

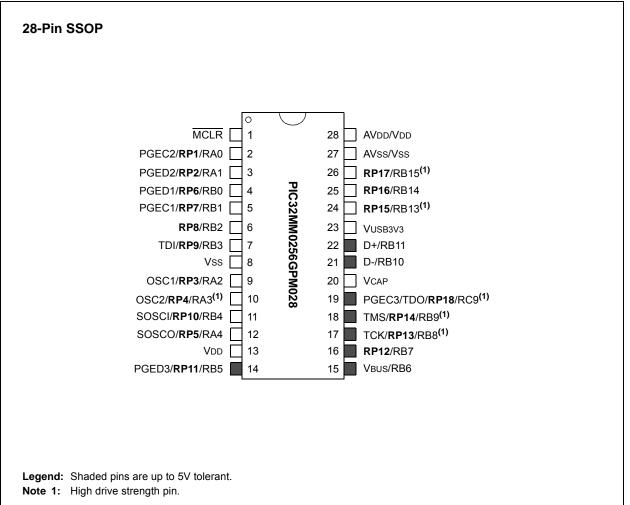
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XF

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0128gpm048-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN SSOP DEVICES

Pin	Function	Pin	Function
1	MCLR	15	VBUS/RB6
2	PGEC2/VREF+/CVREF+/AN0/RP1/OCM1E/INT3/RA0	16	RP12/SDA3/SDI3/OCM3F/RB7
3	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	17	TCK/ RP13 /SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾
4	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0	18	TMS/REFCLKI/ RP14 /SDA1/T1CK/T1G/T2CK/T2G/U1RTS/U1BCLK/SDO1/OCM1B/ INT2/RB9 ⁽¹⁾
5	PGEC1/AN3/C1INC/C2INA/RP7/OCM2D/RB1	19	PGEC3/TDO/RP18/ASCL1 ⁽²⁾ /T3CK/T3G/USBOEN/SDO3/OCM2A/RC9 ⁽¹⁾
6	AN4/C1INB/RP8/SDA2/OCM2E/RB2	20	VCAP
7	TDI/AN11/C1INA/RP9/SCL2/OCM2F/RB3	21	D-/RB10
8	Vss	22	D+/RB11
9	OSC1/CLKI/AN5/RP3/OCM1C/RA2	23	VUSB3V3
10	OSC2/CLKO/AN6/C3IND/RP4/OCM1D/RA3 ⁽¹⁾	24	AN8/LVDIN/ RP15 /SCL3/SCK3/OCM3A/RB13 ⁽¹⁾
11	SOSCI/AN7/RP10/OCM3C/RB4	25	CVREF/AN9/C3INB/RP16/RTCC/U1TX/VBUSON/SDI1/OCM3B/INT1/RB14
12	SOSCO/SCLKI/ RP5 /PWRLCLK/OCM3D/RA4	26	AN10/C3INA/REFCLKO/RP17/U1RX/SS1/FSYNC1/OCM2B/INT0/RB15 ⁽¹⁾
13	Vdd	27	AVss/Vss
14	PGED3/ RP11 /ASDA1 ⁽²⁾ /USBID/ SS3 /FSYNC3/ OCM3E/RB5	28	AVdd/Vdd

Note 1: High drive strength pin.

2: Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

2.1 Basic Connection Requirements

Getting started with the PIC32MM0256GPM064 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, even if the ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pin (see Section 2.4 "Voltage Regulator Pin (VCAP)")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5** "**ICSP Pins**")
- OSC1 and OSC2 pins, when external oscillator source is used (see Section 2.7 "External Oscillator Pins")
- VUSB3V3 pin, this pin must be powered for USB operation (see Section 18.4 "Powering the USB Transceiver")

The following pin(s) may be required as well:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS, is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of $0.1 \ \mu F$ (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances, as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	PWPULOCK	_		_	_		_	_		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	PWP<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	PWP<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				PWP	<7:0>					

REGISTER 5-6: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **PWPULOCK:** Program Flash Memory Page Write-Protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any Reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-Protect (Page) Address bits

Physical memory below address, 0x1DXXXXXX, is write-protected, where 'XXXXXX' is specified by PWP<23:0>. When the PWP<23:0> bits have a value of '0', write protection is disabled for the entire Program Flash Memory. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed. Refer to Example 5-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_		IP3<2:0>	IS3<1:0>			
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	_		IP2<2:0>	IS2<1:0>			
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_		IP1<2:0>	IS1<	IS1<1:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	
7:0	_	_	_		IP0<2:0>	IS0<1:0>			

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x

Legend:

0					
R = Readable bit	W = Writable bit	e bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>:	Interrupt	Priority 3 bits

- - 00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

- bit 20-18 IP2<2:0>: Interrupt Priority 2 bits
 - 111 = Interrupt priority is 7
 - •
 - •
 - 010 = Interrupt priority is 2 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority 2 bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

TABLE 10-0.													
Value	RPn Pins	Pin Assignment	Value	RPn Pins	Pin Assignment								
00001	RP1	RA0 Pin	01110	RP14	RB9 Pin								
00010	RP2	RA1 Pin	01111	RP15	RB13 Pin								
00011	RP3	RA2 Pin	10000	RP16	RB14 Pin								
00100	RP4	RA3 Pin	10001	RP17	RB15 Pin								
00101	RP5	RA4 Pin	10010	RP18	RC9 Pin								
00110	RP6	RB0 Pin	10011	RP19	RC2 Pin								
00111	RP7	RB1 Pin	10100	RP20	RC7 Pin								
01000	RP8	RB2 Pin	10101	RP21	RA7 Pin								
01001	RP9	RB3 Pin	10110	RP22	RA10 Pin								
01010	RP10	RB4 Pin	10111	RP23	RC6 Pin								
01011	RP11	RB5 Pin	11000	RP24	RA9 Pin								
01100	RP12	RB7 Pin	11001-11111	Re	served								
01101	RP13	RB8 Pin											

TABLE 10-3: REMAPPABLE INPUT SOURCES PIN ASSIGNMENTS⁽¹⁾

Note 1: All RPx pins are not available on all packages.

REGISTER 15-3: SPIxSTAT: SPIx STATUS REGISTER (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB, is empty

0 = Transmit buffer, SPIxTXB, is not empty

Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

bit 2 Unimplemented: Read as '0'

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit has not yet started, SPIxTXB is full

0 = Transmit buffer is not full

Standard Buffer mode:

Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Set when CPU Write Pointer (CWPTR) + 1 = SPI Read Pointer (SRPTR); cleared otherwise.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB, is full

0 = Receive buffer, SPIxRXB, is not full

Standard Buffer mode:

Automatically set in hardware when the SPIx module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise.

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	_	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_		—		_	—	—
7.0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	UACTPND	_		USLPGRD	USBBUSY ⁽¹⁾	_	USUSPEND	USBPWR ⁽¹⁾

REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected, but an interrupt is pending; it has not been generated yet
 - 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 **USLPGRD:** USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry

bit 3 USBBUSY: USB Module Busy bit⁽¹⁾

- 1 = USB module is active or disabled, but not ready to be enabled
- 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit⁽¹⁾
 - 1 = USB module is turned on
 - USB module is disabled (Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)
- **Note 1:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

TABLE 20-1: ADC REGISTER MAP (CONTINUED)

ess		é								Bits	5								
Virtual Address (BF80_#)	Register Name ⁽²⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
21F0	ADC1BUF15	31:16 15:0		ADC1BUF15<31:0>									0000						
2200	ADC1BUF16	31:16 15:0		ADC1BUF16<31:0>									0000						
2210	ADC1BUF17	31:16 15:0		ADC1BUF17<31:0>									0000						
2220	ADC1BUF18	31:16 15:0							AI	DC1BUF1	8<31:0>								0000
2230	ADC1BUF19	31:16 15:0		ADC1BUF19<31:0>										0000					
2240	ADC1BUF20	31:16 15:0							AI	DC1BUF2	0<31:0>								0000
2250	ADC1BUF21	31:16 15:0							AI	DC1BUF2	1<31:0>								0000
2260	AD1CON1	31:16	_		_	_	_	-	_	_	-	—	_	_	_	_	_	_	0000
		15:0	ON		SIDL	_	_	F	ORM<2:0	>		SSR	C<3:0>		MODE12	ASAM	SAMP	DONE	0000
2270	AD1CON2	31:16	—	—		—	—	—	_		_	_	—	_	—	—	—	—	0000
		15:0		VCFG<2:0		OFFCAL	BUFREGEN	CSCNA	_		BUFS	_			PI<3:0>		BUFM	—	0000
2280	AD1CON3	31:16 15:0	— ADRC	— EXTSAM	_	_	-	— 1C<4:0>	—	_	_	_		-	—)CS<7:0>	_	_		0000
		31:16	ADRC	EXTSAIVI		_	5Aiv		_	_	_	_	_	AL			_	_	0000
2290	AD1CHS	15:0			_							HONA<2				L CHOSA<4:0			0000
-		31:16	_		CSS	<30:27>		_	_	_	_	_	_	_		CSS<			0000
22A0	AD1CSS	15:0		I	-					CSS<15	:0>(1)				I				0000
2200		31:16		—	—	—	—	—		_	—	—	—	—	—	—	—	—	0000
22C0	AD1CON5	15:0	ASEN	LPEN	_	BGREQ	_	_	ASINT	<1:0>	—	_	—	—	WM<	:1:0>	CM<	:1:0>	0000
22D0	AD1CHIT	31:16		_				_	—		_	_	—			CHH<	19:16>		0000
2200	ADICIT	15:0								CHH<1	5:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The CSS<19:12> bits are not implemented in 28-pin devices. The CSS<19:15> bits are not implemented in 36-pin and 40-pin devices. The CSS<17:14> bits are not implemented in 48-pin devices.

2: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	_		_	_	_	_	_	_
00.40	U-0	U-0						
23:16	_	-	_		_		_	_
45.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	ASEN	LPEN	—	BGREQ	—	—	ASINT<1:0> ⁽¹⁾	
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_		_		WM<	:1:0>	CM<1:0>	

REGISTER 20-4: AD1CON5: ADC CONTROL REGISTER 5

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ASEN:** Auto-Scan Enable bit
 - 1 = Auto-scan is enabled
 - 0 = Auto-scan is disabled

bit 14 LPEN: Low-Power Enable bit

- 1 = Low power is enabled after scan
- 0 = Full power is enabled after scan
- bit 13 Unimplemented: Read as '0'

bit 12 BGREQ: Band Gap Request bit

- 1 = Band gap is enabled when the ADC is enabled and active
- 0 = Band gap is not enabled by the ADC
- bit 11-10 Unimplemented: Read as '0'
- bit 9-8 **ASINT<1:0>:** Auto-Scan (Threshold Detect) Interrupt Mode bits⁽¹⁾
 - 11 = Interrupt after Threshold Detect sequence has completed and a valid compare has occurred
 - 10 = Interrupt after valid compare has occurred
 - 01 = Interrupt after Threshold Detect sequence has completed
 - 00 = No interrupt
- bit 7-4 Unimplemented: Read as '0'

bit 3-2 WM<1:0>: Write Mode bits

- 11 = Reserved
- 10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid match occurs, as defined by the CM<1:0> and ASINT<1:0> bits)
- 01 = Convert and save (conversion results saved to locations as determined by register bits when a match occurs, as defined by the CM<1:0> bits)
- 00 = Legacy operation (conversion data saved to location determined by buffer register bits)

bit 1-0 CM<1:0>: Compare Mode bits

- 11 = Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair)
- 10 = Inside Window mode (valid match occurs if the conversion result is inside the window defined by the corresponding buffer pair)
- 01 = Greater Than mode (valid match occurs if the result is greater than value in the corresponding buffer register)
- 00 = Less Than mode (valid match occurs if the result is less than value in the corresponding buffer register)
- **Note 1:** The ASINT<1:0> bits setting only takes effect when ASEN (AD1CON5<15>) = 1. Interrupt generation is governed by the SMPI<3:0> bits field.

PIC32MM0256GPM064 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	—	-	_		—	_		
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	—	_	—	CHH<19:16> ^(1,2,3)				
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	—		CHH<13:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				CHF	 <7:0>				

REGISTER 20-7: AD1CHIT: ADC COMPARE HIT REGISTER

Legend:

Logonal			
R = Readable bit	= Readable bit W = Writable bit		ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-20 Unimplemented: Read as '0'
- bit 19-0 CHH<21:16>: ADC Compare Hit bits^(1,2,3)

If CM<1:0> = 11:

1 = ADC Result Buffer n has been written with data or a match has occurred

0 = ADC Result Buffer n has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on ADC Result Channel n

0 = No match has occurred on ADC Result Channel n

Note 1: The CHH<19:12> bits are not implemented in 28-pin devices

- **2:** The CHH<19:15> bits are not implemented in 36-pin and 40-pin devices
- **3:** The CHH<17:14> bits are not implemented in 48-pin devices

Peripheral	PMDx Bit Name	Register Name and Bit Location
Universal Asynchronous Receiver Transmitter 2 (UART2)	U2MD	PMD5<1>
Universal Asynchronous Receiver Transmitter 3 (UART3)	U3MD	PMD5<2>
Serial Peripheral Interface 1 (SPI1)	SPI1MD	PMD5<8>
Serial Peripheral Interface 2 (SPI2)	SPI2MD	PMD5<9>
Serial Peripheral Interface 3 (SPI3)	SPI3MD	PMD5<10>
Inter-Integrated Circuit Interface 1 (I2C1)	I2C1MD	PMD5<16>
Inter-Integrated Circuit Interface 2 (I2C2)	I2C2MD	PMD5<17>
Inter-Integrated Circuit Interface 3 (I2C3)	I2C3MD	PMD5<18>
Universal Serial Bus (USB)	USBMD	PMD5<24>
Real-Time Clock and Calendar (RTCC)	RTCCMD	PMD6<0>
Reference Clock Output (REFO1)	REFOMD	PMD6<8>
Direct Memory Access (DMA)	DMAMD	PMD7<4>

TABLE 25-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS (CONTINUED)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
31:24				USERIE)<15:8>				
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
23:16	USERID<7:0>								
45.0	R/P	R/P	r-1	r-1	r-1	r-1	r-1	r-1	
15:8	FVBUSIO	FUSBIDIO	_	—	—	_		_	
7.0	r-1	r-1	r-1	R/P	R/P	r-1	r-1	r-1	
7:0		_		ALTI2C	SOSCHP		_		

REGISTER 26-1: FDEVOPT/AFDEVOPT: DEVICE OPTIONS CONFIGURATION REGISTER

Legend: r = Reserved bit		r = Reserved bit	P = Programmable bit				
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 31-16 USERID<15:0>: User ID bits (2 bytes which can programmed to any value)

- bit 15 FVBUSIO: USB VBUS_ON Selection bit
 - 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 14 FUSBIDIO: USB USBID Selection bit
 - 1 = USBID pin is controlled by the USB module
 - 0 = USBID pin is controlled by the port function
- bit 13-5 **Reserved:** Program as '1'
- bit 4 ALTI2C: Alternate I2C1 Location Select bit
 - 1 = SDA1 and SCL1 are on pins, RB8 and RB9
 - 0 = SDA1 and SCL1 are moved to alternate I²C locations, RB5 and RC9
 - SOSCHP: Secondary Oscillator (SOSC) High-Power Enable bit
 - 1 = SOSC operates in normal power mode
 - 0 = SOSC operates in High-Power mode
- bit 2-0 Reserved: Program as '1'

bit 3

28.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

28.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

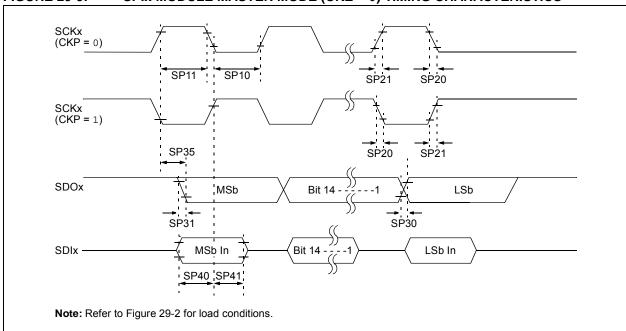
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

28.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

28.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

PIC32MM0256GPM064 FAMILY

FIGURE 29-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	_	_	ns	
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	—	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	_	ns	See Parameter DO32
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	_	_	ns	See Parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾		—		ns	See Parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	—		ns	See Parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid	_	_	7	ns	VDD > 2.0V
	TscL2DoV	after SCKx Edge	_	_	10	ns	VDD < 2.0V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 10 pF load on all SPIx pins.

Operating	Conditions: 2.0	$V \le V$ DD ≤ 3.6 V, -40°C \le TA \le +85°C (unless)	otherwise stated)		
Param No.	Symbol	Characteristic	Min	Max	Units
	-	Reference Inputs		·	
AD05	VREFH	Reference Voltage High	AVss + 1.7	AVDD	V
AD06	VREFL	Reference Voltage Low	AVss	AVDD – 1.7	V
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	AVDD + 0.3	V
		Analog Inputs			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	VREFH	V
AD11	VIN	Absolute Input Voltage	AVss – 0.3	AVDD + 0.3	V
AD12	VINL	Absolute VINL Input Voltage	AVss - 0.3	AVDD + 0.3	V
AD17	RIN	Recommended Impedance of Analog Voltage Source	_	2.5K	Ω

TABLE 29-34: ADC MODULE INPUTS SPECIFICATIONS

TABLE 29-35: ADC ACCURACY AND CONVERSION TIMING REQUIREMENTS FOR 12-BIT MODE⁽¹⁾


Operatin	g Conditions: \	/dd = 3.3V, AVss = Vrefl = 0V, AVd	D = VREFH = 3.3	$3V$, $-40^{\circ}C \le TA \le$	≨+85°C					
Param No.	Symbol	Characteristic	Min	Typ ⁽²⁾	Мах	Units				
	ADC Accuracy									
AD20B	Nr	Resolution	—	12	—	bits				
AD21B	INL	Integral Nonlinearity	—	±2.5	±3.5	LSb				
AD22B	DNL	Differential Nonlinearity	—	±0.75	+1.75/-0.95	LSb				
AD23B	Gerr	Gain Error	_	+2	+3	LSb				
AD24B	EOFF	Offset Error	—	+1	+2	LSb				
	·	Clock Para	meters							
AD50B	TAD	ADC Clock Period	280	—	—	ns				
AD61B	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad				
		Conversion	n Rate							
AD55B	tCONV	Conversion Time	—	14	—	TAD				
AD56B	FCNV	Throughput Rate	—	—	200	ksps				

Note 1: Measurements are taken with the external VREF+ and VREF- used as the ADC voltage reference.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

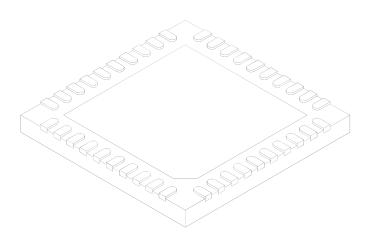
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

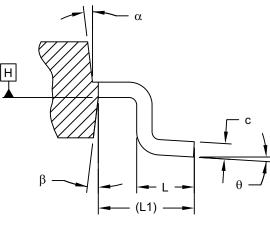
	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		40	
Pitch	е		0.40 BSC	
Overall Height	Α	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	Е	5.00 BSC		
Exposed Pad Width	E2	3.60	3.70	3.80
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.70	3.80
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

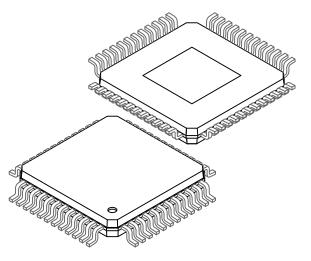
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

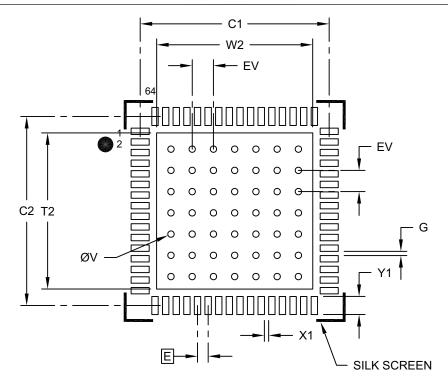
Microchip Technology Drawing C04-156A Sheet 2 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		48		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Foot Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	¢	0° 3.5° 7°			
Overall Width	E		9.00 BSC		
Overall Length	D		9.00 BSC		
Molded Package Width	E1		7.00 BSC		
Molded Package Length	D1		7.00 BSC		
Exposed Pad Width	E2		3.50 BSC		
Exposed Pad Length	D2		3.50 BSC		
Lead Thickness	С	0.09	-	0.16	
Lead Width	b	0.17 0.22 0.27			
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-183A Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 7.70x7.70mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimensior	n Limits	nits MIN NOM M		MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			7.50
Optional Center Pad Length	T2			7.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.90
Contact Pad to Center Pad (X20)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2213B

Ε

Electrical Characteristics	
Absolute Maximum Ratings	
V/F Graph (Industrial)	
Errata	12
F	

Flash Program Memory	
Flash Controller Registers Write Protection	45
Write Protection	45

G

Getting Started with PIC32 MCUs	23
Connection Requirements	23
Decoupling Capacitors	23
External Oscillator Pins	27
ICSP Pins	
JTAG	27
Master Clear (MCLR) Pin	24
Unused I/Os	27
Voltage Regulator (VCAP)	

Н

High/Low-Voltage Detect (HLVD)	253
High/Low-Voltage Detect. See HLVD.	

I

I/O Ports	. 113
Analog/Digital Port Pins Configuration	. 114
CLR, SET and INV Registers	. 114
GPIO Port Merging	. 114
Open-Drain Configuration	. 114
Parallel I/O (PIO)	. 114
Pull-up/Pull-Down Pins	. 115
Write/Read Timing	. 114
Input Change Notification (ICN)	. 114
Instruction Set	. 281
Inter-IC Sound. See I ² S.	
Inter-Integrated Circuit (I ² C	. 167
Inter-Integrated Circuit. See I ² C.	
Internet Address	. 353
Interrupts	
Sources and Vector Names	62

Μ

MCCP/SCCP	
Registers	142
Memory Maps	
Devices with 128 Kbytes Program Memory	
Devices with 256 Kbytes Program Memory	
Devices with 64 Kbytes Program Memory	41
Memory Organization	
Alternate Configuration Bits Space	
Bus Matrix (BMX)	
Flash Line Buffer	
Microchip Internet Web Site	353
MIPS32 [®] microAptiv [™] UC Core Configuration	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLAB X Integrated Development	
Environment Software	

MPLAB X SIM Software Simulator	285
MPLIB Object Librarian	
MPLINK Object Linker	
Multiply/Divide Unit Latencies and Repeat Rates	31

0

Oscillator Configuration	
Clock Switching	
Sequence	
Fail-Safe Clock Monitor (FSCM)	
FRC Self-Tuning	

Ρ

Packaging	319
Details	321
Marking	319
Peripheral Pin Select (PPS)	115
PICkit 3 In-Circuit Debugger/Programmer	
Pinout Description	16
Power-Saving Features	257
Idle Mode	257
Low-Power Brown-out Reset	261
On-Chip Voltage Regulator	
(Low-Power Modes)	261
Peripheral Module Disable	258
Retention Sleep Mode	257
Sleep Mode	257
Standby Sleep Mode	257
PPS	
Available Peripherals	115
Available Pins	115
Controlling	115
Controlling Configuration Changes	118
Input Mapping	116
Input Pin Selection	116
Output Mapping	118
Output Pin Selection	119
Remappable Pin Input Source Assignments	117
Programming and Diagnostics	264

R

Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps	. 209
ADC	219
Alternate Configuration Words Summary	266
Band Gap	277
CLC1, CLC2 and CLC3	233
Comparator 1, 2 and 3	
Configuration Words Summary	265
DMA Channels 0-3	79
DMA Controller	78
Flash Controller	46
High/Low Voltage Detect	. 254
I2C1, I2C2 and I2C3	169
Interrupts	66
MCCP/SCCP	143
Oscillator Configuration	. 102
Peripheral Module Disable	260
Peripheral Pin Select	124
PORTA	120
PORTB	121
PORTC	122