

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 20x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0128gpm064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5521411410	Pin Nu						
Pin Name	28-Pin SSOP	28-Pin QFN/ UQFN	36-Pin QFN	40-Pin UQFN	48-Pin QFN/ TQFP	64-Pin QFN/ TQFP	Pin Type	Buffer Type	Description
AN0	2	27	33	36	21	11	I	ANA	Analog-to-Digital Converter input channels
AN1	3	28	34	37	22	12	I	ANA	
AN2	4	1	35	38	23	13	I	ANA	
AN3	5	2	36	39	24	14	Ι	ANA	
AN4	6	3	1	1	25	15	Ι	ANA	
AN5	9	6	7	7	32	25	I	ANA	
AN6	10	7	8	8	33	26	I	ANA	
AN7	11	8	9	9	35	28	I	ANA	
AN8	24	21	27	30	12	63	I	ANA	-
AN9	25	22	28	31	15	2	I	ANA	-
AN10	26	23	29	32	16	3	I	ANA	
AN11	7	4	2	2	26	16	I	ANA	-
AN12		—	3	3	27	19	I	ANA	-
AN13		—	4	4	28	20	I	ANA	-
AN14	—	—	20	21	4	52	I	ANA	
AN15	—	—	—	—	41	37	I	ANA	
AN16		—	_	—	_	6	I	ANA	
AN17	—	—	—	—	—	7	I	ANA	
AN18	—	—	—	—	—	8	I	ANA	
AN19	—	—	—	—	—	10	I	ANA	
AVdd	28	25	31	34	18	5	Р	—	Analog modules power supply
AVss	27	24	30	33	17	4	Р	—	Analog modules ground
C1INA	7	4	2	2	26	16	I	ANA	Comparator 1 Input A
C1INB	6	3	1	1	25	15	I	ANA	Comparator 1 Input B
C1INC	5	2	36	39	24	14	I	ANA	Comparator 1 Input C
C1IND	4	1	35	38	23	13	I	ANA	Comparator 1 Input D
C2INA	5	2	36	39	24	14	I	ANA	Comparator 2 Input A
C2INB	4	1	35	38	23	13	I	ANA	Comparator 2 Input B
C2INC		—	20	21	4	52	I	ANA	Comparator 2 Input C
C2IND		—	3	3	27	19	I	ANA	Comparator 2 Input D
C3INA	26	23	29	32	16	3	I	ANA	Comparator 3 Input A
C3INB	25	22	28	31	15	2	I	ANA	Comparator 3 Input B
C3INC	4	1	35	38	23	13	I	ANA	Comparator 3 Input C
C3IND	10	7	8	8	33	26	I	ANA	Comparator 3 Input D
CLKI	9	6	7	7	32	25	I	ST	External Clock source input (EC mode)
CLKO	10	7	8	8	33	26	0	DIG	System clock output
CVREF	25	22	28	31	15	2	0	ANA	Comparator voltage reference output
CVREF+	2	27	33	36	21	11	I	ANA	Positive comparator voltage reference input
D+	22	19	25	28	10	61	I/O		USB transceiver differential plus line
D-	21	18	24	27	9	60	I/O		USB transceiver differential minus line
FSYNC1	26	23	29	32	16	32	I/O	ST/DIG	SPI1 frame signal input or output
FSYNC3	14	11	15	15	45	22	I/O	ST/DIG	SPI3 frame signal input or output

TABLE 1-1: PIC32MM0256GPM064 FAMILY PINOUT DESCRIPTION

Legend: ST = Schmitt Trigger input buffer

DIG = Digital input/output

P = Power

I2C = I²C/SMBus input buffer

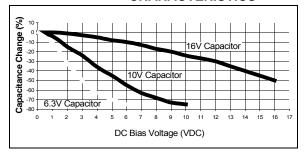
ANA = Analog level input/output

NOTES:

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. The minimum DC rating for the ceramic capacitor on VCAP is 16V. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Input Voltage High (VIH) and Input Voltage Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™] In-Circuit Emulator.

For more information on MPLAB® ICD 3 and REAL ICE connection requirements, refer to the following documents that are available from the Microchip web site.

- *"Using MPLAB[®] ICD 3"* (poster) (DS51765)
- "Development Tools Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

_	LL /-J.							,		Bits									
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
ž		31:16	_	_	_		T3IP<2:0>		T3IS<	1.0>	_	_	_		T2IP<2:0>		T2IS•	<1.0>	0000
F100	IPC4	15:0		_			T1IP<2:0>		T1IS<		_	_	_		_	_	1210		0000
		31:16					CMP1IP<2:02	>	CMP1IS				_						0000
F110	IPC5	15:0	_			_	_	_	_	_	_	_	_		_		_		0000
		31:16	_		_	_	_	_	_	_	_	_	_	_	_	_		_	0000
F120	IPC6	15:0	_	_	_		CMP3IP<2:0		CMP3IS				_		I CMP2IP<2:0		CMP2I		0000
		31:16	_			_		_	_		_		_					_	0000
F130	IPC7	15:0	_	_			USBIP<2:0>		USBIS	<1.0>					_	_	_		0000
		31:16	_	_	_	_		_	_		_	_	_	_	_	_	_		0000
F140	IPC8	15:0	_				AD1IP<2:0>		AD1IS	<1.0>	_		_		I RTCCIP<2:0		RTCCI	S<1·0>	0000
		31:16	_	_	_		CLC3IP<2:0		CLC3IS		_	_	_		CLC2IP<2:0		CLC2		0000
F150	IPC9	IPC9 15:0 CLC1IP<2:0>			CLC1IS						LVDIS		0000						
			_		_	SPI1RXIP<2:0>		SPI1RXI		_	_	_		PI1TXIP<2:0		SPI1TX		0000	
F160	IPC10	31:16 15:0	_	_	_		SPI1EIP<2:0		SPI1EIS		_	_	_		CLC4IP<2:0		CLC4		0000
		31:16	_	_	_		SPI3EIP<2:0		SPI3EIS		_	_	_		PI2RXIP<2:0		SPI2RX		0000
F170	IPC11	15:0	_	_	_		SPI2TXIP<2:0)>	SPI2TXI	S<1:0>	_	_	_	S	SPI2EIP<2:0	>	SPI2EI	S<1:0>	0000
		31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
F180	IPC12	15:0	_	_	_		SPI3RXIP<2:0)>	SPI3RXI	S<1:0>	_	_	_	SPI3TXIP<2:0> SP		SPI3TX	IS<1:0>	0000	
		31:16	_	_	_		U1EIP<2:0>		U1EIS-	<1:0>	_	_	_	ι	J1TXIP<2:0	>	U1TXI	S<1:0>	0000
F190	IPC13	15:0	_	_	_		U1RXIP<2:0	>	U1RXIS	s<1:0>	_	_	_	_	_	_	_	_	0000
		31:16		_	_		U3RXIP<2:0	>	U3RXIS	<1:0>	—	—	_		U2EIP<2:0>		U2EIS	<1:0>	0000
F1A0	IPC14	15:0	_	_	-		U2TXIP<2:0	>	U2TXIS	<1:0>	—	—	_	ι	J2RXIP<2:0	>	U2RXI	S<1:0>	0000
5400	10045	31:16	_	_	_	_		—	_	_	—	—	—	_	—	—	—	_	0000
F1B0	IPC15	15:0	_	_	_		U3EIP<2:0>		U3EIS-	<1:0>	—	—	—	ι	J3TXIP<2:0	>	U3TXI	S<1:0>	0000
F100	IPC16	31:16	_	_	_		I2C1BCIP<2:0)>	I2C1BCI	S<1:0>	—	—	—	12	2C1MIP<2:0	>	I2C1MI	S<1:0>	0000
F1C0	IPC16	15:0	_	_	_		I2C1SIP<2:0	>	I2C1SIS	6<1:0>	—	—	_	_	_	—	_	—	0000
5400	10017	31:16	_	_	_		I2C3SIP<2:0	>	I2C3SIS	6<1:0>	—	—	—	12	C2BCIP<2:0)>	I2C2BC	IS<1:0>	0000
F1D0	IPC17	15:0	_	_	_		I2C2MIP<2:0	>	I2C2MIS	6<1:0>	—	—	—	Ľ	2C2SIP<2:0	>	I2C2SI	S<1:0>	0000
F1F0	IPC18	31:16	_	_	_		CCT1IP<2:0	>	CCT1IS	i<1:0>	—	—	—	C	CCP1IP<2:0	>	CCP1	S<1:0>	0000
F1E0	IPUT8	15:0		_	_		12C3BCIP<2:0)>	I2C3BCI	S<1:0>			_	12	2C3MIP<2:0	>	I2C3MI	S<1:0>	0000
F1F0	IPC19	31:16	_	_	_		CCT3IP<2:0	>	CCT3IS	i<1:0>	_	_	—	C	CCP3IP<2:0	>	CCP3	S<1:0>	0000
FIFU	IPC 19	15:0	_		_		CCT2IP<2:0	>	CCT2IS	s<1:0>	—	—	_	(CCP2IP<2:0	>	CCP2	S<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	_	_	_		IP3<2:0>	IS3<1:0>				
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	IP2<2:0>			IS2<1:0>			
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	_	_	_		IP1<2:0>		IS1<	IS1<1:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_	IP0<2:0>			IS0<1:0>			

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>:	Interrupt	Priority 3 bits

- - 00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

- bit 20-18 IP2<2:0>: Interrupt Priority 2 bits
 - 111 = Interrupt priority is 7
 - •
 - •
 - 010 = Interrupt priority is 2 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority 2 bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

10.8 Pin Pull-up and Pull-Down

Each I/O pin also has a weak pull-up and a weak pulldown connected to it. The pull-ups act as a current source, or sink source, connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

10.9 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.9.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn", in their full pin designation, where "RP" designates a Remappable Peripheral and "n" is the remappable port number.

10.9.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (MCCP, SCCP) and others.

In comparison, some digital only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

10.9.3 CONTROLLING PPS

PPS features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

TABLE 10-0.											
Value	RPn Pins	Pin Assignment	Value	RPn Pins	Pin Assignment						
00001	RP1	RA0 Pin	01110	RP14	RB9 Pin						
00010	RP2	RA1 Pin	01111	RP15	RB13 Pin						
00011	RP3	RA2 Pin	10000	RP16	RB14 Pin						
00100	RP4	RA3 Pin	10001	RP17	RB15 Pin						
00101	RP5	RA4 Pin	10010	RP18	RC9 Pin						
00110	RP6	RB0 Pin	10011	RP19	RC2 Pin						
00111	RP7	RB1 Pin	10100	RP20	RC7 Pin						
01000	RP8	RB2 Pin	10101	RP21	RA7 Pin						
01001	RP9	RB3 Pin	10110	RP22	RA10 Pin						
01010	RP10	RB4 Pin	10111	RP23	RC6 Pin						
01011	RP11	RB5 Pin	11000	RP24	RA9 Pin						
01100	RP12	RB7 Pin	11001-11111	Re	served						
01101	RP13	RB8 Pin									

TABLE 10-3: REMAPPABLE INPUT SOURCES PIN ASSIGNMENTS⁽¹⁾

Note 1: All RPx pins are not available on all packages.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾	—	—	OPS<3:0> ⁽³⁾				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	TRIGEN	ONESHOT	ALTSYNC	SYNC<4:0>					
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	ON ⁽¹⁾	—	SIDL	CCPSLP	TMRSYNC CLKSEL<2:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	TMRPS<1:0>		T32	CCSEL	MOD<3:0>				

REGISTER 14-1: CCPxCON1: CAPTURE/COMPARE/PWMx CONTROL 1 REGISTER

Legend:

5						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 OPSSRC: Output Postscaler Source Select b
--

- 1 = Output postscaler scales the Special Event Trigger output events
- 0 = Output postscaler scales the timer interrupt events
- bit 30 RTRGEN: Retrigger Enable bit⁽²⁾
 - 1 = Time base can be retriggered when CCPTRIG = 1
 - 0 = Time base may not be retriggered when CCPTRIG = 1
- bit 29-28 Unimplemented: Read as '0'
- bit 27-24 **OPS<3:0>:** CCPx Interrupt Output Postscale Select bits⁽³⁾
 - 1111 = Interrupt every 16th time base period match
 - 1110 = Interrupt every 15th time base period match
 - . . .
 - 0100 = Interrupt every 5th time base period match
 - 0011 = Interrupt every 4th time base period match or 4th input capture event
 - 0010 = Interrupt every 3rd time base period match or 3rd input capture event
 - 0001 = Interrupt every 2nd time base period match or 2nd input capture event
 - 0000 = Interrupt after each time base period match or input capture event
- bit 23 TRIGEN: CCPx Triggered Enable bit
 - 1 = Triggered operation of the timer is enabled
 - 0 = Triggered operation of the timer is disabled
- bit 22 ONESHOT: One-Shot Mode Enable bit
 - 1 = One-Shot Triggered mode is enabled; trigger duration is set by OSCNT<2:0>
 - 0 = One-Shot Triggered mode is disabled

bit 21 ALTSYNC: CCPx Clock Select bit

- 1 = An alternate signal is used as the module synchronization output signal
- 0 = The module synchronization output signal is the Time Base Reset/rollover event

Note 1: This control bit has no function in Input Capture modes.

- 2: This control bit has no function when TRIGEN = 0.
- **3:** Values greater than '0011' will cause a FIFO buffer overflow in Input Capture mode.

REGISTER 18-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Resets all Even/Odd Buffer Pointers to the Even buffer descriptor banks
 - 0 = Even/Odd Buffer Pointers are not reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry are enabled
 - 0 = USB module and supporting circuitry are disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token is sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 18-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the Resume signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

PIC32MM0256GPM064 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	_	_	_	_	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	_	_	_	—	—		
45.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ADRC	EXTSAM	_	SAMC<4:0>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ADCS<7:0>									

REGISTER 20-3: AD1CON3: ADC CONTROL REGISTER 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source (TSRC) bit
 - 1 = Clock derived from the Fast RC (FRC) oscillator
 - 0 = Clock derived from the Peripheral Bus Clock (PBCLK, 1:1 with SYSCLK)

bit 14 EXTSAM: Extended Sampling Time bit

- 1 = ADC is still sampling after SAMP bit = 0
- 0 = ADC stops sampling when SAMP bit = 0
- bit 13 Unimplemented: Read as '0'
- bit 12-8 SAMC<4:0>: Auto-Sample Time bits

11111 **= 31 T**AD

- •
- .
- 00001 = 1 TAD

00000 = 0 TAD (Not allowed)

bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits

- 11111111 = 2 TSRC ADCS<7:0> = 510 TSRC = TAD
 - •
 - •

00000001 = 2 • TSRC • ADCS<7:0> = 2 • TSRC = TAD 00000000 = 1 • TSRC = TAD

Where TSRC is a period of clock selected by the ADRC bit (AD1CON3<15>).

21.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCON
- CLCxSEL
- CLCxGLS

The CLCx Control register (CLCxCON) is used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select register (CLCxGLS) allows the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 21-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER (CONTINUED)

bit 20	G3D3N: Gate 3 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 3
	0 = The Data Source 3 inverted signal is disabled for Gate 3
bit 19	G3D2T: Gate 3 Data Source 2 True Enable bit
	 1 = The Data Source 2 signal is enabled for Gate 3 0 = The Data Source 2 signal is disabled for Gate 3
bit 18	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 17	G3D1T: Gate 3 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 3 0 = The Data Source 1 signal is disabled for Gate 3
bit 16	G3D1N: Gate 3 Data Source 1 Negated Enable bit
bit to	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 2
1.11.4.4	0 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2
	0 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 2
	0 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	1 = The Data Source 3 inverted signal is enabled for Gate 20 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 2
	0 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 2
1.11.0	0 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 20 = The Data Source 1 signal is disabled for Gate 2
bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 2
	0 = The Data Source 1 inverted signal is disabled for Gate 2
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit
	 1 = The Data Source 4 signal is enabled for Gate 1 0 = The Data Source 4 signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	1 = The Data Source 4 inverted signal is enabled for Gate 1
	0 = The Data Source 4 inverted signal is disabled for Gate 1
bit 5	G1D3T: Gate 1 Data Source 3 True Enable bit
	 1 = The Data Source 3 signal is enabled for Gate 1 0 = The Data Source 3 signal is disabled for Gate 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	—	—	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
23:16	_	—	—	—	—	C3EVT	C2EVT	C1EVT
45.0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
15:8	-	—	SIDL	—	—	—	—	CVREFSEL
7.0	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	_	_	_		_	C3OUT	C2OUT	C10UT

REGISTER 22-1: CMSTAT: COMPARATOR MODULE STATUS REGISTER

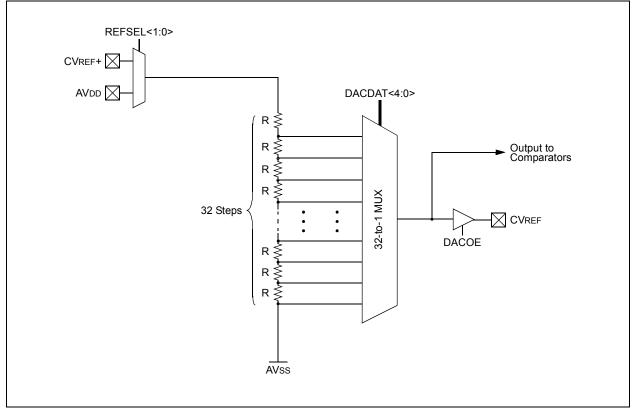
Legend: HC = Hardware Clearable bit		HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 31-19 Unimplemented: Read as '0'

bit 18	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 17	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).

- bit 16 **C1EVT:** Comparator 1 Event Status bit (read-only) Shows the current event status of Comparator 1 (CM1CON<9>).
- bit 15-14 Unimplemented: Read as '0'
- bit 13 SIDL: Comparator Stop in Idle Mode bit
 1 = Discontinues operation of all comparators when device enters Idle mode
 0 = Continues operation of all enabled comparators in Idle mode
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **CVREFSEL:** Comparator Reference Voltage Select Enable bit 1 = External voltage reference from the CVREF+ pin is selected 0 = Internal band gap voltage reference is selected
- bit 7-3 **Unimplemented:** Read as '0'
- bit 2 **C3OUT:** Comparator 3 Output Status bit (read-only) Shows the current output of Comparator 3 (CM3CON<8>).
- bit 1 **C2OUT:** Comparator 2 Output Status bit (read-only) Shows the current output of Comparator 2 (CM2CON<8>).
- bit 0 **C1OUT:** Comparator 1 Output Status bit (read-only) Shows the current output of Comparator 1 (CM1CON<8>).

23.0 VOLTAGE REFERENCE (CVREF)


Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference" (DS61109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. The CVREF module is a 32-TAP DAC that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently from them.

The module's supply reference can be provided from either the device VDD/VSS or an external voltage reference pin. The CVREF output is available for the comparators and for pin output.

The voltage reference has the following features:

- 32 Output Levels are Available
- Internally Connected to Comparators to Conserve Device Pins
- · Output can be Connected to a Pin

A block diagram of the CVREF module is illustrated in Figure 23-1.

FIGURE 23-1: VOLTAGE REFERENCE BLOCK DIAGRAM

27.0 INSTRUCTION SET

The PIC32MM0256GPM064 family instruction set complies with the MIPS[®] Release 3 instruction set architecture. Only microMIPS32[™] instructions are supported. The PIC32MM0256GPM064 family does not have the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note:	Refer to the "MIPS® Architecture for
	Programmers Volume II-B: The
	microMIPS32™ Instruction Set" at
	www.imgtec.com for more information.

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MM0256GPM064 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MM0256GPM064 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

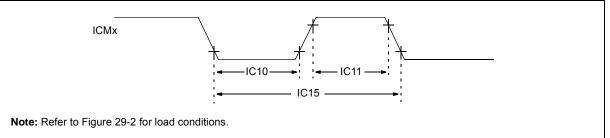
Ambient temperature under bias40°C to +105°C Storage temperature65°C to +150°C
Voltage on VDD with respect to Vss
Voltage on any general purpose digital or analog pin (not 5.5V tolerant) with respect to Vss0.3V to (VDD + 0.3V)
Voltage on any general purpose digital or analog pin (5.5V tolerant) with respect to Vss:
When VDD = 0V:0.3V to +4.0V
When VDD $\geq 2.0V$:
Voltage on AVDD with respect to VDD(VDD $- 0.3V$) to (lesser of: 4.0V or (VDD $+ 0.3V$))
Voltage on AVss with respect to Vss0.3V to +0.3V
Maximum current out of Vss pin
Maximum current into VDD pin ⁽¹⁾
Maximum output current sunk by I/O pin 11 mA
Maximum output current sourced by I/O pin
Maximum output current sunk by I/O pin with increased current drive strength (RA3, RA8, RA10, RB8, RB9, RB13, RB15, RC9, RC13 and RD0)
Maximum output current sourced by I/O pin with increased current drive strength (RA3, RA8, RA10, RB8, RB9, RB13, RB15, RC9, RC13 and RD0)24 mA
Maximum current sunk by all ports
Maximum current sourced by all ports ⁽¹⁾

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 29-1).

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

t

TABLE 29-5: IDLE CURRENT (IIDLE)⁽²⁾


Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	VDD	Conditions		
DC40	.69	.8	μA	-40°C to +85°C	2.0V	Fsys = 1 MHz		
	.69	.8	μΑ	-40°C to +85°C	3.3V			
DC41	.98	1.7	mA	-40°C to +85°C	2.0V	Fsys = 8 MHz		
	.98	1.7	mA	-40°C to +85°C	3.3V			
DC42	2.9	3.7	mA	-40°C to +85°C	2.0V	Esys = 25 MHz		
	2.9	3.7	mA	-40°C to +85°C	3.3V	- FSTS - 25 MIHZ		
DC44	.36	.7	μA	-40°C to +85°C	2.0V	– Fsys = 32 kHz		
	.36	.7	μA	-40°C to +85°C	3.3V			

Note 1: Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core in Idle, the clock on and all modules turned off. OSC1 driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required). Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.</p>

PIC32MM0256GPM064 FAMILY

FIGURE 29-6: MCCP AND SCCP INPUT CAPTURE MODE TIMING CHARACTERISTICS



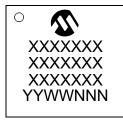
TABLE 29-25: MCCP AND SCCP INPUT CAPTURE MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		ISTICS	Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No. Symbol Characteristics ⁽¹⁾		Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions	
IC10	TccL	ICMx Input Low Time	[(12.5 ns or 1 TPBCLK)/N] + 25 ns		ns	Must also meet Parameter IC15	
IC11	ТссН	ICMx Input High Time	[(12.5 ns or 1 TPBCLK)/N] + 25 ns	_	ns	Must also meet Parameter IC15	
IC15	TCCP	ICMx Input Period	[(25 ns or 2 TPBCLK)/N] + 50 ns		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 29-7: MCCP AND SCCP OUTPUT COMPARE MODE TIMING CHARACTERISTICS

Note: Refer to Figure 29-2 for load conditions.


TABLE 29-26: MCCP AND SCCP OUTPUT COMPARE MODE TIMING REQUIREMENTS

AC CHARACTERISTICS				Operating (g temperatur			.6V (unless otherwise stated) $T_A \le +85^{\circ}C$
Param No. Symbol Characteristics ⁽¹⁾		Min.	Typical	Max.	Units	Conditions	
OC10	TccF	OCMx Output Fall Time	_	_	_	ns	See Parameter DO32
OC11	TccR	OCMx Output Rise Time	_	—	_	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

30.1 Package Marking Information (Continued)

40-Lead UQFN (5x5x0.5 mm)

48-Lead UQFN (6x6 mm)

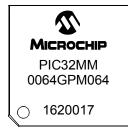
48-Lead TQFP (7x7x1.0 mm)

64-Lead QFN (9x9x0.9 mm)

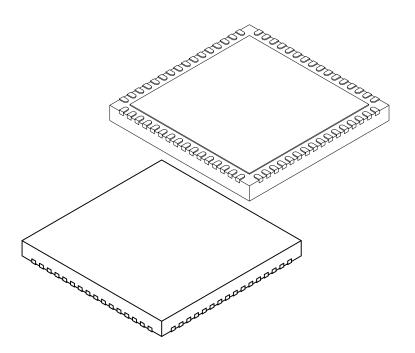
64-Lead TQFP (10x10x1 mm)

Example

Example


Example

Example



Example

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	MIN	NOM	MAX		
Number of Pins		64			
Pitch	е		0.50 BSC		
Overall Height	A	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	7.60 7.70 7.80			
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	7.60	7.70	7.80	
Contact Width	b	0.20 0.25 0.30			
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2