

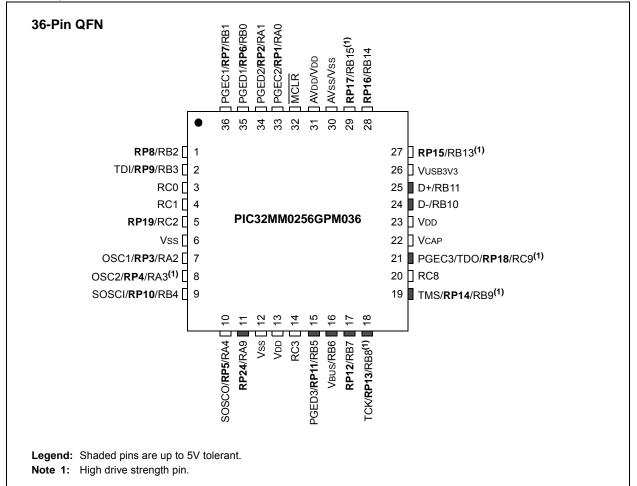
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 20x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0128gpm064-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

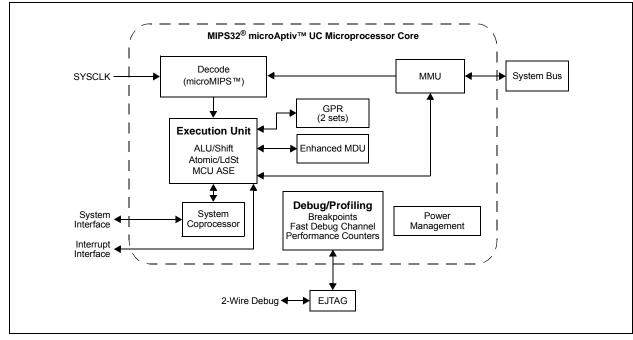
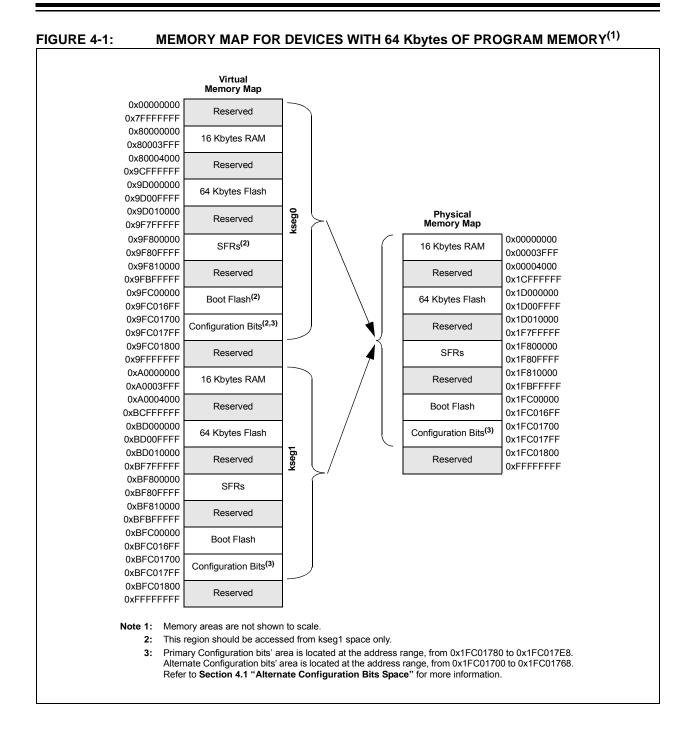


TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 36-PIN QFN DEVICES


Pin	Function	Pin	Function
1	AN4/C1INB/RP8/SDA2/OCM2E/RB2	19	TMS/REFCLKI/RP14/SDA1/T1CK/T1G/U1RTS/U1BCLK/SDO1/OCM1B/INT2/RB9 ⁽¹⁾
2	TDI/AN11/C1INA/RP9/SCL2/OCM2F/RB3	20	AN14/LVDIN/C2INC/RC8
3	AN12/C2IND/T2CK/T2G/RC0	21	PGEC3/TDO/RP18/ASCL1 ⁽²⁾ /USBOEN/SDO3/RC9 ⁽¹⁾
4	AN13/T3CK/T3G/RC1	22	VCAP
5	RP19/OCM2A/RC2	23	VDD
6	Vss	24	D-/RB10
7	OSC1/CLKI/AN5/RP3/OCM1C/RA2	25	D+/RB11
8	OSC2/CLKO/AN6/C3IND/RP4/OCM1D/RA3 ⁽¹⁾	26	VUSB3V3
9	SOSCI/AN7/RP10/OCM3C/RB4	27	AN8/ RP15 /SCL3/SCK3/RB13 ⁽¹⁾
10	SOSCO/SCLKI/RP5/PWRLCLK/OCM3D/RA4	28	CVREF/AN9/C3INB/RP16/RTCC/U1TX/VBUSON/SDI1/OCM3B/INT1/RB14
11	RP24/OCM3A/RA9	29	AN10/C3INA/REFCLKO/RP17/U1RX/SS1/FSYNC1/OCM2B/INT0/RB15 ⁽¹⁾
12	Vss	30	AVss/Vss
13	Vdd	31	AVdd/Vdd
14	RC3	32	MCLR
15	PGED3/RP11/ASDA1 ⁽²⁾ /USBID/SS3/FSYNC3/OCM3E/RB5	33	PGEC2/VREF+/CVREF+/AN0/ RP1 /OCM1E/INT3/RA0
16	VBUS/RB6	34	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1
17	RP12/SDA3/SDI3/OCM3F/RB7	35	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0
18	TCK/RP13/SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾	36	PGEC1/AN3/C1INC/C2INA/ RP7 /OCM2D/RB1

Note 1: High drive strength pin.

2: Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

FIGURE 3-1: PIC32MM0256GPM064 FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6			Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0 U-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_		IP3<2:0>	IS3<1:0>		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	_		IP2<2:0>		IS2<	1:0>
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_		IP1<2:0>		IS1<	1:0>
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_		IP0<2:0>		IS0<	1:0>

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>:	Interrupt	Priority 3 bits

- - 00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

- bit 20-18 IP2<2:0>: Interrupt Priority 2 bits
 - 111 = Interrupt priority is 7
 - •
 - •
 - 010 = Interrupt priority is 2 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority 2 bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

NOTES:

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified
bit 6-5	Unimplemented: Read as '0'
bit 4	SLPEN: Sleep Mode Enable bit
	 1 = Device will enter Sleep mode when a WAIT instruction is executed 0 = Device will enter Idle mode when a WAIT instruction is executed
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure0 = No clock failure has been detected
bit 2	Unimplemented: Read as '0'
bit 1	SOSCEN: Secondary Oscillator (SOSC) Enable bit
	1 = Enables the Secondary Oscillator0 = Disables the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit ⁽¹⁾
	 1 = Initiates an oscillator switch to a selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete

Note 1: The Reset value for this bit depends on the setting of the IESO (FOSCSEL<7>) bit. When IESO = 1, the Reset value is '1'. When IESO = 0, the Reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 26.4 "System Registers Write Protection" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	_	_	_	_	_	—
22.40	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	-	_	_	_	—
45.0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	SRC	LOCK	POL	ORNG	ORPOL
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—			TUN<	5:0> (1)		

REGISTER 9-6: OSCTUN: FRC TUNING REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

k

bit 21 16	Unimplemented: Deed on 'o'
	Unimplemented: Read as '0'
bit 15	ON: Self-Tune Enable bit
	 1 = FRC self-tuning is enabled; the TUNx bits are controlled by hardware 0 = FRC self-tuning is disabled; the TUNx bits are readable and writable
bit 14	Reserved: Used by debugger
bit 13	SIDL: FRC Self-Tune Stop in Idle bit
	1 = Self-tuning stops during Idle mode
	0 = Self-tuning continues during Idle mode
bit 12	SRC: FRC Self-Tune Reference Clock Source bit
	1 = The USB host clock is used to tune the FRC
	0 = The 32.768 kHz SOSC clock is used to tune the FRC
bit 11	LOCK: FRC Self-Tune Lock Status bit
	1 = FRC accuracy is currently within ±0.2% of the SRC reference accuracy
	0 = FRC accuracy may not be within ±0.2% of the SRC reference accuracy
bit 10	POL: FRC Self-Tune Lock Interrupt Polarity bit
	1 = A self-tune lock interrupt is generated when LOCK is '0'
	0 = A self-tune lock interrupt is generated when LOCK is '1'
bit 9	ORNG: FRC Self-Tune Out of Range Status bit
	1 = SRC reference clock error is beyond the range of TUN<5:0>; no tuning is performed
	0 = SRC reference clock is within the tunable range; tuning is performed
bit 8	ORPOL: FRC Self-Tune Out of Range Interrupt Polarity bit
	1 = A self-tune out of range interrupt is generated when STOR is '0'
	0 = A self-tune out of range interrupt is generated when STOR is '1'
bit 7-6	Unimplemented: Read as '0'
Note 1:	OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized, nor tested.

Writes to this register require an unlock sequence. Refer to Section 26.4 "System Registers Write Note: Protection" for details.

TABLE 18-1: USB OTG REGISTER MAP

ess											Bits								Ī
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
0.4.40		31:16	_	_	-	_	_	_	_	—	_	—	_	_	—	_	_	_	Ī
8440	U1OTGIR ⁽²⁾	15:0	_	_	_	_	_	_	_	—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	Ì
8450	U10TGIE	31:16	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	Ī
		15:0	_	_	_	_	_	_	_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	Ī
0400	U1OTGSTAT ⁽³⁾	31:16	_	_	_	_	_	_	_	_	_	_	—	—	—	_	_	_	Ĩ
8460	UIUIGSIAI	15:0		_		_		_	_	_	ID	—	LSTATE	_	SESVD	SESEND		VBUSVD	
8470	U10TGCON	31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	Ī
0470	UIUIGCON	15:0	_	_	_	_		_	_	_	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	
0400		31:16		_				—	—	_		—	_	_	_	_		_	
8480	U1PWRC	15:0		-				—	—	_	UACTPND ⁽⁴⁾	—	_	USLPGRD	USBBUSY	—	USUSPEND	USBPWR	
		31:16		-				—	_	_		_	_	_	_	—		_	
8600	U1IR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF DETACHIF	l
		31:16	_	_	_	_	_			_	_	_	_	_	_	_	_		t
8610	U1IE	01.10																URSTIE	t
0010	OTIL	15:0	_	_	_	—	—	—	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	Ì
		31:16	_	_	_	—	_	—	—	—	_	—	—	—	—	—	_		
8620	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF	-
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	t
8630	U1EIE																CRC5EE		t
		15:0	_	—	_	—	_	—	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	
8640	U1STAT ⁽³⁾	31:16	_	—	_	—	_	—	—		_	_	—	—	_	—	_		
0040	UIUIA	15:0	_	—	_	—	_	—	—			ENDPT	<3:0> ⁽⁴⁾		DIR	PPBI	_		
		31:16	_	—	_	—	_	—	—	_	_	_	_	_	_	—	_		
8650	U1CON	15:0	_	_	_	_	_	_	_	_	JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	PKTDIS	USBRST	HOSTEN	RESUME	PPBRST	USBEN	
		10.0										020	TOKBUSY	JOBILOT				SOFEN	l
8660	U1ADDR	31:16	-	—	-	—	—	_	—	—	-	—	—	—	—	—	—	—	1
0000	O IN LEDIT	15:0	—	—	—	-	—	—	—	—	LSPDEN			DE	EVADDR<6:0)>			1

All Resets

0000

0000

0000

0000

0000

0000 0000

0000 0000

0000 0000

0000

0000

0000

0000

0000 0000

0000

0000

0000 0000

0000

0000

0000

0000

0000

0000

0000 0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for these bits is undefined.

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_			—			_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	—	—		—	_	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
15:8		VCFG<2:0>		OFFCAL	BUFREGEN	CSCNA	_	_
7.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7:0	BUFS	_		SMP	<3:0>		BUFM	—

REGISTER 20-2: AD1CON2: ADC CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

		ADC Vr+	ADC VR-								
	000	AVdd	AVss								
	001	AVdd	External VREF- Pin								
	010	External VREF+ Pin	AVss								
	011	External VREF+ Pin	External VREF- Pin								
	1xx	Unimplemente	d; do not use								
bit 12	1 = Enables		inputs of the SHA are con	nected to the negative reference trolled by AD1CHS or AD1CSS							
bit 11	BUFREGEN: ADC Buffer Register Enable bit 1 = Conversion result is loaded into the buffer location determined by the converted channel 0 = ADC result buffer is treated as a FIFO										
bit 10	CSCNA: Sca	an Input Selections for CH0+	SHA Input for Input Multipl	exer Setting bit							
	1 = Scans inputs 0 = Does not scan inputs										
bit 9-8	Unimpleme	nted: Read as '0'									
bit 7	BUFS: Buffe	r Fill Status bit									
	1 = ADC is c	nen BUFM = 1 (ADC buffers urrently filling Buffers 11-21, urrently filling Buffers 0-10, u	user should access data in	0-10							
bit 6	Unimpleme	nted: Read as '0'									
bit 5-2		Sample/Convert Sequences									
		rupts at the completion of con rupts at the completion of con									
	0000 = Inter	rupts at the completion of con rupts at the completion of con	nversion for each sample/c								
bit 1	1 = Buffer co	Result Buffer Mode Select b onfigured as two 11-word buff onfigured as one 22-word buff	ers, ADC1BUF(010), AD	C1BUF(1121)							
bit 0	Unimpleme	nted: Read as '0'									

21.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCON
- CLCxSEL
- CLCxGLS

The CLCx Control register (CLCxCON) is used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select register (CLCxGLS) allows the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 21-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits For CLC1: 111 = SCCP5 OCMP compare match event 110 = SCCP4 OCMP compare match event 101 = SCCP4 OCM4 output 100 = UART1 RX in 011 = SPI1 SDO1 out 010 = CMP2 out 001 = CLC1 out 000 = CLCINA I/O pin For CLC2: 111 = SCCP5 OCMP compare match event 110 = SCCP4 OCMP compare match event 101 = SCCP4 OCM4 output 100 = UART2 RX in 011 = SPI2 SDO2 out 010 = CMP2 out 001 = CLC2 out 000 = CLCINA I/O pin For CLC3: 111 = SCCP7 OCMP compare match event 110 = SCCP6 OCMP compare match event 101 = SCCP6 OCM6A output 100 = UART3 RX in 011 = SPI3 SDO3 out 010 = CMP2 out 001 = CLC3 out 000 = CLCINA I/O pin For CLC4: 111 = SCCP7 OCMP compare match event 110 = SCCP6 OCMP compare match event 101 = SCCP6 OCM2A output 100 = Reserved 011 = Reserved
 - 010 = CMP2 out
 - 001 = CLC4 out
 - 000 = CLCINA I/O pin
- bit 3 Unimplemented: Read as '0'

26.9 Configuration Word Registers

TABLE 26-3: CONFIGURATION WORDS SUMMARY

ess										Bits								
Virtual Address (BFC0_#)	Register Name	Bit Range	31\15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
17C0	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17C4	FDEVOPT	31:16		USERID<15:0>														
T/C4 FDEVOF	FDEVOPT	15:0	FVBUSIO	FUSBIDIO	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ALTI2C	SOSCHP	r-1	r-1	r-1
17C8	FICD	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	FICD	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ICS	<1:0>	JTAGEN	r-1	r-1
1700	FPOR	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17CC	FPOR	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	LPBOREN	RETVR	BOREN	l<1:0>
17D0	FWDT	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	FWDI	15:0	FWDTEN	RCLKSEI	_<1:0>		R۱	VDTPS<4:0>			WINDIS	FWDTWIN	SZ<1:0>		SWD	DTPS<4:0>		
17D4	FOSCSEL	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17D4	FUSCSEL	15:0	FCKSN	l<1:0>	r-1	SOSCSEL	r-1	OSCIOFNC	POSCM	OD<1:0>	IESO	SOSCEN	r-1	PLLSRC	r-1	FN	IOSC<2:0	>
4700	5050	31:16	CP	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17D8	FSEC	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
4700		31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17DC	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
4750		31:16	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17E0	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
4754		31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17E4	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1

Legend: r-0 = Reserved bit, must be programmed as '0'; r-1 = Reserved bit, must be programmed as '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
31:24	_	-	_	_	BMXERRDIS	_	- BMXARB<1:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	EXECADDR<7:0>										
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	_	_	_	_	-	_	—			
7.0	U-0	U-0	U-0	U-0	R/W-P	U-0	r-1	r-1			
7:0	_		_	_	JTAGEN		_	_			

REGISTER 26-7: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-28 Unimplemented: Read as '0'
- bit 27 BMXERRDIS: Bus Matrix (BMX) Exception Error Disable bit 1 = Disables BMX error exception generation⁽¹⁾ 0 = Enables BMX error exception generation
- bit 26 **Unimplemented:** Read as '0'
- bit 25-24 BMXARB<1:0>: Bus Matrix Arbitration Mode Select bits
 - 11 = Reserved
 - 10 = Mode 2 Round Robin
 - 01 = Mode 1 Fixed with CPU as the lowest priority
 - 00 = Mode 0 Fixed with CPU as the highest priority

bit 23-16 EXECADDR<7:0>: RAM Program Space Start Address bits

- 11111111 = RAM program space starts at the 255-Kbyte boundary (from 0xA003FC00)
- .

00000010 = RAM program space starts at 2-Kbyte boundary (from 0xA0000800) 00000001 = RAM program space starts at 1-Kbyte boundary (from 0xA0000400) 00000000 = All data RAM is allocated to program space (from 0xA0000000)

- bit 15-4 Unimplemented: Read as '0'
- bit 3 JTAGEN: JTAG Enable bit
 - 1 = Enables 4-wire JTAG
 - 0 = Disables 4-wire JTAG
- bit 2 Unimplemented: Read as '0'
- bit 1-0 Reserved: Maintain as '1'
- **Note 1:** An exception is not generated when an unimplemented address is accessed. The returned value on a read operation of unimplemented memory is 0x00000000.

TABLE 26-6: BAND GAP REGISTER MAP

ess		۵		Bits										s					
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2200	ANCFG ⁽¹⁾	31:16	—	_	—	-	_	_	-	_		—	_		-	_	_	_	0000
2300	ANCEG 7	15:0	_	_	_			_		_		-				VBGADC	VBGCMP		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

28.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

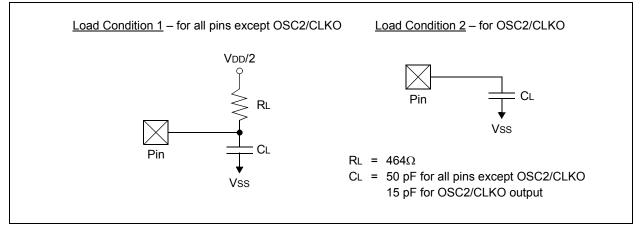
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

28.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

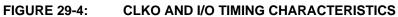

29.2 AC Characteristics and Timing Parameters

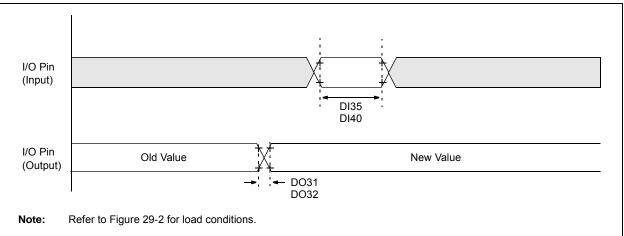
The information contained in this section defines the PIC32MM0256GPM064 family AC characteristics and timing parameters.

TABLE 29-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".

FIGURE 29-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS




TABLE 29-17: CAPACITIVE LOADING CONDITIONS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSC2/CLKO Pin	_	—	TBD	•	In XT and HS modes when external clock is used to drive OSC1/CLKI
DO56	Сю	All I/O Pins and OSC2	—	—	TBD	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	TBD	pF	In I ² C mode

Legend: TBD = To Be Determined

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

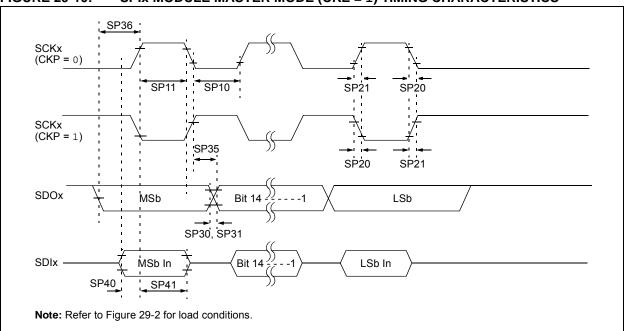


TABLE 29-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHA	ARACTER	ISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
DO31	TIOR	Port Output Rise Time	—	10	25	ns				
DO32	TIOF	Port Output Fall Time	_	10	25	ns				
DI35	TINP	INTx Pin High or Low Time (input)	1	—	—	Тсү				
DI40	Trbp	CNx High or Low Time (input)	1	_	_	Тсү				

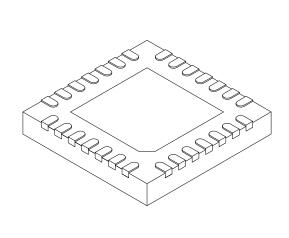
Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 29-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 29-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	RACTERIS	TICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions				
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	—	_	ns					
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2		_	ns					
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾			_	ns	See Parameter DO32				
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	_	_	ns	See Parameter DO31				
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See Parameter DO32				
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31				
SP35	TscH2doV,	SDOx Data Output Valid	_		7	ns	VDD > 2.0V				
	TscL2DoV	after SCKx Edge	_		10	ns	VDD < 2.0V				
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	7	—	_	ns					
SP40	TDIV2scH,	Setup Time of SDIx Data	7		_	ns	VDD > 2.0V				
	TDIV2scL	Input to SCKx Edge	10	_	_	ns	VDD < 2.0V				
SP41	TscH2DIL,	Hold Time of SDIx Data	7		_	ns	VDD > 2.0V				
	TscL2DIL	Input to SCKx Edge	10		_	ns	VDD < 2.0V				

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in the "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 10 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	ILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3		0.20 REF				
Overall Width	E		6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.20			
Overall Length	D		6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.20			
Terminal Width	b	0.23	0.30	0.35			
Terminal Length	L	0.50	0.55	0.70			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support