




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® microAptiv™                                                               |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 25MHz                                                                             |
| Connectivity               | IrDA, LINbus, SPI, UART/USART, USB, USB OTG                                       |
| Peripherals                | Brown-out Detect/Reset, DMA, HLVD, I <sup>2</sup> S, POR, PWM, WDT                |
| Number of I/O              | 27                                                                                |
| Program Memory Size        | 256KB (256K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 32K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                         |
| Data Converters            | A/D 15x10/12b                                                                     |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 40-UFQFN Exposed Pad                                                              |
| Supplier Device Package    | 40-UQFN (5x5)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0256gpm036t-i-mv |
|                            |                                                                                   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

|          |                |                        | Pin Nu        | mber           |                        |                        |             |                |                                      |
|----------|----------------|------------------------|---------------|----------------|------------------------|------------------------|-------------|----------------|--------------------------------------|
| Pin Name | 28-Pin<br>SSOP | 28-Pin<br>QFN/<br>UQFN | 36-Pin<br>QFN | 40-Pin<br>UQFN | 48-Pin<br>QFN/<br>TQFP | 64-Pin<br>QFN/<br>TQFP | Pin<br>Type | Buffer<br>Type | Description                          |
| INT0     | 26             | 23                     | 29            | 32             | 16                     | 32                     | I           | ST             | External Interrupt 0                 |
| INT1     | 25             | 22                     | 28            | 31             | 15                     | 31                     | Ι           | ST             | External Interrupt 1                 |
| INT2     | 18             | 15                     | 19            | 20             | 1                      | 49                     | I           | ST             | External Interrupt 2                 |
| INT3     | 2              | 27                     | 33            | 36             | 40                     | 36                     | I           | ST             | External Interrupt 3                 |
| LVDIN    | 24             | 21                     | 20            | 21             | 4                      | 52                     | I           | ANA            | High/Low-Voltage Detect input        |
| MCLR     | 1              | 26                     | 32            | 35             | 19                     | 9                      | I           | ST             | Master Clear (device Reset)          |
| OCM1A    | 17             | 14                     | 18            | 18             | 48                     | 7                      | 0           | DIG            | MCCP1 Output A                       |
| OCM1B    | 18             | 15                     | 19            | 20             | 1                      | 53                     | 0           | DIG            | MCCP1 Output B                       |
| OCM1C    | 9              | 6                      | 7             | 7              | 32                     | 25                     | 0           | DIG            | MCCP1 Output C                       |
| OCM1D    | 10             | 7                      | 8             | 8              | 41                     | 37                     | 0           | DIG            | MCCP1 Output D                       |
| OCM1E    | 2              | 27                     | 33            | 36             | 40                     | 36                     | 0           | DIG            | MCCP1 Output E                       |
| OCM1F    | 3              | 28                     | 34            | 37             | 22                     | 12                     | 0           | DIG            | MCCP1 Output F                       |
| OCM2A    | 19             | 16                     | 5             | 5              | 29                     | 21                     | 0           | DIG            | MCCP2 Output A                       |
| OCM2B    | 26             | 23                     | 29            | 32             | 39                     | 35                     | 0           | DIG            | MCCP2 Output B                       |
| OCM2C    | 4              | 1                      | 35            | 38             | 23                     | 13                     | 0           | DIG            | MCCP2 Output C                       |
| OCM2D    | 5              | 2                      | 36            | 39             | 24                     | 14                     | 0           | DIG            | MCCP2 Output D                       |
| OCM2E    | 6              | 3                      | 1             | 1              | 25                     | 15                     | 0           | DIG            | MCCP2 Output E                       |
| OCM2F    | 7              | 4                      | 2             | 2              | 26                     | 16                     | 0           | DIG            | MCCP2 Output F                       |
| OCM3A    | 24             | 21                     | 11            | 11             | 37                     | 54                     | 0           | DIG            | MCCP3 Output A                       |
| OCM3B    | 25             | 22                     | 28            | 31             | 15                     | 33                     | 0           | DIG            | MCCP3 Output B                       |
| OCM3C    | 11             | 8                      | 9             | 9              | 35                     | 59                     | 0           | DIG            | MCCP3 Output C                       |
| OCM3D    | 12             | 9                      | 10            | 10             | 36                     | 41                     | 0           | DIG            | MCCP3 Output D                       |
| OCM3E    | 14             | 11                     | 15            | 15             | 45                     | 42                     | 0           | DIG            | MCCP3 Output E                       |
| OCM3F    | 16             | 13                     | 17            | 17             | 47                     | 45                     | 0           | DIG            | MCCP3 Output F                       |
| OSC1     | 9              | 6                      | 7             | 7              | 32                     | 25                     | _           |                | Primary Oscillator crystal           |
| OSC2     | 10             | 7                      | 8             | 8              | 33                     | 26                     | _           | _              | Primary Oscillator crystal           |
| PGEC1    | 5              | 2                      | 36            | 39             | 24                     | 14                     | I           | ST             | ICSP™ Port 1 programming clock input |
| PGEC2    | 2              | 27                     | 33            | 36             | 21                     | 11                     | I           | ST             | ICSP Port 2 programming clock input  |
| PGEC3    | 19             | 16                     | 21            | 22             | 5                      | 55                     | I           | ST             | ICSP Port 3 programming clock input  |
| PGED1    | 4              | 1                      | 35            | 38             | 23                     | 13                     | I/O         | ST/DIG         | ICSP Port 1 programming data         |
| PGED2    | 3              | 28                     | 34            | 37             | 22                     | 12                     | I/O         | ST/DIG         | ICSP Port 2 programming data         |
| PGED3    | 14             | 11                     | 15            | 15             | 45                     | 43                     | I/O         | ST/DIG         | ICSP Port 3 programming data         |
| PWRLCLK  | 12             | 9                      | 10            | 10             | 36                     | 29                     | I           | ST             | Real-Time Clock 50/60 Hz clock input |

Legend: ST = Schmitt Trigger input buffer I2C = I<sup>2</sup>C/SMBus input buffer DIG = Digital input/output

P = Power

ANA = Analog level input/output

# 2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

# 2.1 Basic Connection Requirements

Getting started with the PIC32MM0256GPM064 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, even if the ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pin (see Section 2.4 "Voltage Regulator Pin (VCAP)")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and debugging purposes (see **Section 2.5** "**ICSP Pins**")
- OSC1 and OSC2 pins, when external oscillator source is used (see Section 2.7 "External Oscillator Pins")
- VUSB3V3 pin, this pin must be powered for USB operation (see Section 18.4 "Powering the USB Transceiver")

The following pin(s) may be required as well:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

**Note:** The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

# 2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS, is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of  $0.1 \ \mu F$ (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01  $\mu$ F to 0.001  $\mu$ F. Place this second capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances, as close to the power and ground pins as possible. For example, 0.1  $\mu$ F in parallel with 0.001  $\mu$ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

The MIPS<sup>®</sup> architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the general purpose register file.

In addition to the HI/LO targeted operations, the MIPS architecture also defines a Multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

## 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. These configuration options and other system information are available by accessing the CP0 registers listed in Table 3-2.

#### **TABLE 7-3**: INTERRUPT REGISTER MAP

| SS                          |                                 |               |         |          |              |               |               |             |            | Bits    |         |          |               |         |            |         |                 |          | Τ          |
|-----------------------------|---------------------------------|---------------|---------|----------|--------------|---------------|---------------|-------------|------------|---------|---------|----------|---------------|---------|------------|---------|-----------------|----------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range     | 31/15   | 30/14    | 29/13        | 28/12         | 27/11         | 26/10       | 25/9       | 24/8    | 23/7    | 22/6     | 21/5          | 20/4    | 19/3       | 18/2    | 17/1            | 16/0     | All Resets |
| F000                        | INTCON                          | 31:16         | _       | —        | —            | —             | —             | —           | —          | —       | —       |          |               |         | VS<6:0>    |         |                 |          | 0000       |
| F000                        | INTCON                          | 15:0          | _       | _        | _            | MVEC          | _             |             | TPC<2:0>   |         | _       | _        | _             | INT4EP  | INT3EP     | INT2EP  | INT1EP          | INT0EP   | 0000       |
| F010                        | PRISS                           | 31:16         |         | PRI7S    | S<3:0>       |               |               | PRI6SS      | S<3:0>     |         |         | PRI5SS   | <3:0>         |         |            | PRI4S   | S<3:0>          |          | 0000       |
| FUIU                        | FRI33                           | 15:0          |         | PRI3S    | S<3:0>       |               |               | PRI2SS<3:0> |            |         |         | PRI1SS   | <3:0>         |         | _          | _       | _               | SS0      | 0000       |
| F020                        | INTSTAT                         | 31:16         | —       | —        | —            | —             | —             | —           | —          | —       | —       | —        | —             | -       | —          | —       | —               | —        | 0000       |
| FUZU                        | INTSTAT                         | 15:0          | —       | —        | —            | -             | -             |             | SRIPL<2:0> |         |         |          |               | SIRQ    | <7:0>      |         |                 |          | 0000       |
| F030                        | IPTMR                           | 31:16<br>15:0 |         |          |              |               |               |             |            | IPTMR<  | 31:0>   |          |               |         |            |         |                 |          | 0000       |
| 50.40                       | 1500                            | 31:16         | _       | USBIF    | _            | _             | _             | —           | CMP3IF     | CMP2IF  | CMP1IF  | _        | _             | _       | T3IF       | T2IF    | T1IF            | _        | 0000       |
| F040                        | IFS0                            | 15:0          |         | _        | _            |               | CNDIF         | CNCIF       | CNBIF      | CNAIF   | INT4IF  | INT3IF   | INT2IF        | INT1IF  | INTOIF     | CS1IF   | CS0IF           | CTIF     | 0000       |
| 5050                        | 1504                            | 31:16         | _       | _        | <b>U3EIF</b> | <b>U3TXIF</b> | <b>U3RXIF</b> | U2EIF       | U2TXIF     | U2RXIF  | U1EIF   | U1TXIF   | U1RXIF        |         | _          | —       | <b>SPI3RXIF</b> | SPI3TXIF | 0000       |
| F050                        | IFS1                            | 15:0          | SPI3EIF | SPI2RXIF | SPI2TXIF     | SPI2EIF       | SPI1RXIF      | SPI1TXIF    | SPI1EIF    | CLC4IF  | CLC3IF  | CLC2IF   | CLC1IF        | LVDIF   | _          | _       | AD1IF           | RTCCIF   | 0000       |
| 5000                        | 1500                            | 31:16         | CPCIF   | NVMIF    | _            | FSTIF         | CCT9IF        | CCP9IF      | CCT8IF     | CCP8IF  | CCT7IF  | CCP7IF   | CCT6IF        | CCP6IF  | CCT5IF     | CCP5IF  | CCT4IF          | CCP4IF   | 0000       |
| F060                        | IFS2                            | 15:0          | CCT3IF  | CCP3IF   | CCT2IF       | CCP2IF        | CCT1IF        | CCP1IF      | I2C3BCIF   | I2C3MIF | I2C3SIF | I2C2BCIF | I2C2MIF       | I2C2SIF | I2C1BCIF   | I2C1MIF | I2C1SIF         | —        | 0000       |
| E070                        | 1500                            | 31:16         | _       |          |              | _             | _             | —           | _          | _       | _       | _        | _             | _       | _          | _       | _               | _        | 0000       |
| F070                        | IFS3                            | 15:0          | _       | _        | _            |               |               | _           | _          |         |         | _        | <b>DMA3IF</b> | DMA2IF  | DMA1IF     | DMA0IF  | ECCBEIF         | —        | 0000       |
| F080                        | IEC0                            | 31:16         | —       | USBIE    | —            |               |               | _           | CMP3IE     | CMP2IE  | CMP1IE  | —        | _             |         | T3IE       | T2IE    | T1IE            | _        | 0000       |
| F000                        | IECU                            | 15:0          | —       | —        | —            |               | CNDIE         | CNCIE       | CNBIE      | CNAIE   | INT4IE  | INT3IE   | INT2IE        | INT1IE  | INT0IE     | CS1IE   | CS0IE           | CTIE     | 0000       |
| F090                        | IEC1                            | 31:16         | —       | —        | <b>U3EIE</b> | <b>U3TXIE</b> | <b>U3RXIE</b> | U2EIE       | U2TXIE     | U2RXIE  | U1EIE   | U1TXIE   | U1RXIE        | -       | —          | —       | <b>SPI3RXIE</b> | SPI3TXIE | 0000       |
| F090                        | IECT                            | 15:0          | SPI3EIE | SPI2RXIE | SPI2TXIE     | SPI2EIE       | SPI1RXIE      | SPI1TXIE    | SPI1EIE    | CLC4IE  | CLC3IE  | CLC2IE   | CLC1IE        | LVDIE   | —          | —       | AD1IE           | RTCCIE   | 0000       |
| F0A0                        | IEC2                            | 31:16         | CPCIE   | NVMIE    | —            | FSTIE         | CCT9IE        | CCP9IE      | CCT8IE     | CCP8IE  | CCT7IE  | CCP7IE   | CCT6IE        | CCP6IE  | CCT5IE     | CCP5IE  | CCT4IE          | CCP4IE   | 0000       |
| 1 0/10                      | IL02                            | 15:0          | CCT3IE  | CCP3IE   | CCT2IE       | CCP2IE        | CCT1IE        | CCP1IE      | I2C3BCIE   | I2C3MIE | I2C3SIE | I2C2BCIE | I2C2MIE       | I2C2SIE | I2C1BCIE   | I2C1MIE | I2C1SIE         | —        | 0000       |
| F0B0                        | IEC3                            | 31:16         | _       | _        | _            | _             | _             |             | _          | _       | _       | —        | —             | _       |            | _       | —               | —        | 0000       |
| 1 000                       | IL00                            | 15:0          | —       | —        | —            | _             | —             | —           | —          | —       | _       | —        | DMA3IE        | DMA2IE  | DMA1IE     | DMA0IE  | ECCBEIE         | —        | 0000       |
| F0C0                        | IPC0                            | 31:16         | —       | —        | —            |               | INT0IP<2:0>   | •           | INTOIS     | <1:0>   | —       | —        | —             |         | CS1IP<2:0> |         | CS1IS           | 6<1:0>   | 0000       |
| 1000                        | 1 00                            | 15:0          | —       | —        | —            |               | CS0IP<2:0>    |             | CSOIS      | <1:0>   | —       | —        | —             |         | CTIP<2:0>  |         | CTIS            | <1:0>    | 0000       |
| F0D0                        | IPC1                            | 31:16         | _       | —        | —            |               | INT4IP<2:0>   | •           | INT4IS     | <1:0>   | _       | —        | —             |         | NT3IP<2:0> | •       | INT3IS          | 6<1:0>   | 0000       |
| . 500                       | 01                              | 15:0          | _       |          |              |               | INT2IP<2:0>   |             | INT2IS     |         | _       | —        | _             |         | NT1IP<2:0> |         | INT1IS          |          | 0000       |
| F0E0                        | IPC2                            | 31:16         | —       | —        | —            |               | CNDIP<2:0>    | •           | CNDIS      | <1:0>   | —       | —        | —             | (       | CNCIP<2:0> | •       | CNCIS           | 6<1:0>   | 0000       |
| 1020                        |                                 | 15:0          | —       | _        | —            |               | CNBIP<2:0>    |             | CNBIS      | <1:0>   | —       | —        | _             |         | CNAIP<2:0> |         | CNAIS           | 6<1:0>   | 0000       |
| F0F0                        | IPC3                            | 31:16         | —       | —        | —            | —             | —             | —           | —          | —       | —       | —        | —             | —       | —          | —       | —               | —        | 0000       |
|                             | 55                              | 15:0          | _       | —        | —            | —             | —             | —           | —          | —       | —       | —        | —             | —       | —          | —       | _               | —        | 0000       |

DS60001387C-page 66

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

NOTES:

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | —                 | —                 | -                 | _                 |                   |                   | _                | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        | —                 | —                 | -                 | _                 | _                 | _                 | _                | —                |
| 45.0         | R/W-0             | U-0               | U-0               | R/W-0             | R/W-0             | U-0               | U-0              | U-0              |
| 15:8         | ON <sup>(1)</sup> | —                 | -                 | SUSPEND           | DMABUSY           | _                 | -                | —                |
| 7.0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 7:0          | _                 | _                 | _                 | _                 | _                 | _                 | _                | _                |

#### REGISTER 8-1: DMACON: DMA CONTROLLER CONTROL REGISTER

## Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as '0'           |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

## bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit<sup>(1)</sup>
  - 1 = DMA module is enabled
  - 0 = DMA module is disabled

#### bit 14-13 Unimplemented: Read as '0'

- bit 12 SUSPEND: DMA Suspend bit
  - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
  - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
  - 1 = DMA module is active
  - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** The user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | _                 | _                 | _                 | _                 | _                 | _                 |                  |                  |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 23:16        | CHSDIE            | CHSHIE            | CHDDIE            | CHDHIE            | CHBCIE            | CHCCIE            | CHTAIE           | CHERIE           |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | _                 | —                 | —                 | —                 | _                 | _                 | _                | —                |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | CHSDIF            | CHSHIF            | CHDDIF            | CHDHIF            | CHBCIF            | CHCCIF            | CHTAIF           | CHERIF           |

## REGISTER 8-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER

#### Legend:

| 3                 |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, I | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

#### bit 31-24 Unimplemented: Read as '0'

| it |
|----|
| i  |

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled
- bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 20 CHDHIE: Channel Destination Half Full Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 16 CHERIE: Channel Address Error Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- bit 15-8 Unimplemented: Read as '0'
- bit 7 CHSDIF: Channel Source Done Interrupt Flag bit
  - 1 = Channel Source Pointer has reached end of source (CHSPTRx = CHSSIZx)
  - 0 = No interrupt is pending

#### bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit

- 1 = Channel Source Pointer has reached midpoint of source (CHSPTRx = CHSSIZx/2)
- 0 = No interrupt is pending

## REGISTER 9-3: REFO1CON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

- - 0011 = FRC
  - 0010 = POSC
  - 0001 = Reserved
  - 0000 = SYSCLK
- Note 1: Do not write to this register when the ON bit is not equal to the ACTIVE bit.
  - 2: This bit is ignored when the ROSEL<3:0> bits = 0000.
  - 3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.

## REGISTER 9-6: OSCTUN: FRC TUNING REGISTER (CONTINUED)

**Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized, nor tested.

| Note: | Writes to this register require an unlock sequence. Refer to Section 26.4 "System Registers Write |
|-------|---------------------------------------------------------------------------------------------------|
|       | Protection" for details.                                                                          |

## TABLE 14-1: MCCP/SCCP REGISTER MAP (CONTINUED)

|                                                                |                                 |           |            |                |       |       | (     |        |      |      |            |       |       |        |         |         |       |       | <u> </u>      |
|----------------------------------------------------------------|---------------------------------|-----------|------------|----------------|-------|-------|-------|--------|------|------|------------|-------|-------|--------|---------|---------|-------|-------|---------------|
| ress<br>()                                                     | -                               | e         |            |                |       |       |       |        |      |      | Bits       |       |       |        |         |         |       |       |               |
| Virtual Address<br>(BF80_#)<br>Register<br>Name <sup>(1)</sup> | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15      | 30/14          | 29/13 | 28/12 | 27/11 | 26/10  | 25/9 | 24/8 | 23/7       | 22/6  | 21/5  | 20/4   | 19/3    | 18/2    | 17/1  | 16/0  | All<br>Resets |
| 0020                                                           | CCP9STAT                        | 31:16     |            | —              | —     | _     |       | —      | _    |      | —          | _     | _     | PRLWIP | TMRHWIP | TMRLWIP | RBWIP | RAWIP | 0000          |
| 0930                                                           | CCP95TAI                        | 15:0      | —          | _              | _     | —     | —     | ICGARM | —    |      | CCPTRIG    | TRSET | TRCLR | ASEVT  | SCEVT   | ICDIS   | ICOV  | ICBNE | 0000          |
| 0940                                                           | CCP9TMR                         | 31:16     | TMRH<15:0> |                |       |       |       |        |      |      |            |       |       | 0000   |         |         |       |       |               |
| 0940                                                           | CCF91WK                         | 15:0      |            | TMRL<15:0> 000 |       |       |       |        |      |      |            |       |       |        | 0000    |         |       |       |               |
| 0950                                                           | CCP9PR                          | 31:16     |            |                |       |       |       |        |      | Ρ    | RH<15:0>   |       |       |        |         |         |       |       | 0000          |
| 0950                                                           | COF9FR                          | 15:0      |            |                |       |       |       |        |      | Р    | RL<15:0>   |       |       |        |         |         |       |       | 0000          |
| 0960                                                           | CCP9RA                          | 31:16     | —          | —              | —     | —     | —     | —      | —    |      | _          | —     |       | —      | _       | —       | —     | —     | 0000          |
| 0900                                                           | CCF9RA                          | 15:0      |            |                |       |       |       |        |      | CN   | /IPA<15:0> |       |       |        |         |         |       |       | 0000          |
| 0970                                                           | CCP9RB                          | 31:16     | —          | —              | —     | —     | —     | —      | —    |      | _          | —     |       | —      | _       | —       | —     | —     | 0000          |
| 0970                                                           | CCF9RD                          | 15:0      |            |                |       |       |       |        |      | CN   | /IPB<15:0> |       |       |        |         |         |       |       | 0000          |
| 0090                                                           | CCP9BUF                         | 31:16     |            |                |       |       |       |        |      | BL   | JFH<15:0>  |       |       |        |         |         |       |       | 0000          |
| 0980                                                           | CCF9BUF                         | 15:0      |            |                |       |       |       |        |      | Bl   | JFL<15:0>  |       |       |        |         |         |       |       | 0000          |

PIC32MM0256GPM064 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

| Bit<br>Range | Bit<br>31/23/15/7           | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |
|--------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|
| 04.04        | R/W-0                       | R/W-0             | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 31:24        | ALRMEN CHIME — — AMASK<3:0> |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 00.40        | R/W-0                       | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 23:16        | ALMRPT<7:0> <sup>(1)</sup>  |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 45.0         | R/W-0                       | U-0               | U-0               | U-0               | R/W-0             | U-0               | U-0              | U-0              |  |  |  |  |
| 15:8         | ON                          | —                 | —                 | —                 | WRLOCK            | —                 | —                | —                |  |  |  |  |
| 7.0          | R/W-0                       | R/W-0             | R/W-0             | R/W-0             | U-0               | U-0               | U-0              | U-0              |  |  |  |  |
| 7:0          | RTCOE                       |                   | OUTSEL<2:0        | >                 | _                 | _                 | _                | _                |  |  |  |  |

#### REGISTER 19-1: RTCCON1: RTCC CONTROL 1 REGISTER

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
|-------------------|------------------|------------------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

#### bit 31 ALRMEN: Alarm Enable bit

- 1 = Alarm is enabled
- 0 = Alarm is disabled
- bit 30 CHIME: Chime Enable bit
  - 1 = Chime is enabled; ALMRPT<7:0> bits are allowed to underflow from '00' to 'FF'
  - 0 = Chime is disabled; ALMRPT<7:0> bits stop once they reach '00'

#### bit 29-28 Unimplemented: Read as '0'

- bit 27-24 **AMASK<3:0>:** Alarm Mask Configuration bits
  - 11xx = Reserved, do not use
  - 101x = Reserved, do not use
  - 1001 = Once a year (or once every 4 years when configured for February 29th)
  - 1000 = Once a month
  - 0111 = Once a week
  - 0110 = Once a day
  - 0101 = Every hour
  - 0100 = Every 10 minutes
  - 0011 = Every minute
  - 0010 = Every 10 seconds
  - 0001 = Every second
  - 0000 = Every half-second

#### bit 23-16 ALMRPT<7:0>: Alarm Repeat Counter Value bits<sup>(1)</sup>

11111111 = Alarm will repeat 255 more times

11111110 = Alarm will repeat 254 more times

•••

- 00000010 = Alarm will repeat 2 more times
- 00000001 = Alarm will repeat 1 more time
- 00000000 = Alarm will not repeat
- bit 15 ON: RTCC Enable bit

1 = RTCC is enabled and counts from selected clock source

0 = RTCC is disabled

- bit 14-12 Unimplemented: Read as '0'
- **Note 1:** The counter decrements on any alarm event. The counter is prevented from rolling over from '00' to 'FF' unless CHIME = 1.

## REGISTER 21-1: CLCxCON: CLCx CONTROL REGISTER (CONTINUED)

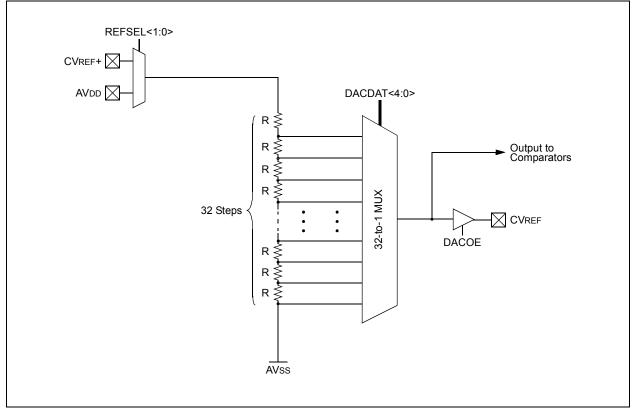
- bit 6 LCOUT: CLCx Data Output Status bit 1 = CLCx output high 0 = CLCx output low
- bit 5 LCPOL: CLCx Output Polarity Control bit 1 = The output of the module is inverted 0 = The output of the module is not inverted
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 MODE<2:0>: CLCx Mode bits
  - 111 = Cell is a 1-input transparent latch with S and R
  - 110 = Cell is a JK flip-flop with R
  - 101 = Cell is a 2-input D flip-flop with R
  - 100 = Cell is a 1-input D flip-flop with S and R
  - 011 = Cell is an SR latch
  - 010 = Cell is a 4-input AND
  - 001 = Cell is an OR-XOR
  - 000 = Cell is a AND-OR
- Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

# REGISTER 21-3: CLCxGLS: CLCx GATE LOGIC INPUT SELECT REGISTER (CONTINUED)

© 2016-2017 Microchip Technology Inc.

| bit 4 | <b>G1D3N:</b> Gate 1 Data Source 3 Negated Enable bit<br>1 = The Data Source 3 inverted signal is enabled for Gate 1<br>0 = The Data Source 3 inverted signal is disabled for Gate 1 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 3 | G1D2T: Gate 1 Data Source 2 True Enable bit                                                                                                                                          |
|       | <ul><li>1 = The Data Source 2 signal is enabled for Gate 1</li><li>0 = The Data Source 2 signal is disabled for Gate 1</li></ul>                                                     |
| bit 2 | G1D2N: Gate 1 Data Source 2 Negated Enable bit                                                                                                                                       |
|       | <ul><li>1 = The Data Source 2 inverted signal is enabled for Gate 1</li><li>0 = The Data Source 2 inverted signal is disabled for Gate 1</li></ul>                                   |
| bit 1 | G1D1T: Gate 1 Data Source 1 True Enable bit                                                                                                                                          |
|       | <ul> <li>1 = The Data Source 1 signal is enabled for Gate 1</li> <li>0 = The Data Source 1 signal is disabled for Gate 1</li> </ul>                                                  |
| bit 0 | G1D1N: Gate 1 Data Source 1 Negated Enable bit                                                                                                                                       |
|       | 1 = The Data Source 1 inverted signal is enabled for Gate 1<br>0 = The Data Source 1 inverted signal is disabled for Gate 1                                                          |

# 23.0 VOLTAGE REFERENCE (CVREF)


Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference" (DS61109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. The CVREF module is a 32-TAP DAC that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently from them.

The module's supply reference can be provided from either the device VDD/VSS or an external voltage reference pin. The CVREF output is available for the comparators and for pin output.

The voltage reference has the following features:

- 32 Output Levels are Available
- Internally Connected to Comparators to Conserve Device Pins
- · Output can be Connected to a Pin

A block diagram of the CVREF module is illustrated in Figure 23-1.



## FIGURE 23-1: VOLTAGE REFERENCE BLOCK DIAGRAM

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|
| 24.24        | R/P               | R/P               | R/P               | R/P               | R/P               | R/P               | R/P              | R/P              |  |  |
| 31:24        | USERID<15:8>      |                   |                   |                   |                   |                   |                  |                  |  |  |
| 00.40        | R/P               | R/P               | R/P               | R/P               | R/P               | R/P               | R/P              | R/P              |  |  |
| 23:16        | USERID<7:0>       |                   |                   |                   |                   |                   |                  |                  |  |  |
| 45.0         | R/P               | R/P               | r-1               | r-1               | r-1               | r-1               | r-1              | r-1              |  |  |
| 15:8         | FVBUSIO           | FUSBIDIO          | _                 | —                 | —                 | _                 |                  | _                |  |  |
| 7.0          | r-1               | r-1               | r-1               | R/P               | R/P               | r-1               | r-1              | r-1              |  |  |
| 7:0          |                   |                   |                   | ALTI2C            | SOSCHP            |                   | _                |                  |  |  |

#### REGISTER 26-1: FDEVOPT/AFDEVOPT: DEVICE OPTIONS CONFIGURATION REGISTER

| Legend:           | gend: r = Reserved bit P = Programmable |                                         |  |  |
|-------------------|-----------------------------------------|-----------------------------------------|--|--|
| R = Readable bit  | W = Writable bit                        | U = Unimplemented bit, read as '0'      |  |  |
| -n = Value at POR | '1' = Bit is set                        | '0' = Bit is cleared x = Bit is unknown |  |  |

bit 31-16 USERID<15:0>: User ID bits (2 bytes which can programmed to any value)

- bit 15 FVBUSIO: USB VBUS\_ON Selection bit
  - 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 14 FUSBIDIO: USB USBID Selection bit
  - 1 = USBID pin is controlled by the USB module
  - 0 = USBID pin is controlled by the port function
- bit 13-5 **Reserved:** Program as '1'
- bit 4 ALTI2C: Alternate I2C1 Location Select bit
  - 1 = SDA1 and SCL1 are on pins, RB8 and RB9
  - 0 = SDA1 and SCL1 are moved to alternate I<sup>2</sup>C locations, RB5 and RC9
  - SOSCHP: Secondary Oscillator (SOSC) High-Power Enable bit
    - 1 = SOSC operates in normal power mode
    - 0 = SOSC operates in High-Power mode
- bit 2-0 Reserved: Program as '1'

bit 3

# TABLE 29-5: IDLE CURRENT (IIDLE)<sup>(2)</sup>

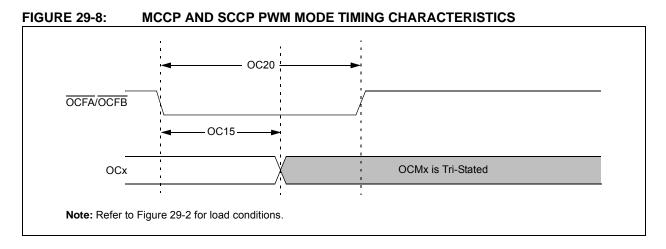
| Parameter<br>No. | Typical <sup>(1)</sup> | Max | Units | Operating<br>Temperature | VDD  | Conditions       |  |  |  |  |
|------------------|------------------------|-----|-------|--------------------------|------|------------------|--|--|--|--|
| DC40             | .69                    | .8  | μA    | -40°C to +85°C           | 2.0V | Fsys = 1 MHz     |  |  |  |  |
|                  | .69                    | .8  | μΑ    | -40°C to +85°C           | 3.3V |                  |  |  |  |  |
| DC41             | .98                    | 1.7 | mA    | -40°C to +85°C           | 2.0V | Fsys = 8 MHz     |  |  |  |  |
|                  | .98                    | 1.7 | mA    | -40°C to +85°C           | 3.3V |                  |  |  |  |  |
| DC42             | 2.9                    | 3.7 | mA    | -40°C to +85°C           | 2.0V | Esys = 25 MHz    |  |  |  |  |
|                  | 2.9                    | 3.7 | mA    | -40°C to +85°C           | 3.3V | - FSTS - 25 MIHZ |  |  |  |  |
| DC44             | .36                    | .7  | μA    | -40°C to +85°C           | 2.0V | – Fsys = 32 kHz  |  |  |  |  |
|                  | .36                    | .7  | μA    | -40°C to +85°C           | 3.3V |                  |  |  |  |  |

Note 1: Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core in Idle, the clock on and all modules turned off. OSC1 driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required). Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.</p>

| <b>Operating Conditions:</b> 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated) |                                                  |                           |            |     |            |    |          |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|------------|-----|------------|----|----------|--|--|--|
| Param<br>No.                                                                                 | Symbol Characteristic Min Ivn Max Units Comments |                           |            |     |            |    |          |  |  |  |
| D300                                                                                         | VIOFF                                            | Input Offset Voltage      | -20        | —   | +20        | mV | (Note 1) |  |  |  |
| D301                                                                                         | VICM                                             | Input Common-Mode Voltage | Vss – 0.3V | _   | VDD + 0.3V | V  | (Note 1) |  |  |  |
| D307                                                                                         | TRESP                                            | Response Time             | —          | 150 | _          | ns | (Note 2) |  |  |  |

## TABLE 29-14: COMPARATOR DC SPECIFICATIONS


**Note 1:** Parameters are characterized but not tested.

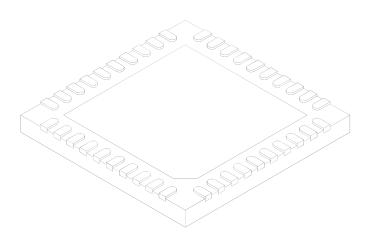
2: Measured with one input at VDD/2 and the other transitioning from VSS to VDD, 40 mV step, 15 mV overdrive.

## TABLE 29-15: VOLTAGE REFERENCE DC SPECIFICATIONS

| Operatin                                              | <b>Operating Conditions:</b> $2.0V < VDD < 3.6V$ , $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated) |                         |    |     |    |     |          |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----|-----|----|-----|----------|--|--|--|
| Param<br>No.SymbolCharacteristicMinTypMaxUnitsComment |                                                                                                                 |                         |    |     |    |     |          |  |  |  |
| VRD310                                                | TSET                                                                                                            | Settling Time           | —  | _   | 10 | μs  | (Note 1) |  |  |  |
| VRD311                                                | VRAA                                                                                                            | Absolute Accuracy       | -1 | —   | 1  | LSb |          |  |  |  |
| VRD312                                                | VRur                                                                                                            | Unit Resistor Value (R) | _  | 4.5 | _  | kΩ  |          |  |  |  |

**Note 1:** Measures the interval while DACDAT<4:0> transitions from '11111' to '00000'.




## TABLE 29-27: MCCP AND SCCP PWM MODE TIMING REQUIREMENTS

| AC CHARACTERISTICS                                 |      |                                  |     | l <b>Operating</b><br>g temperatu |     |       | <b>6V (unless otherwise stated)</b> $A \le +85^{\circ}C$ |
|----------------------------------------------------|------|----------------------------------|-----|-----------------------------------|-----|-------|----------------------------------------------------------|
| Param<br>No. Symbol Characteristics <sup>(1)</sup> |      |                                  | Min | Typical                           | Max | Units | Conditions                                               |
| OC15                                               | Tfd  | Fault Input to PWM I/O<br>Change | —   | _                                 | 50  | ns    |                                                          |
| OC20                                               | TFLT | Fault Input Pulse Width          | 10  | _                                 | _   | ns    |                                                          |

**Note 1:** These parameters are characterized but not tested in manufacturing.

## 40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | MILLIMETERS |                |          |      |  |
|------------------------|-------------|----------------|----------|------|--|
| Dimension              | MIN         | NOM            | MAX      |      |  |
| Number of Pins         | Ν           |                | 40       |      |  |
| Pitch                  | е           |                | 0.40 BSC |      |  |
| Overall Height         | Α           | 0.45           | 0.50     | 0.55 |  |
| Standoff               | A1          | 0.00           | 0.02     | 0.05 |  |
| Contact Thickness      | A3          | 0.127 REF      |          |      |  |
| Overall Width          | Е           | 5.00 BSC       |          |      |  |
| Exposed Pad Width      | E2          | 3.60 3.70 3.80 |          |      |  |
| Overall Length         | D           | 5.00 BSC       |          |      |  |
| Exposed Pad Length     | D2          | 3.60           | 3.70     | 3.80 |  |
| Contact Width          | b           | 0.15 0.20 0.25 |          |      |  |
| Contact Length         | L           | 0.30 0.40 0.50 |          |      |  |
| Contact-to-Exposed Pad | К           | 0.20           | -        | -    |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2