

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Active
MIPS32® microAptiv™
32-Bit Single-Core
25MHz
IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
27
128KB (128K x 8)
FLASH
-
16K × 8
2V ~ 3.6V
A/D 15x10/12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
36-VFQFN Exposed Pad
36-SQFN (6x6)
https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0128gpm036-i-m2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Power Management

The processor core offers a number of power management features, including low-power design, active power management and Power-Down modes of operation. The core is a static design that supports slowing or halting of the clocks, which reduces system power consumption during Idle periods.

The mechanism for invoking Power-Down mode is implemented through execution of the WAIT instruction, used to initiate Sleep or Idle. The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MM family makes extensive use of local gated clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The microAptiv UC core has an Enhanced JTAG (EJTAG) interface for use in the software debug. In addition to the standard mode of operation, the microAptiv UC core provides a Debug mode that is entered after a debug exception (derived from a hard-ware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the microAptiv UC core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.5 MIPS32[®] microAptiv[™] UC Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the microAptiv UC core, which is included on PIC32MM0256GPM064 family devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	—	—	_	—	—	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	RI<1:0>

REGISTER 8-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled

bit 14-9 Unimplemented: Read as '0'

- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events if Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allows channel to be chained
- 0 = Does not allow channel to be chained

bit 4 CHAEN: Channel Automatic Enable bit

- 1 = Channel is continuously enabled and not automatically disabled after a block transfer is complete
- 0 = Channel is disabled on a block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected

bit 1-0 **CHPRI<1:0>:** Channel Priority bits

- 11 = Channel has Priority 3 (highest)
- 10 = Channel has Priority 2
- 01 = Channel has Priority 1
- 00 = Channel has Priority 0

Note 1: The chain selection bit takes effect when chaining is enabled (CHCHN = 1).

2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 10-9: PERIPHERAL PIN SELECT REGISTER MAP

sss										Bits									
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
24.00	DDCON	31:16	_	_	—	_	—	—	—	—	_	_	_	—	—	_	—	—	0000
2A00	RPCON	15:0	_	—	—	—	IOLOCK	_	—	_	_	—	—	—	_	_	_	_	0000
2420		31:16	_	—	—	_	—	_	—	_		—	—	_	_	_	—	—	0000
2A20		15:0														INT4R<4:0	>		0000
2430		31:16	—	—	—			ICM2R<4:0>	>		—	—	—			ICM1R<4:0	>		0000
2A30		15:0	—	—	_	—	_	_	—	—	—	—	_	—	—	—	_	_	0000
2440		31:16	—	—	_	—	_	_	—	—	—	—	_	—	_	—	—	—	0000
2740		15:0	—	—	—	—	—	_	—	—	—	—	—			ICM3R<4:0	>		0000
2460		31:16	—	—	—		(OCFBR<4:0	>		—	—	—		(OCFAR<4:0	>		0000
2A00		15:0	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2470		31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
ZATU		15:0	—	—	—		٦	CKIBR<4:0	>		—	—	—		٦	CKIAR<4:0)>		0000
2480		31:16	—	—	—			ICM8R<4:0>	>		—	—	—			ICM7R<4:0	>		0000
2400		15:0	—	—	—			ICM6R<4:0>	>			—	—			ICM5R<4:0	>		0000
24.00		31:16	—	—	—		I	U3RXR<4:0	>			—	—	—	_	—	—	—	0000
2490		15:0	—	—	—	—	—	_	—	—	—	—	—			ICM9R<4:0	>		0000
24.40		31:16	—	—	—		L	J2CTSR<4:0	>			—	—			U2RXR<4:0	>		0000
ZAAU	KEINK9	15:0	—	—	—	_	—	_	—	_		—	—	_	_	_	—	—	0000
24 80		31:16	—	—	—		L	J3RTSR<4:0	>			—	—	—	_	—	—	—	0000
ZADU		15:0	—	—	—	—	—	_	_	_		—	—	—	_	—	—	—	0000
24.00		31:16	—	—	—	—	—	_	_	_		—	—		5	SS2INR<4:0)>		0000
ZACU		15:0	—	—	—		S	CK2INR<4:()>			—	—			SDI2R<4:0	>		0000
2400		31:16	—	—	—		С	LCINBR<4:()>			—	—		С	LCINAR<4:	0>		0000
ZADU		15:0	—	—	—	—	—	_	_	_		—	—	—	_	—	—	—	0000
2010		31:16	_	_	—			RP4R<4:0>			_	_	—			RP3R<4:0>	>		0000
2010	RPURU	15:0	_	_	—		RP2R<4:0>				_	_	—			RP1R<4:0>	>		0000
2020		31:16	_	_	—		RP8R<4:0>				_	_	—	RP7R<4:0>				0000	
2620	RPURT	15:0	—	—	_		RP6R<4:0>				—	—	_	RP5R<4:0>			0000		
2020	PROPA	31:16	—	—	_			RP12R<4:0>	>		—	—	_			RP11R<4:0	>		0000
2830	RPUR2	15:0	_	—	_			RP10R<4:0>	>		_	—	_			RP9R<4:0>	>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

PIC32MM0256GPM064 FAMILY

FIGURE 12-2: TIMER2/3 BLOCK DIAGRAM (TYPE B, 32-BIT)

Note: The timer configuration bit, T32 (T2CON<3>), must be set to '1' for a 32-bit timer/counter operation. All control bits are respective to the T2CON register and interrupt bits are respective to the T3CON register.

15.1 **SPI Control Registers**

TABLE 15-1: SPI1, SPI2 AND SPI3 REGISTER MAP

ess		6								Bits									
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0100	00140001	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FR	MCNT<2:0	>	MCLKSEL	_	_		_	-	SPIFE	ENHBUF	0000
8100	SPITCON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISEL	<1:0>	SRXIS	EL<1:0>	0000
0110		31:16	_	_	—		RXB	JFELM<4:0>			—	_	-		TXBI	JFELM<4	:0>		0000
0110	SPIISIAI	15:0	_	_	—	FRMERR	SPIBUSY	_	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	0008
8120	SPI1BUF	31:16 15:0							D	ATA<31:0>									0000
0400		31:16	—	—	—	—	—	—	—	—	—	—	—		—	—	—	—	0000
8130	SPIIBRG	15:0	—	—	—						BRG	<12:0>							0000
04.40		31:16	_	_	_	_	_	_	—	—	_	_	_	_	_	_	_	_	0000
8140	SPITCONZ	15:0	SPISGNEXT	_	_	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUDMONO	_	AUDM	OD<1:0>	0000
0000		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FR	MCNT<2:0	>	MCLKSEL	—	—	_	—	_	SPIFE	ENHBUF	0000
8200	SPIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISEL	<1:0>	SRXIS	EL<1:0>	0000
0010		31:16	_	—	—		RXB	JFELM<4:0>			—	_	—		TXB	JFELM<4	:0>		0000
0210	5P1251A1	15:0	—	_	—	FRMERR	SPIBUSY	_	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	0008
8220	SPI2BUF	31:16 15:0							D,	ATA<31:0>									0000
0000	0010000	31:16	—	—	—	_	_	—	—	—	—	—	—		—	_	—	—	0000
8230	SPI2BRG	15:0	_	_	_						BRG	<12:0>							0000
00.40		31:16	_	—	_	_	_	_	—	—	—	_	—	_	—	_	_	_	0000
8240	SPI2CON2	15:0	SPISGNEXT	—	_	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR	AUDEN	_	—	_	AUDMONO	_	AUDM	OD<1:0>	0000
0000		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FR	MCNT<2:0	>	MCLKSEL	_	_	_	_	_	SPIFE	ENHBUF	0000
8300	SPISCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISEL	<1:0>	SRXIS	EL<1:0>	0000
0040		31:16	—	_	—		RXB	JFELM<4:0>			—	_	—		TXB	JFELM<4	:0>		0000
8310	SPI3STAT	15:0	_	—	_	FRMERR	SPIBUSY	_	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0008
0000		31:16								ATA -04-05									0000
8330	SPI3BUF	15:0							D	AIA<31:0>	•								0000
0000		31:16	_	_	_	_	_	_	—	—	_	_	_	_	_	_	_	_	0000
8320	SPIJBKG	15:0		_	—						BRG	<12:0>							0000
0240	SDISCONS	31:16	—	—	—	—	_	—	—	—	_	_	—	—	_	—	—	—	0000
0340	SPISCONZ	15:0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR	AUDEN		—	_	AUDMONO	_	AUDM	OD<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table, except SPIxBUF, have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

PIC32MM0256GPM064 FAMILY

TABLE 16-1: I2C1, I2C2 AND I2C3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Rang€	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1700	1203000	31:16	—	—	_	_	_		—			PCIE	SCIE	BOEN	SDAHT	SBCDE	r	r	0000
1700	1203001	15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
1710	12020547	31:16	—	—	_	_	—		_			—	—	—		_	—		0000
1710	12035 IAI	15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
1700	1202400	31:16	—	—	—	—	—	-	_	_	-	_	—	_	—	_	—	-	0000
1720	IZCSADD	15:0	_	_	_	_	_	_					I2C2 Addre	ss Register					0000
1720	IDCOMEK	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1730	12C3IVISK	15:0	_	_	_	_	_	_				120	C2 Address	Mask Regis	ster				0000
1740	1202000	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1740	12C3BRG	15:0							Baud Rate Generator Register						0000				
4750		31:16	_	_	_	_	_	_	—	_	_	—	—	_	_	—	_	—	0000
1750	12631RN	15:0	_	_	_	_	_	_	—	_				2C2 Transr	nit Register				0000
4700		31:16		_		_		_	_	_	_	—	_	_		_	_	_	0000
1760	12C3RCV	15:0	_	_	_	_	_	—	—	—				I2C2 Receiv	ve Register				0000

Legend: — = unimplemented, read as '0'; r = reserved bit. Reset values are shown in hexadecimal.

Note 1: All registers in this table, except I2CxRCV, have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

18.4 Powering the USB Transceiver

The VUSB3V3 pin is used to power the USB transceiver. During USB operation, this provides the power for USB transceiver drivers. When the USB module is disabled, this pin can be used to bias the transceiver circuit to prevent additional current draw when using RB10 and/or RB11 as GPIOs.

Available options for VUSB power:

- For USB operation, an external power source is required. For voltage compliant USB operation, the voltage applied to VUSB3V3 must be in the range specified by Parameter USB313 in Table 29-38 regardless of the device operating voltage. If the device VDD voltage meets these requirements, it can be used to power VUSB3V3.
- 2. For non-USB operation with RB11 and/or RB10 as GPIOs, the USB module must be disabled and power applied to VUSB3V3 via VDD.
- For non-USB operation without using RB11 and/or RB10, the VUSB3V3 pin should be connected to ground. This configuration has the lowest operating current.

Note: To prevent additional current draw, VUSB3V3 must either be powered or grounded.

18.4.1 OPERATION OF PORT PINS SHARED WITH THE USB TRANSCEIVER

The USB transceiver shares pins with GPIO port pins. The D+ pin is shared with RB11 and the D- pin is shared with RB10. When the USB module is enabled, the pins are controlled by the module as D+ and D-, and are not usable as GPIOs. When the module is disabled, the pins can be used as RB11 and RB10 GPIOs if the VUSB3V3 pin is powered internally or externally. Refer to **Section 18.4 "Powering the USB Transceiver"** for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—		-	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	-	-	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—			—	_	—	_
7.0	U-0	U-0	R-0, HS, HC	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	_	—	ALMEVT		_	SYNC	ALMSYNC	HALFSEC

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-6 Unimplemented: Read as '0'
- bit 5 ALMEVT: Alarm Event bit
 - 1 = An alarm event has occurred
 - 0 = An alarm event has not occurred
- bit 4-3 Unimplemented: Read as '0'
- bit 2 SYNC: Synchronization Status bit
 - 1 = Time registers may change during software read
 - 0 = Time registers may be read safely
- bit 1 ALMSYNC: Alarm Synchronization Status bit
 - 1 = Alarm registers (ALMTIME and ALMDATE) and RTCCON1 should not be modified; the ALRMEN and ALMRPT<7:0> bits may change during software read
 - 0 = Alarm registers and Alarm Control registers may be modified safely
- bit 0 HALFSEC: Half-Second Status bit
 - 1 = Second half of 1-second period
 - 0 = First half of 1-second period

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		CH0NA<2:0>				CH0SA<4:0>		

REGISTER 20-5: AD1CHS: ADC INPUT SELECT REGISTER

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-5 CH0NA<2:0>: Negative Input Select bits
 - 111-001 = Reserved
 - 000 = Negative input is AVss
- bit 4-0 CH0SA<4:0>: Positive Input Select bits
 - 111111 = Reserved
 - 11110 = Positive input is AVDD
 - 11101 = Positive input is AVss
 - 11100 = Positive input is Band Gap Reference (VBG)
 - 11011 = VDD core
 - 10100-10110 = Reserved
 - 10011 = Positive input is AN19⁽¹⁾
 - 10010 = Positive input is AN18⁽¹⁾ 10001 = Positive input is AN17⁽¹⁾

 - 10000 = Positive input is AN16⁽¹⁾ 01111 = Positive input is AN15⁽²⁾

 - 01110 = Positive input is AN14⁽³⁾
 - 01101 = Positive input is AN13⁽³⁾
 - 01100 = Positive input is AN12⁽³⁾ 01011 = Positive input is AN11
 - 01010 = Positive input is AN10

 - 01001 = Positive input is AN9 01000 = Positive input is AN8

 - 00111 = Positive input is AN7
 - 00110 = Positive input is AN6
 - 00101 = Positive input is AN5
 - 00100 = Positive input is AN4 00011 = Positive input is AN3
 - 00010 = Positive input is AN2
 - 00001 = Positive input is AN1
 - 00000 = Positive input is AN0
- Note 1: This option is not available in 28, 36, 40 or 48-pin packages.
 - 2: This option is not available in 28, 36 or 40-pin packages.
 - 3: This option is not available in 28-pin packages.

REGISTER 21-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 11 **Unimplemented:** Read as '0'
- bit 10-8 DS3<2:0>: Data Selection MUX 3 Signal Selection bits
 - For CLC1:
 - 111 = Unused
 - 110 = MCCP1 OCMP compare match event
 - 101 = DMA Channel 0 interrupt
 - 100 = ADC end of conversion
 - 011 = UART1 TX out
 - 010 = CMP1 out
 - 001 = CLC2 out
 - 000 = CLCINB I/O pin

For CLC2:

- 111 = Unused
- 110 = MCCP1 OCMP compare match event
- 101 = DMA Channel 1 interrupt
- 100 = ADC end of conversion
- 011 = UART2 TX out
- 010 = CMP1 out
- 001 = CLC1 out
- 000 = CLCINB I/O pin

For CLC3:

- 111 = Reserved
- 110 = MCCP2 OCMP compare match event
- 101 = DMA Channel 0 interrupt
- 100 = ADC end of conversion
- 011 = UART3 TX out
- 010 = CMP1 out
- 001 = CLC4 out
- 000 = CLCINB I/O pin

For CLC4:

- 111 = Reserved
- 110 = MCCP3 OCMP compare match event
- 101 = DMA Channel 1 interrupt
- 100 = ADC end of conversion
- 011 = Reserved
- 010 = CMP1 out
- 001 = CLC3 out
- 000 = CLCINB I/O pin

bit 7 Unimplemented: Read as '0'

REGISTER 21-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 2-0 **DS1<2:0>:** Data Selection MUX 1 Signal Selection bits
 - For CLC1:
 - 111 = SCCP5 OCMP compare match event
 - 110 = MCCP1 OCMP compare match event
 - 101 = RTCC event
 - 100 = CMP3 out
 - 011 = SPI1 SDI1 in
 - 010 = SCCP5 OCM5 output
 - 001 = CLC2 out
 - 000 = CLCINB I/O pin

For CLC2:

- 111 = SCCP5 OCMP compare match event
- 110 = MCCP1 OCMP compare match event
- 101 = RTCC event
- 100 = CMP3 out
- 011 = SPI2 SDI2 in
- 010 = SCCP5 OCM6 output
- 001 = CLC1 out
- 000 = CLCINB I/O pin

For CLC3:

- 111 = SCCP7 OCMP compare match event
- 110 = MCCP2 OCMP compare match event
- 101 = RTCC event
- 100 = CMP3 out
- 011 = SPI3 SDI3 in
- 010 = SCCP7 OCM7A output
- 001 = CLC4 out
- 000 = CLCINB I/O pin

For CLC4:

- 111 = SCCP7 OCMP compare match event
- 110 = MCCP3 OCMP compare match event
- 101 = RTCC event
- 100 = CMP3 out
- 011 = Reserved
- 010 = SCCP7 OCM3A output
- 001 = CLC3 out
- 000 = CLCINB I/O pin

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N

REGISTER 21-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	G4D4T: Gate 4 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 4
	0 = The Data Source 4 signal is disabled for Gate 4
bit 30	G4D4N: Gate 4 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 4
	0 = The Data Source 4 inverted signal is disabled for Gate 4
bit 29	G4D3T: Gate 4 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 4
	0 = The Data Source 3 signal is disabled for Gate 4
bit 28	G4D3N: Gate 4 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 4
	0 = The Data Source 3 inverted signal is disabled for Gate 4
bit 27	G4D2T: Gate 4 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 4
	0 = The Data Source 2 signal is disabled for Gate 4
bit 26	G4D2N: Gate 4 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 4
	0 = The Data Source 2 inverted signal is disabled for Gate 4
bit 25	G4D1T: Gate 4 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 4
	0 = The Data Source 1 signal is disabled for Gate 4
bit 24	G4D1N: Gate 4 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 4
	0 = The Data Source 1 inverted signal is disabled for Gate 4
bit 23	G3D4T: Gate 3 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 3
	0 = The Data Source 4 signal is disabled for Gate 3
bit 22	G3D4N: Gate 3 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 3
	0 = The Data Source 4 inverted signal is disabled for Gate 3
bit 21	G3D3T: Gate 3 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 3
	0 = 1 he Data Source 3 signal is disabled for Gate 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—				—		—	
00.40	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
23:16	—	—	—	—	—	C3EVT	C2EVT	C1EVT
45.0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
15:8	—	—	SIDL		—		—	CVREFSEL
7.0	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0			_	_	_	C3OUT	C2OUT	C1OUT

REGISTER 22-1: CMSTAT: COMPARATOR MODULE STATUS REGISTER

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-19 Unimplemented: Read as '0'

bit 18	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 17	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).

- bit 16 **C1EVT:** Comparator 1 Event Status bit (read-only) Shows the current event status of Comparator 1 (CM1CON<9>).
- bit 15-14 Unimplemented: Read as '0'
- bit 13 SIDL: Comparator Stop in Idle Mode bit
 1 = Discontinues operation of all comparators when device enters Idle mode
 0 = Continues operation of all enabled comparators in Idle mode
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **CVREFSEL:** Comparator Reference Voltage Select Enable bit 1 = External voltage reference from the CVREF+ pin is selected 0 = Internal band gap voltage reference is selected
- bit 7-3 **Unimplemented:** Read as '0'
- bit 2 **C3OUT:** Comparator 3 Output Status bit (read-only) Shows the current output of Comparator 3 (CM3CON<8>).
- bit 1 **C2OUT:** Comparator 2 Output Status bit (read-only) Shows the current output of Comparator 2 (CM2CON<8>).
- bit 0 **C1OUT:** Comparator 1 Output Status bit (read-only) Shows the current output of Comparator 1 (CM1CON<8>).

NOTES:

26.9 Configuration Word Registers

TABLE 26-3: CONFIGURATION WORDS SUMMARY

ess		Bit Range	Bits															
Virtual Addı (BFC0_#	Register Name		31\15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
1700		31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17C4	EDEVOPT	31:16	USERID<15:0>															
1704	TDEVOIT	15:0	FVBUSIO	FUSBIDIO	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ALTI2C	SOSCHP	r-1	r-1	r-1
1708	FICD	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	1100	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ICS	<1:0>	JTAGEN	r-1	r-1
1700	FPOR	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
		15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	LPBOREN	RETVR	BOREN	<1:0>
17D0	FWDT	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	11101	15:0	FWDTEN	RCLKSEL	_<1:0>		RV	VDTPS<4:0>			WINDIS	FWDTWIN	SZ<1:0>	SWDTPS<4:0>				
17D4	FOSCSEL	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	TOODOLL	15:0	FCKSM	<1:0>	r-1	SOSCSEL	r-1	OSCIOFNC	POSCM	OD<1:0>	IESO	SOSCEN	r-1	PLLSRC	r-1	FN	OSC<2:0>	
17D8	ESEC	31:16	CP	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
	1020	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17DC	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1120	REGERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17E0	RESERVED	31:16	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
		15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17F4	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
TTE4 RESERVED	NEOLIVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1

Legend: r-0 = Reserved bit, must be programmed as '0'; r-1 = Reserved bit, must be programmed as '1'.

NOTES:

FIGURE 29-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 29-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	_	_	ns				
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	—	_	ns				
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	_	ns	See Parameter DO32			
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—		ns	See Parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid	_	_	7	ns	VDD > 2.0V			
	TscL2DoV	after SCKx Edge	—	—	10	ns	VDD < 2.0V			
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	7	—		ns				
SP40	TDIV2scH,	Setup Time of SDIx Data	7	—	_	ns	VDD > 2.0V			
	TDIV2scL	Input to SCKx Edge	10	_	_	ns	VDD < 2.0V			
SP41	TscH2DIL,	Hold Time of SDIx Data	7	_	_	ns	VDD > 2.0V			
	TscL2DIL	Input to SCKx Edge	10	_	_	ns	VDD < 2.0V			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in the "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 10 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	0.65 BSC				
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.40 BSC	-
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2