

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFl

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-SQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0256gpm036t-i-m2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		ē								Bit	s								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0										16/0	All Resets				
2930	NVMCON ⁽¹⁾	31:16	_												0000				
2930	NVINCON**	15:0	WR	VR WREN WRERR LVDERR r NVMOP<3:0>												0000			
2940	NVMKEY	31:16									(~31·0>								0000
2940		15:0		NVMKEY<31:0>												0000			
2950	NVMADDR ⁽¹⁾	31:16								NVMADD	P<31.0>								0000
2930	NVINADDR	15:0								NVINADD	N~31.02								0000
2960	NVMDATA0	31:16								NVMDATA	0<31.0>								0000
2300	NUMBAIAO	15:0									0 3 1.02								0000
2970	NVMDATA1	31:16								NVMDATA	1<31.0>								0000
2370		15:0									151.02								0000
2980	NVMSRCADDR	31:16							N	VMSRCAL	DR<31:0>								0000
2000		15:0																	0000
2990	NVMPWP ⁽¹⁾	31:16	PWPULOCK	_	_	—	_	_	_	_				PWP<	23:16>				8000
2330		15:0								PWP<	15:0>								0000
29A0	NVMBWP ⁽¹⁾	31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	0000
23A0		15:0	BWPULOCK	_	—	—	_	BWP2	BWP1	BWP0	_	—	—	—	—	—	—	_	8700

Legend: — = unimplemented, read as '0'; r = Reserved bit. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	_		—	_		_	—	
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	—	—	—	—	_	_	
45.0	R/W-1	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	
15:8	BWPULOCK —			—	—	BWP2 ⁽¹⁾	BWP1 ⁽¹⁾	BWP0 ⁽¹⁾	
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
7:0			_	_	_			—	

REGISTER 5-7: NVMBWP: BOOT FLASH (PAGE) WRITE-PROTECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15 BWPULOCK: Boot Alias Write-Protect Unlock bit
 1 = BWPx bits are not locked and can be modified
 0 = BWPx bits are locked and cannot be modified
 This bit is only clearable and cannot be set except by any Reset.

bit 14-11 Unimplemented: Read as '0'

- bit 10 **BWP2:** Boot Alias Page 2 Write-Protect bit⁽¹⁾
 - 1 = Write protection for physical address, 0x01FC08000 through 0x1FC0BFFF, is enabled
 - 0 = Write protection for physical address, 0x01FC08000 through 0x1FC0BFFF, is disabled

bit 9 **BWP1:** Boot Alias Page 1 Write-Protect bit⁽¹⁾

1 = Write protection for physical address, 0x01FC04000 through 0x1FC07FFF, is enabled 0 = Write protection for physical address, 0x01FC04000 through 0x1FC07FFF, is disabled

bit 8 **BWP0:** Boot Alias Page 0 Write-Protect bit⁽¹⁾

1 = Write protection for physical address, 0x01FC00000 through 0x1FC03FFF, is enabled 0 = Write protection for physical address, 0x01FC00000 through 0x1FC03FFF, is disabled

- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (BWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed. Refer to Example 5-1.

PIC32MM0256GPM064 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	_			_		—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	_	—	—	—	—	—						
45.0	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
15:8	—	_	—		_	S	SRIPL<2:0>(1)						
7.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC										
7:0	SIRQ<7:0>												

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 SRIPL<2:0>: Requested Priority Level for Single Vector Mode bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 1111111-00000000 = The last interrupt request number serviced by the CPU
- **Note 1:** This value should only be used when the interrupt controller is configured for Single Vector mode.

REGISTER 7-4:	IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24				IPTMF	?<31:24>								
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	IPTMR<23:16>												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	IPTMR<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				IPTM	R<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

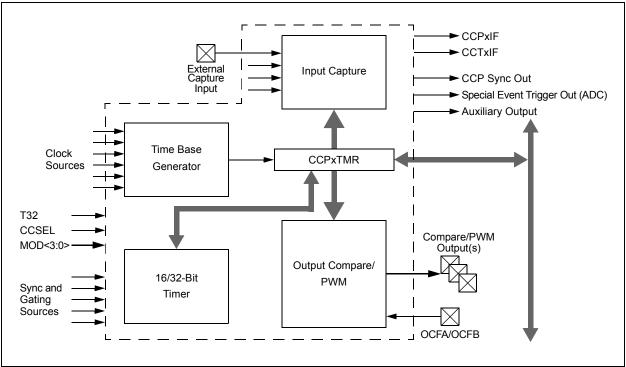
bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the interrupt proximity timer as a reload value when the interrupt proximity timer is triggered by an interrupt event.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24		—	—	—	—	—	—	—						
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:10		—	_	-	—	—	—	—						
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15:8	—	_	_	_	—	—	—	—						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0		CHPDAT<7:0>												

REGISTER 8-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:


Ecgena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits

Pattern Terminate mode: Data to be matched must be stored in this register to allow terminate on match. All Other modes: Unused.

PIC32MM0256GPM064 FAMILY

FIGURE 14-1: MCCP/SCCP CONCEPTUAL BLOCK DIAGRAM

14.2 Registers

Each MCCP/SCCP module has up to seven control and status registers:

- CCPxCON1 (Register 14-1) controls many of the features common to all modes, including input clock selection, time base prescaling, timer synchronization, Trigger mode operations and postscaler selection for all modes. The module is also enabled and the operational mode is selected from this register.
- CCPxCON2 (Register 14-2) controls autoshutdown and restart operation, primarily for PWM operations, and also configures other input capture and output compare features, and configures auxiliary output operation.
- CCPxCON3 (Register 14-3) controls multiple output PWM dead time, controls the output of the output compare and PWM modes, and configures the PWM Output mode for the MCCP modules.
- CCPxSTAT (Register 14-4) contains read-only status bits showing the state of module operations.

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- · CCPxTMR is the 32-Bit Timer/Counter register
- · CCPxPR is the 32-Bit Timer Period register
- CCPxR is the 32-bit primary data buffer for output compare operations
- CCPxBUF(H/L) is the 32-Bit Buffer register pair, which is used in input capture FIFO operations

UART Control Registers 17.1

TABLE 17-1: UART1, UART2 AND UART3 REGISTER MAP

-	LE 17-1.			KTT, UAKTZ AND UAKTS REGISTER MAP												r			
ess		0								E	Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1800	U1MODE(1)	31:16	_		—	_	_		—	_	SLPEN	ACTIVE	_	_	—	CLKSE	L<1:0>	OVFDIS	0000
1000	0 INIODE	15:0	ON	ON – SIDL IREN RTSMD – UEN<1:0>							WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
1810	U1STA ⁽¹⁾	31:16				UART1 M	ASK<7:0>							UART1 AD	DR<7:0>				0000
1010	UIUIA	15:0	UTXISE											0110					
1820	U1TXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1020	OTHALLO	15:0	—										0000						
1830	U1RXREG	31:16	—	-	—	_	—	_	—	_	_	—	—	—	—	—	—	—	0000
	0.1101120	15:0	—									0000							
1840	U1BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—		—	_	—	0000
		15:0							Bau	d Rate Ge	nerator Pre								0000
1900	U2MODE(1)	31:16 15:0	_	—	—	—	—	—	—	—	SLPEN	ACTIVE	—	—	—		L<1:0>	OVFDIS	0000
			ON — SIDL IREN RISMD — UEN<1:0> WARE LPBACK ABAUD RXINV BRGH PDSEL<1:0> SISE								STSEL	0000							
1910	U2STA ⁽¹⁾	31:16			I	UART2 M								UART2 AD					0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
1920	U2TXREG	31:16	_							-	—			—	—	_			0000
		15:0	_	_	—				_	TX8				ART2 Trans	smit Registe	er I			0000
1930	U2RXREG	31:16 15:0	-		—		_			RX8		_	—	ART2 Rece	—		_	_	0000
		31:16	_							КЛО			0	ARTZ Rece	eive Registe				0000
1940	U2BRG ⁽¹⁾	15:0	_	_	_	—	—	_		d Pata Car	nerator Pres		_	—		_		_	0000
		31:16	_						Dau		SLPEN	ACTIVE	_				L<1:0>	OVFDIS	0000
2000	U3MODE ⁽¹⁾	15:0	ON		SIDL	IREN	RTSMD	_	UEN•	(1:0>	WAKE	LPBACK	 ABAUD	 RXINV	BRGH		L<1:0>	STSEL	0000
		31:16	ON		OIDE	UART2 M			ULIN	\$1.02		LI BACK	ADAOD	UART2 AE	-	1 DOL	L \1.02	OTOLL	0000
2010	U3STA ⁽¹⁾	15:0	UTXISE	I <1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	=1 <1.0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
		31:16	_		_	_		_	_							-			0000
2020	U3TXREG	15:0	_	_	_		_	_	_	TX8				ART2 Trans	smit Registe	er			0000
		31:16	_	_	_	_	_	_	_	_	_	_	_				_	_	0000
2030	U3RXREG	15:0	_		_		_	_	_	RX8		l		ART2 Rece	ive Registe	er		l	0000
		31:16							_	_			_	_	_				0000
2040	U3BRG ⁽¹⁾	15:0							Bau	d Rate Ge	nerator Pre	scaler							0000
I									200										

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: These registers have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 18-6: U1IR: USB INTERRUPT REGISTER (CONTINUED)

- bit 0 URSTIF: USB Reset Interrupt bit (Device mode)⁽⁵⁾
 - 1 = Valid USB Reset has occurred
 - 0 = No USB Reset has occurred
 - DETACHIF: USB Detach Interrupt bit (Host mode)(6)
 - 1 = Peripheral detachment was detected by the USB module
 - 0 = Peripheral detachment was not detected
- **Note 1:** This bit is only valid if the HOSTEN bit is set (see Register 18-11), there is no activity on the USB for 2.5 μs and the current bus state is not SE0.
 - **2:** When not in Suspend mode, this interrupt should be disabled.
 - 3: Clearing this bit will cause the STAT FIFO to advance.
 - 4: Only error conditions enabled through the U1EIE register will set this bit.
 - 5: Device mode.
 - 6: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	—		—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	—	_	_
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF
	DISEF	DIVIAEE	DIVIAET'	DIVER	DENOEF	UKU IDEF	EOFEF ^(3,5)	FIDEF

REGISTER 18-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to Clear bit	HS = Hardware Settable b	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-8 Unimplemented: Read as '0'
- bit 7 **BTSEF:** Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 - 1 = Invalid base address of the BDT or the address of an individual buffer pointed to by a BDT entry
 - 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾
 - 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out has occurred
- bit 3 DFN8EF: Data Field Size Error Flag bit
 - 1 = Data field received is not an integral number of bytes
 - 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet rejected due to CRC16 error
 - 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	ALRMEN	CHIME	—	—		AMAS	K<3:0>	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				ALMRPT	<7:0> ⁽¹⁾			
45.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	—	—	WRLOCK	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7:0	RTCOE		OUTSEL<2:0	>	_	_	_	_

REGISTER 19-1: RTCCON1: RTCC CONTROL 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 ALRMEN: Alarm Enable bit

- 1 = Alarm is enabled
- 0 = Alarm is disabled
- bit 30 CHIME: Chime Enable bit
 - 1 = Chime is enabled; ALMRPT<7:0> bits are allowed to underflow from '00' to 'FF'
 - 0 = Chime is disabled; ALMRPT<7:0> bits stop once they reach '00'

bit 29-28 Unimplemented: Read as '0'

- bit 27-24 **AMASK<3:0>:** Alarm Mask Configuration bits
 - 11xx = Reserved, do not use
 - 101x = Reserved, do not use
 - 1001 = Once a year (or once every 4 years when configured for February 29th)
 - 1000 = Once a month
 - 0111 = Once a week
 - 0110 = Once a day
 - 0101 = Every hour
 - 0100 = Every 10 minutes
 - 0011 = Every minute
 - 0010 = Every 10 seconds
 - 0001 = Every second
 - 0000 = Every half-second

bit 23-16 ALMRPT<7:0>: Alarm Repeat Counter Value bits⁽¹⁾

11111111 = Alarm will repeat 255 more times

- 11111110 = Alarm will repeat 254 more times
- •••

00000010 = Alarm will repeat 2 more times

- 00000001 = Alarm will repeat 1 more time
- 00000000 = Alarm will not repeat
- bit 15 ON: RTCC Enable bit

1 = RTCC is enabled and counts from selected clock source

0 = RTCC is disabled

- bit 14-12 Unimplemented: Read as '0'
- **Note 1:** The counter decrements on any alarm event. The counter is prevented from rolling over from '00' to 'FF' unless CHIME = 1.

REGISTER 20-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

b	it 7-4	SSRC<3:0>: Conversion Trigger Source Select bits 1111 = CLC2 module event ends sampling and starts conversion 110 = CLC1 module event ends sampling and starts conversion 1101 = SCCP6 module event ends sampling and starts conversion 1100 = SCCP5 module event ends sampling and starts conversion 1011 = SCCP4 module event ends sampling and starts conversion 1010 = SCCP5 module event ends sampling and starts conversion 1010 = MCCP3 module event ends sampling and starts conversion 1001 = MCCP2 module event ends sampling and starts conversion 1000 = MCCP1 module event ends sampling and starts conversion 1011 = Internal counter ends sampling and starts conversion 0110 = Timer1 period match ends sampling and starts conversion (auto-convert) 0111 = Timer1 period match ends sampling and starts conversion (will not trigger during Sleep mode) 0100-0011 = Reserved 0010 = Timer3 period match ends sampling and starts conversion 0010 = Timer3 period match ends sampling and starts conversion 0001 = Active transition on INT0 pin ends sampling and starts conversion 0000 = Clearing the SAMP bit ends sampling and starts conversion
b	it 3	MODE12: 12-Bit Operation Mode bit 1 = 12-bit ADC operation
		0 = 10-bit ADC operation
b	it 2	ASAM: ADC Sample Auto-Start bit
		 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set 0 = Sampling begins when SAMP bit is set
b	it 1	SAMP: ADC Sample Enable bit ⁽²⁾
		 1 = The ADC Sample-and-Hold Amplifier (SHA) is sampling 0 = The ADC SHA is holding When ASAM = 0, writing '1' to this bit starts sampling. When SSRC<3:0 = 0000, writing '0' to this bit will end sampling and start conversion.
b	it 0	DONE: ADC Conversion Status bit ⁽¹⁾
		1 = Analog-to-Digital conversion is done
		 analog-to-Digital conversion is not done or has not started Clearing this bit will not affect any operation in progress.
N	loto 1.	The DONE bit is not persistent in Automatic modes: it is cleared by bardware at the beginning of the

- **Note 1:** The DONE bit is not persistent in Automatic modes; it is cleared by hardware at the beginning of the next sample.
 - 2: The SAMP bit is cleared and cannot be written if the ADC is disabled (ON bit = 0).

21.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCON
- CLCxSEL
- CLCxGLS

The CLCx Control register (CLCxCON) is used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select register (CLCxGLS) allows the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

24.1 High/Low-Voltage Detect Registers

TABLE 24-1: HIGH/LOW-VOLTAGE DETECT REGISTER MAP

ess										Bit	s								ş
Virtual Addr (BF80 #)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2020		31:16	_	_	_	_	_	_	_	_	_	_	_	-		_	_	_	0000
2920	HLVDCON	15:0	ON		SIDL	_	VDIR	BGVST	IRVST	HLEVT	_	_	_	_		HLVDL	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively.

TABLE 26-4: ALTERNATE CONFIGURATION WORDS SUMMARY

ess										Bits								
Virtual Address (BFC0_#)	Register Name	Bit Range	31\15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
1740	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1740	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1744	AFDEVOPT	31:16							U	SERID<1	15:0>							
1744	AI DE VOF I	15:0	FVBUSIO	FUSBIDIO	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ALTI2C	SOSCHP	r-1	r-1	r-1
1748	AFICD	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1740	ALICD	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ICS	<1:0>	JTAGEN	r-1	r-1
174C	AFPOR	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1/40	ALLON	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	LPBOREN	RETVR	BOREN	l<1:0>
1750	AFWDT	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1750	AIWDI	15:0	FWDTEN	RCLKSE	L<1:0>		R	WDTPS<4:0>			WINDIS	FWDTWIN	SZ<1:0>		SW	DTPS<4:0	>	
1754	AFOSCSEL	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17.54	AI USUSEE	15:0	FCKSM	<1:0>	r-1	SOSCSEL	r-1	OSCIOFNC	POSCM	OD<1:0>	IESO	SOSCEN	r-1	PLLSRC	r-1	FI	NOSC<2:0	>
1758	AFSEC	31:16	CP	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1750	AI SEC	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
175C	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1750	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1760	RESERVED	31:16	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	NEGENVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1764	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1704	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1

Legend: r-0 = Reserved bit, must be programmed as '0'; r-1 = Reserved bit, must be programmed as '1'.

REGISTER 26-4: FWDT/AFWDT: WATCHDOG TIMER CONFIGURATION REGISTER (CONTINUED)

- bit 6-5 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits
 - 11 = Watchdog Timer window size is 25%
 - 10 = Watchdog Timer window size is 37.5%
 - 01 = Watchdog Timer window size is 50%
 - 00 = Watchdog Timer window size is 75%
- bit 4-0 SWDTPS<4:0>: Sleep Mode Watchdog Timer Postscale Select bits

From 10100 to 11111 = 1:1048576. 10011 = 1:524288 10010 = 1:262144 10001 = 1:13107210000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:1024 01001 = 1:512 01000 = 1:256 00111 = 1:128 00110 = 1:64 00101 = 1:32 00100 = 1:16 00011 = 1:8 00010 = 1:4 00001 = 1:2 00000 = 1:1

TABLE 26-7: UNIQUE DEVICE IDENTIFIER (UDID) REGISTER MAP

ess		e								В	its								
Virtual Address (BF84_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1840	UDID1	31:16 15:0								UDID Wo	rd 1<31:0>								xxxx xxxx
1844	UDID2	31:16 15:0								UDID Wo	rd 2<31:0>								xxxx xxxx
1848	UDID3	31:16 15:0								UDID Wo	rd 3<31:0>								xxxx xxxx
184C	UDID4	31:16 15:0								UDID Wo	rd 4<31:0>								xxxx xxxx
1850	UDID5	31:16 15:0								UDID Wo	rd 5<31:0>								xxxx xxxx

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 26-8: RESERVED REGISTERS MAP

ess		Ð								Bi	ts								s
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2900	RESERVED1	31:16 15:0							Res	served Reg	ister 1<31	:0>							0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DC CH	ARACTER	RISTICS	Standard O Operating te				3.6V (unless otherwise stated) $\leq T_A \leq +85^{\circ}C$
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss		0.2 Vdd	V	
DI15		MCLR	Vss		0.2 Vdd	V	
DI16		OSC1 (XT mode)	Vss		0.2 Vdd	V	
DI17		OSC1 (HS mode)	Vss	_	0.2 Vdd	V	
	Vih	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: Without 5V Tolerance With 5V Tolerance	0.8 Vdd 0.8 Vdd		VDD 5.5	V V	
DI25		MCLR	0.8 VDD		Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V	
DI27		OSCI (HS mode)	0.7 VDD	_	Vdd	V	
DI30	ICNPU	CNPUx Pull-up Current	150	350	450	μA	Vdd = 3.3V, Vpin = Vss
DI30A	ICNPD	CNPDx Pull-Down Current	230	300	500	μA	Vdd = 3.3V, Vpin = Vdd
DI50	lı∟	Input Leakage Current ⁽²⁾ I/O Pins – 5V Tolerant	_	_	1	μΑ	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		I/O Pins – Not 5V Tolerant	—	—	1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	—	—	1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1/CLKI	_	_	1	μΑ	Vss \leq VPIN \leq VDD, XT and HS modes

TABLE 29-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-1 for I/O pin buffer types.

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

DC CHA	ARACTER	RISTICS	Standard Ope Operating ter	-			.6V (unless otherwise stated) $T_A \le +85^{\circ}C$
Param No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DI60a	licl	Input Low Injection Current	0		_5(2,5)	mA	This parameter applies to all pins. Maximum IICH current for this exception is 0 mA.
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins and SOSCI. Maximum IICH current for these exceptions is 0 mA.
DI60c	∑IICT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁶⁾	_	+20 ⁽⁶⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins: (IICL + IICH) $\leq \sum$ IICT

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: VIL Source < (Vss 0.3). Characterized but not tested.
- 3: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.
- 4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL Source < (VSS − 0.3)).</p>
- 6: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((VSS 0.3) VIL Source)/RS). If Note 3, IICH = (((IICH Source (VDD + 0.3))/RS). RS = Resistance between input source voltage and device pin. If (VSS 0.3) ≤ VSOURCE ≤ (VDD + 0.3), Injection Current = 0.

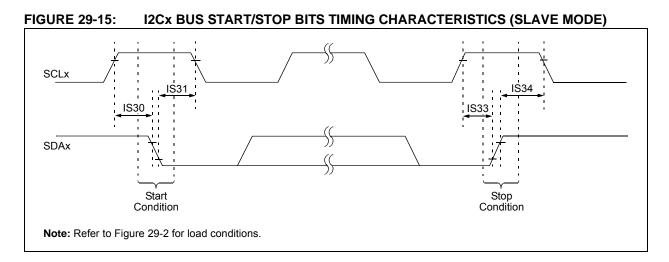
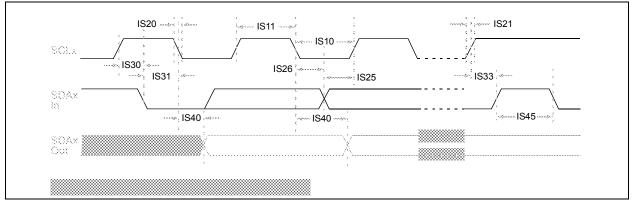

АС СН	ARACTE	RISTICS		Standard Operating C Operating temperatur			3.6V (unless otherwise stated) $\leq TA \leq +85^{\circ}C$
Param No.	Sym	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	100		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0	0.3	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK * (BRG + 2)	_	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	TPBCLK * (BRG + 2)	_	μs	Start condition
			1 MHz mode ⁽²⁾	TPBCLK * (BRG + 2)		μs	
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK * (BRG + 2)		μs	After this period, the first clock
		Hold Time	400 kHz mode	TPBCLK * (BRG + 2)		μs	pulse is generated
			1 MHz mode ⁽²⁾	TPBCLK * (BRG + 2)		μs	
IM33	TSU:STO	Stop Condition	100 kHz mode	TPBCLK * (BRG + 2)	_	μs	
		Setup Time	400 kHz mode	TPBCLK * (BRG + 2)	_	μs	
			1 MHz mode ⁽²⁾	TPBCLK * (BRG + 2)	—	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK * (BRG + 2)	_	ns	
		Hold Time	400 kHz mode	TPBCLK * (BRG + 2)	_	ns	
			1 MHz mode ⁽²⁾	TPBCLK * (BRG + 2)	—	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	
		from Clock	400 kHz mode	_	1000	ns	
			1 MHz mode ⁽²⁾	—	350	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	The amount of time the bus
			400 kHz mode	1.3		μs	must be free before a new
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start
IM50	Св	Bus Capacitive	Loading	_	_	pF	See Parameter DO58
IM51	Tpgd	Pulse Gobbler D	Delay	52	312	ns	(Note 3)

TABLE 29-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)


Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

AC CHARACTERISTICS				Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$			
Param No.	Sym	Characteristics		Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μs	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μs	
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽¹⁾	—	100	ns	

Note 1: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

NOTES: