG = Digital input/output ANA = Analog level input/output

P = Power

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). MIPS32® microAptiv[™] UC microprocessor core resources are available at: www.imgtec.com. The information in this data sheet supersedes the information in the FRM.

The MIPS32[®] microAptiv™ UC microprocessor core is the heart of the PIC32MM0256GPM064 family devices. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of the instruction execution to the proper destinations.

3.1 Features

The PIC32MM0256GPM064 family processor core key features include:

- 5-Stage Pipeline
- 32-Bit Address and Data Paths
- MIPS32 Enhanced Architecture:
 - Multiply-add and multiply-subtract instructions.
 - Targeted multiply instruction.
 - Zero and one detect instructions.
 - WAIT instruction.
 - Conditional move instructions.
 - Vectored interrupts.
 - Atomic interrupt enable/disable.
 - One GPR shadow set to minimize latency of interrupts.
 - Bit field manipulation instructions.
- microMIPS™ Instruction Set:
 - microMIPS allows improving the code size density over MIPS32, while maintaining MIPS32 performance.
 - microMIPS supports all MIPS32 instructions (except for branch-likely instructions) with new optimized 32-bit encoding. Frequent MIPS32 instructions are available as 16-bit instructions.
 - Added seventeen new and thirty-five MIPS32[®] corresponding, commonly used instructions in 16-bit opcode format.
 - Stack Pointer implicit in instruction.
 - MIPS32 assembly and ABI compatible.

- Memory Management Unit with Simple Fixed Mapping Translation (FMT) Mechanism
- Multiply/Divide Unit (MDU):
 - Configurable using high-performance multiplier array.
 - Maximum issue rate of one 32x16 multiply per clock.
 - Maximum issue rate of one 32x32 multiply every other clock.
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (rs) sign extension dependent).
- · Power Control:
 - No minimum frequency: 0 MHz.
 - Power-Down mode (triggered by WAIT instruction).
- EJTAG Debug/Profiling:
 - CPU control with start, stop and single stepping.
 - Software breakpoints via the SDBBP instruction.
 - Simple hardware breakpoints on virtual addresses, 4 instruction and 2 data breakpoints.
 - PC and/or load/store address sampling for profiling.
 - Performance counters.
 - Supports Fast Debug Channel (FDC).

A block diagram of the PIC32MM0256GPM064 family processor core is shown in Figure 3-1.

7.1 CPU Exceptions

CPU Coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] microAptiv[™] UC MICROPROCESSOR CORE EXCEPTION TYPES

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
	·	Highest Priority		•		·
Reset	Assertion of MCLR.	0xBFC0_0000	BEV, ERL		_	_on_reset
Soft Reset	Execution of a RESET instruction.	0xBFC0_0000	BEV, SR, ERL	-	_	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DSS	_	_
DINT	EJTAG debug interrupt. Caused by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DINT	_	_
NMI	Non-Maskable Interrupt.	0xBFC0_0000	BEV, NMI, ERL	-	—	_nmi_handler
Interrupt	Assertion of unmasked hardware or software interrupt signal.	See Table 7-2	IPL<2:0>	-	Int (0x00)	See Table 7-2
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DIB	_	_
AdEL	Load address alignment error.	EBASE + 0x180	EXL	_	ADEL (0x04)	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE + 0x180	EXL	_	IBE (0x06)	_general_exception_handler
DBp	EJTAG breakpoint (execution of SDBBP instruction).	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	DBp	_	_	_
Sys	Execution of SYSCALL instruction.	EBASE + 0x180	EXL	_	Sys (0x08)	_general_exception_handler
Вр	Execution of BREAK instruction.	EBASE + 0x180	EXL	—	Bp (0x09)	_general_exception_handles

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	—	—	_	—	—	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	RI<1:0>

REGISTER 8-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled

bit 14-9 Unimplemented: Read as '0'

- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events if Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allows channel to be chained
- 0 = Does not allow channel to be chained

bit 4 CHAEN: Channel Automatic Enable bit

- 1 = Channel is continuously enabled and not automatically disabled after a block transfer is complete
- 0 = Channel is disabled on a block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected

bit 1-0 **CHPRI<1:0>:** Channel Priority bits

- 11 = Channel has Priority 3 (highest)
- 10 = Channel has Priority 2
- 01 = Channel has Priority 1
- 00 = Channel has Priority 0

Note 1: The chain selection bit takes effect when chaining is enabled (CHCHN = 1).

2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCTUN<11>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC<2:0> bits values are transferred to the COSC<2:0> bits.
- 6. The old clock source is turned off if it is not being used by a peripheral, or enabled by device configuration or a control register.
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for OSCCON by writing 0xAA996655 and 0x556699AA to the SYSKEY register.
- 3. Write the new oscillator source to the NOSC<2:0> bits.
- 4. Set the OSWEN bit.
- 5. Relock the OSCCON register.
- 6. Continue to execute code that is not clock-sensitive (optional).

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

SYSKEY = 0x00000000; SYSKEY = 0xAA996655; SYSKEY = 0x556699AA;	// force lock // unlock
OSCCONbits.NOSC = 3;	// select the new clock source
OSCCONSET = 1;	// set the OSWEN bit
SYSKEY = 0x0000000;	// force lock
while (OSCCONbits.OSWEN);	// optional wait for
BSET OSCCON, #0	Switch Operation

REGISTER 15-1: SPIxCON: SPIx CONTROL REGISTER (CONTINUED)

bit 7	SSEN: Slave Select Enable (Slave mode) bit
	$1 = \overline{SSx}$ pin is used for Slave mode
	0 = SSx pin is not used for Slave mode, pin is controlled by port function
bit 6	CKP: Clock Polarity Select bit ⁽³⁾
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode
	0 = Slave mode
bit 4	DISSDI: Disable SDIx bit ⁽⁴⁾
	1 = SDIx pin is not used by the SPIx module (pin is controlled by port function)0 = SDIx pin is controlled by the SPIx module
bit 3-2	STXISEL<1:0>: SPIx Transmit Buffer Empty Interrupt Mode bits
	 11 = Interrupt is generated when the buffer is not full (has one or more empty elements) 10 = Interrupt is generated when the buffer is empty by one-half or more 01 = Interrupt is generated when the buffer is completely empty 00 = Interrupt is generated when the last transfer is shifted out of SPIxSR and transmit operations are complete
bit 1-0	SRXISEL<1:0>: SPIx Receive Buffer Full Interrupt Mode bits
	11 = Interrupt is generated when the buffer is full 10 = Interrupt is generated when the buffer is full by one-half or more 01 = Interrupt is generated when the buffer is not empty
	00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
Note 1:	These bits can only be written when the ON bit = 0. Refer to Section 29.0 " Electrical Characteristics " for maximum clock frequency requirements.
2:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

- **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
- 4: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 10.9 "Peripheral Pin Select (PPS)" for more information).

PIC32MM0256GPM064 FAMILY

FIGURE 16-1: I2Cx BLOCK DIAGRAM

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 11	RTSMD: Mode Selection for UxRTS Pin bit 1 = UxRTS pin is in Simplex mode 0 = UxRTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits ⁽¹⁾
	 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
bit 7	WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
	1 = Wake-up is enabled0 = Wake-up is disabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	1 = Loopback mode is enabled0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	RXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = High-Speed mode – 4x baud clock is enabled 0 = Standard Speed mode – 16x baud clock is enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit
	1 = 2 Stop bits 0 = 1 Stop bit

Note 1: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 10.9 "Peripheral Pin Select (PPS)" for more information).

TABLE 18-1: USB OTG REGISTER MAP

ess (a		Bits														
Virtual Addr (BF88_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
0440		31:16	—	_	_	—	—	_	_	_	_	_	_	_	_	-	—	_
8440	UIUIGIR-	15:0	—	—	—	_	_	_	_	—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF
9450		31:16	—	_	_	—	_	—	—	_	_	_	_	_	_	_	_	_
0400	UIUIGIE	15:0	—	—	—	—	—	—	—	—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE
8460		31:16	—	—	—	_	—	—		—	—		—	—	—	—	—	—
0400	UIUIUSIAI	15:0	—	—	—	_	—			—	ID	_	LSTATE	—	SESVD	SESEND	—	VBUSVD
8470	LIIOTGCON	31:16	_	_	_		_			—	_		_	_	_	—	_	_
0470	01010001	15:0	—	-	—	—	—		_	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS
8480	U1PWRC	31:16	—	—	—	—	—	—	—	—	—	_	_	—	—	—	—	—
0100		15:0	—	—	—	—	—	—	—	—	UACTPND ⁽⁴⁾	—	-	USLPGRD	USBBUSY	—	USUSPEND	USBPWR
		31:16	—	—	—		—				—		—	-	—	—	—	—
8600	U1IR ⁽²⁾	15:0	—	-	-	—	—	-	-	-	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF DETACHIF
		31:16	—	—	—	_	_	_	_	—	_	_	_	_		—		
8610	U1IE	15:0	_	_	_	-	_	_	-	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE DETACHIE
		31:16	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
8620	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF
		31:16	—	_	_	_	—	_	_	_	_	_	_	_	—	_	—	_
8630	U1EIE	15:0	_	_	_	_	_	_	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE EOFEE	PIDEE
		31:16	—	_	_	_	—	—	_	_	_	_	_	_	_	_	_	_
8640	UISTAN	15:0	—	—	—	_	_	_	_	_		ENDP	Г<3:0> ⁽⁴⁾		DIR	PPBI	_	_
		31:16	—	—	—	_	_	_	_	—	_	_	_	_		—		_
8650	U1CON	15:0	_	_	_	_	_	_	_	_	JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	PKTDIS TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	USBEN SOFEN
		31:16	_	_	_	_	_	_	_	_	_	_	_	-	_	_	—	—
8660	U1ADDR	15:0	_	_	_	_	—	_	_	_	LSPDEN			DI	EVADDR<6:0)>		

All Resets

0000

0000

0000

0000

0000

0000 0000

0000 0000

0000 0000

0000

0000

0000

0000

0000 0000

0000

0000

0000 0000

0000

0000

0000

0000

0000

0000

0000 0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for these bits is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0							
31:24	_	—	—	—	—	—	—	—	
00.40	U-0	U-0							
23:10	—	—	—	—	—	—	—	—	
45.0	U-0	U-0							
15:8	—	—		—	—	—	—	_	
	R/WC-0, HS	R/WC-0, HS							
7:0	DTOEE	DMVEE					CRC5EF ⁽⁴⁾		
	DISEF	DIVIAEF	DIVIAEL	BIVER'	DENOEL	URG IDEF	EOFEF ^(3,5)	PIDEF	

REGISTER 18-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to Clear bit	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-8 Unimplemented: Read as '0'
- bit 7 **BTSEF:** Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 - 1 = Invalid base address of the BDT or the address of an individual buffer pointed to by a BDT entry
 - 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾
 - 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out has occurred
- bit 3 DFN8EF: Data Field Size Error Flag bit
 - 1 = Data field received is not an integral number of bytes
 - 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet rejected due to CRC16 error
 - 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 22-2: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1, 2 AND 3) (CONTINUED)

bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits

11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt is generated on transition of the comparator output: If CPOL = 0 (non-inverted polarity):

High-to-low transition only.

If CPOL = 1 (inverted polarity):

Low-to-high transition only.

01 = Trigger/event/interrupt is generated on transition of the comparator output:

If CPOL = 0 (non-inverted polarity):

Low-to-high transition only.

If CPOL = 1 (inverted polarity):

High-to-low transition only.

00 = Trigger/event/interrupt generation is disabled

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (non-inverting input)
 - 1 = Non-inverting input connects to the internal reference defined by the CVREFSEL bit in CMSTAT register 0 = Non-inverting input connects to the CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the band gap reference voltage
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - ${\tt 00}$ = Inverting input of the comparator connects to the CxINB pin

23.1 Voltage Reference Control Registers

TABLE 23-1: VOLTAGE REFERENCE REGISTER MAP

ess			Bits												ŝ				
Virtual Addr (BF80_#)	Virtual Addr (BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2200	DACICON	31:16	-	—	—	—	—	—	—	-	—	—	-	DACDAT<4:0> REFSEL<1:0>				0000	
2380	DACICON	15:0	ON	_	—	_	_	_	—	DACOE	_	_	—				L<1:0>	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively.

TABLE 25-2: PERIPHERAL MODULE DISABLE REGISTERS MAP

ess		â								Bits	6								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2500		31:16	_	_	_	—	_	_	_	—				—		_	_		FFFF
3380	FINDCON	15:0	—	—	—	_	PMDLOCK	—	—	_	—	—		—		—	—		F7FF
3500		31:16	—	—	—	—	—	—	—	—	—	—		HLVDMD	_	—	—	—	FFEF
3300	FIVIDI	15:0	—	—	—	VREFMD	—	—	—	—	—	—		—	_	—	—	ADCMD	EFFE
3500		31:16	—	—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—		—	_	—	—	—	FOFF
3300	FIVIDZ	15:0	—	—	—	—	—	—	—	—	—	—		—	_	CMP3MD	CMP2MD	CMP1MD	FFF8
3550	DMD3	31:16	—	—	—	—	—	—	—	—	—	—		—	_	—	—	CCP9MD	FFFE
33L0	FINDS	15:0	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	—	—		—	_	—	—	—	00FF
3550		31:16	—	—	—	—	—	—	—	—	—	—		—	_	—	—	—	FFFF
331.0	F IVID4	15:0	—	—	—	—	—	—	—	—	—	—		—	_	T3MD	T2MD	T1MD	FFF8
3600	DMD5	31:16	—	—	—	—	—	—	—	USBMD	—	—		—	_	I2C3MD	I2C2MD	I2C1MD	FEF8
3000	F IVID3	15:0	—	—	—	—	—	SPI3MD	SPI2MD	SPI1MD	—	—	—	—	_	U3MD	U2MD	U1MD	F8F8
2610	DMD6	31:16	—	—	—	_	—	—	—	_	—	—		—		—	—		FEFF
3010	FIVIDO	15:0	—	—	—	_	—	—	—	REFOMD	—	—		—		—	—	RTCCMD	FEFE
3620		31:16	_	_	_	_	_	_	—	_	_	_		_	_	_	_	_	FFFF
3020		15:0	_	_	_	_	_	_	_	_	_	_	—	DMAMD	_	—	_	_	FFEF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

REGISTER 26-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	—	—	—	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	_	—	—	—	—	—	—	—
45.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
15:8	FCKS	M<1:0>	—	SOSCSEL	—	OSCIOFNC	POSCM	OD<1:0>
7.0	R/P	R/P	r-1	R/P	r-1	R/P	R/P	R/P
7:0	IESO	SOSCEN	—	PLLSRC	—		FNOSC<2:0>	

Legend:	r = Reserved bit	P = Programmable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31-16 **Reserved:** Program as '1'
- bit 15-14 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Enable bits
 - 11 = Clock switching is enabled; Fail-Safe Clock Monitor is enabled
 - 10 = Clock switching is disabled; Fail-Safe Clock Monitor is enabled
 - 01 = Clock switching is enabled; Fail-Safe Clock Monitor is disabled
 - 00 = Clock switching is disabled; Fail-Safe Clock Monitor is disabled
- bit 13 Reserved: Program as '1'
- bit 12 SOSCSEL: Secondary Oscillator (SOSC) External Clock Enable bit
 - 1 = Crystal is used (RA4 and RB4 pins are controlled by the SOSC)
 - 0 = External clock connected to the SOSCO pin is used (RA4 and RB4 pins are controlled by I/O PORTx registers)
- bit 11 Reserved: Program as '1'
- bit 10 OSCIOFNC: System Clock on CLKO Pin Enable bit
 - 1 = CLKO/OSC2 pin operates as normal I/O
 - 0 = System clock is connected to the CLKO/OSC2 pin
- bit 9-8 POSCMOD<1:0>: Primary Oscillator (POSC) Mode Selection bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock (EC) mode is selected
- bit 7 IESO: Two-Speed Start-up Enable bit
 - 1 = Two-Speed Start-up is enabled
 - 0 = Two-Speed Start-up is disabled
- bit 6 **SOSCEN:** Secondary Oscillator (SOSC) Enable bit
 - 1 = Secondary Oscillator enable
 - 0 = Secondary Oscillator disable
- bit 5 Reserved: Program as '1'
- bit 4 PLLSRC: System PLL Input Clock Selection bit
 - 1 = FRC oscillator is selected as the PLL reference input on a device Reset
 - 0 = Primary Oscillator (POSC) is selected as the PLL reference input on a device Reset
- bit 3 Reserved: Program as '1'

REGISTER 26-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER (CONTINUED)

bit 2-0 FNOSC<2:0>: Oscillator Selection bits

110 and 111 = Reserved (selects Fast RC (FRC) Oscillator with Divide-by-N)

101 = Low-Power RC Oscillator (LPRC)

- 100 = Secondary Oscillator (SOSC)
- 011 = Reserved
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Primary or FRC Oscillator with PLL
- 000 = Fast RC Oscillator (FRC) with Divide-by-N

REGISTER 26-6: FSEC/AFSEC: CODE-PROTECT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/P	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	CP	_		_	_	_	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:10	—	—	-	—	—	—	—	—
15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	-	—	—	—	—	—
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_		_	_	_	_	_

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 CP: Code Protection Enable bit

1 = Code protection is disabled

0 = Code protection is enabled

bit 30-0 Reserved: Program as '1'

TABLE 26-5: RAM CONFIGURATION, DEVICE ID AND SYSTEM LOCK REGISTERS MAP

ess				Bits												(E)			
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2040	050001	31:16	—	—	—	—	BMXERRDIS	—	BMXAF	RB<1:0>	D> EXECADDR<7:0>					0000			
3640	CFGCON	15:0	—	_	—	_	_	_	—	—	_	_	_		JTAGEN	_	r	r	0003
2660		31:16		VER	<3:0>							DEVID<2	27:16>						xxxx
3000	DEVID	15:0	DEVID<15:0> xxx								xxxx								
2670	OVOKEV	31:16							:	SYSKEY<	31:16>								0000
3070	SISKET	15:0		SYSKEY<15:0> 000								0001							

Legend: x = unknown value on Reset; r = reserved bit; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	N		48			
Pitch	е		0.40 BSC			
Overall Height	Α	0.50	0.55	0.60		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3		0.15 REF			
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	4.50	4.60	4.70		
Overall Width	E		6.00 BSC			
Exposed Pad Width	E2	4.50	4.60	4.70		
Terminal Width	b	0.15	0.20	0.25		
Corner Anchor Pad	b1		0.45 REF			
Corner Anchor Pad, Metal-free Zone	b2		0.23 REF			
Terminal Length	L	0.35	0.40	0.45		
Terminal-to-Exposed-Pad	K		0.30 REF			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Thermal Tab

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimensio	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Optional Center Tab Width	X2		3.50			
Optional Center Tab Length	Y2		3.50			
Contact Pad Spacing	C1		8.40			
Contact Pad Spacing	C2		8.40			
Contact Pad Width (X48)	X1			0.30		
Contact Pad Length (X48)	Y1			1.50		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2183A

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2