

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

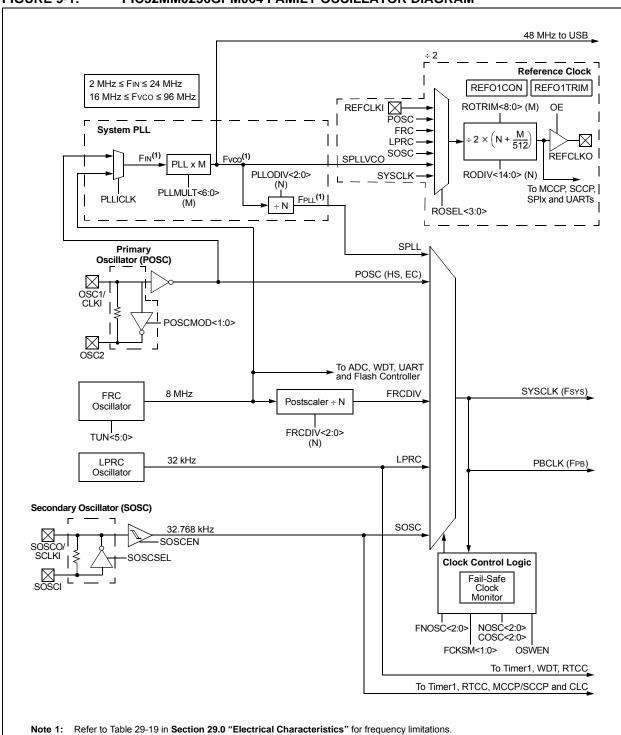
Betans	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0256gpm048-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0						
31:24		_	-	_	_	_	_	_						
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
23:16	CHAIRQ<7:0> ⁽¹⁾													
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
15:8				CHSIRQ<	<7:0> ⁽¹⁾									
7.0	S-0 S-0		R/W-0	R/W-0	R/W-0	U-0	U-0	U-0						
7:0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_						

REGISTER 8-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER


Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and sets the CHTAIF flag
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and sets the CHTAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and sets the CHTAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer
	0000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
DIL D	1 = Aborts transfer and clears CHEN on pattern match
	0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Starts channel cell transfer if an interrupt matching CHSIRQx occurs
	0 = Interrupt number CHSIRQx is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	1 = Channel transfer is aborted if an interrupt matching CHAIRQx occurs
	0 = Interrupt number CHAIRQx is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-2 for the list of available interrupt IRQ sources.

PIC32MM0256GPM064 FAMILY

9.4 Oscillator Control Registers

DS60001387C-page
€ 102

TABLE 9-1: OSCILLATOR CONFIGURATION REGISTER MAP

ess					30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 2 - - - - - - - - - - 0														÷
Virtual Address (BF80_#)	Register Name ⁽²⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹⁾
2680	OSCCON	31:16	_	_										—	_	—	_		0000
2000	USCCON	15:0	_		COSC<2:0> — NOSC<2:0> CLKI									SLPEN	CF	_	SOSCEN	OSWEN	xx0x
2040		31:16	—	—	PLLODIV<2:0>								PLLMULT<6:0>					0001	
26A0	SPLLCON	15:0						_	_	PLLICLK	r	_	_	_	_	_	_	0000	
2720	REFO1CON	31:16	_							R	ODIV<14:0>	•							0000
2720	REFUICON	15:0	ON	—	SIDL	OE	RSLP		DIVSWEN	ACTIVE	-	_	-	_	ROSEL<3:0>				0000
2720	REF01TRIM	31:16				F	ROTRIM<8:0	>				—	-	—	—	-	-		0000
2730	REFUTIRIN	15:0	_	_	_	_	_		_	_		_		_	_	_	_		0000
2770		31:16	_	_	_				_	—		_		_	_	_			0000
2770	CLKSTAT	15:0	_	_	_	_	_	_	_	r	SPLLRDY	USBRDY	LPRCRDY	SOSCRDY	r	POSCRDY	SPDIVRDY	FRCRDY	0000
2880	OSCTUN	31:16	_	_	_	_	_		_	_		_		_	_	_	_		0000
2080	USCIUN	15:0	ON	r	SIDL	SRC	LOCK	POL	ORNG	ORPOL		_			TUN	I<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'; r = reserved bit. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the FOSCSEL Configuration bits and the type of Reset.

2: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

12.0 TIMER2 AND TIMER3

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-Bit Timer
- Synchronous Internal 16-Bit Gated Timer
- Synchronous External 16-Bit Timer

FIGURE 12-1:

A single 32-bit synchronous timer is available by combining Timer2 with Timer3. The resulting 32-bit timer can operate in three modes:

- · Synchronous Internal 32-Bit Timer
- · Synchronous Internal 32-Bit Gated Timer
- Synchronous External 32-Bit

12.1 Additional Supported Features

- Selectable Clock Prescaler
- Timers Operational during CPU Idle
- ADC Event Trigger (only Timer3)
- Fast Bit Manipulation using CLR, SET and INV Registers

Sync TMRx 44 ADC Event Comparator x 16 Trigger⁽¹⁾ Equal 介 PRx Reset 0 TxIF Event Flag 1 Q TGATE (TxCON<7>) Q TCS (TxCON<1>) TGATE (TxCON<7>) ON (TxCON<15>) TxCK x 1 Prescaler Gate 1, 2, 4, 8, 16, Sync 1 0 32, 64, 256 PBCLK 0 0 <u>3</u> TCKPS (TxCON<6:4>) Note 1: ADC Event Trigger is only available on Timer3.

TIMER2 AND TIMER3 BLOCK DIAGRAM (TYPE A, 16-BIT)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1					
31:24	OENSYNC		OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN					
00.40	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	ICGSM	1<1:0>	—	AUXOL	JT<1:0>	ICS<2:0>							
45.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0					
15:8	PWMRSEN	ASDGM	—	SSDG	—	—	-	-					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	ASDG<7:0>												

REGISTER 14-2: CCPxCON2: CAPTURE/COMPARE/PWMx CONTROL 2 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **OENSYNC:** Output Enable Synchronization bit

- 1 = Update by output enable bits occurs on the next Time Base Reset or rollover
- 0 = Update by output enable bits occurs immediately
- bit 30 Unimplemented: Read as '0'

bit 29-24 OC<F:A>EN: Output Enable/Steering Control bits⁽¹⁾

- 1 = OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
- 0 = OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin

bit 23-22 ICGSM<1:0>: Input Capture Gating Source Mode Control bits

- 11 = Reserved
- 10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
- 01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
- 00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events
- bit 21 Unimplemented: Read as '0'

bit 20-19 AUXOUT<1:0>: Auxiliary Output Signal on Event Selection bits

- 11 = Input capture or output compare event; no signal in Timer mode
- 10 = Signal output depends on module operating mode
- 01 = Time base rollover event (all modes)
- 00 = Disabled
- bit 18-16 ICS<2:0>: Input Capture Source Select bits
 - 111 = CLC4 output
 - 110 = CLC3 output
 - 101 = CLC2 output
 - 100 = CLC1 output
 - 011 = Comparator 3 output
 - 010 = Comparator 2 output
 - 001 = Comparator 1 output
 - 000 = ICMx pin⁽²⁾
- bit 15 PWMRSEN: CCPx PWM Restart Enable bit
 - 1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended
 - 0 = ASEVT must be cleared in software to resume PWM activity on output pins
- Note 1: OCFEN through OCBEN (bits<29:25>) are implemented in MCCP modules only.
 - **2:** This pin is remappable from SCCP modules.

NOTES:

TABLE 16-1: I2C1, I2C2 AND I2C3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1700		31:16	—	_	—	—	_	-	-	—	-	PCIE	SCIE	BOEN	SDAHT	SBCDE	r	r	0000
1700	I2C3CON	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
1710	I2C3STAT	31:16	—		_		—		—			_		_	_	_		_	0000
1710	12035 IAI	15:0	ACKSTAT	TRSTAT	ACKTIM		—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
1720	I2C3ADD	31:16	—	_	—	—	—	_	—	—	-	—	—	—	—	—	—	—	0000
1720	1203ADD	15:0	—	_	—	—	—	_					I2C2 Addre	ss Register					0000
1730	I2C3MSK	31:16	—	—	—	—	—	_	—	—	—		—	_	—	_	—	—	0000
1750	120010101	15:0	—	—	—	—	—	_				120	2 Address	Mask Regis	ster			-	0000
1740	I2C3BRG	31:16	_	—		—	—	—	—	—	—		—	_	—	_	—	—	0000
1740	IZCOBING	15:0							Baud	d Rate Gen	erator Regi	ster						-	0000
1750	I2C3TRN	31:16	—	_	—	—	—	_	—	—	-	—	—	—	—	—	—	—	0000
1750	12031 RN	15:0	—		_		—		—				I	2C2 Transn	nit Register				0000
1760	I2C3RCV	31:16	—		_	_	—		_		_	_	_	_	_	_	_	_	0000
1700	1205RUV	15:0	_		—	_	_		—	-				2C2 Receiv	ve Register				0000

Legend: — = unimplemented, read as '0'; r = reserved bit. Reset values are shown in hexadecimal.

Note 1: All registers in this table, except I2CxRCV, have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
04.04	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0							
31:24	MASK<7:0>														
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:16	ADDR<7:0>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1							
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT							
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0							
7:0	URXISE	:L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA							

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-24 MASK<7:0>: UARTx Address Match Mask bits
 - Used to mask the ADDR<7:0> bits.
 - For MASK<x>:
 - 1 = ADDR<x> is used to detect the address match
 - 0 = ADDR<x> is not used to detect the address match
- bit 23-16 ADDR<7:0>: UARTx Automatic Address Mask bits

When the ADDEN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: UARTx TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: UARTx Transmit Polarity Inversion bit

- If IrDA mode is Disabled (i.e., IREN (UxMODE<12>) is '0'):
- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'
- If IrDA mode is Enabled (i.e., IREN (UxMODE<12>) is '1'):
- 1 = IrDA[®] encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: UARTx Receiver Enable bit
 - 1 = UARTx receiver is enabled, UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled, UxRX pin is ignored by the UARTx module

bit 11 UTXBRK: UARTx Transmit Break bit

- 1 = Sends Break on next transmission; Start bit, followed by twelve '0' bits, followed by Stop bit, cleared by hardware upon completion
- 0 = Break transmission is disabled or has completed
- bit 10 UTXEN: UARTx Transmit Enable bit
 - 1 = UARTx transmitter is enabled, UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled, any pending transmission is aborted and the buffer is reset
- bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register (TSR) is Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued in the transmit buffer

TABLE 18-1: USB OTG REGISTER MAP (CONTINUED)

ess		C)									Bits								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0070	U1BDTP1	31:16	_	—	—	_	_	—	—	_	_	—	_	_		—	_	_	0000
8670	UIBDIPI	15:0	_	_	—	_	_	_	_	_			В	DTPTRL<7:1>				_	0000
0000	U1FRML ⁽³⁾	31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	-	0000
8680	UTFRIML	15:0	_	_	—	_	_	_	_	_				FRML<	7:0>				0000
0000	U1FRMH ⁽³⁾	31:16	_	_	—	_	_	_	_	_	—	—	_	_	_	_	_	_	0000
8690	UTERMH	15:0	_	_	—	_	_	_	_	_	_	—	_	_	_		FRMH<2:0>		0000
9640	U1TOK	31:16	_	_	—	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
86A0	UTIOK	15:0	_	_	—	_	_	_	_	_		PID<	<3:0>			EP	<3:0>		0000
0000	U1SOF	31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
86B0	UISOF	15:0	_	_	_	_	_	_	_	_				CNT<7	/:0>				0000
0000		31:16	_	_	—	_	_	_	_	_	—	—	_	_	_	_	_	_	0000
86C0	U1BDTP2	15:0	_	_	_	_	_	_	_	_				BDTPTR	H<7:0>				0000
86D0	U1BDTP3	31:16	_	_	—	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
80DU	UIBD1P3	15:0	_	_	—	_	_	_	_	_				BDTPTRI	J<7:0>				0000
86E0	U1CNFG1	31:16	_	_	_	-	-	—	_	_	-	—	_	_	-	—	_	_	0000
80EU	UTCNFGT	15:0	_	_	—	_	_	_	_	_	UTEYE	UOEMON	_	USBSIDL	LSDEV	_	_	UASUSPND	0001
8700	U1EP0	31:16	_	_	—	_		_	_	_		—	_	_		_	_	_	0000
8700	UIEPU	15:0	_	_	_	-	-	—	_	_	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
9710	U1EP1	31:16	_	_	—	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
8710	UIEPI	15:0	_	_	—	_		_	_	_		—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
0700	U1EP2	31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	-	0000
8720	UTEP2	15:0	_	_	—	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
9720	U1EP3	31:16	_	_	—	_		_	_	_		—	_	_		_	_	_	0000
8730	UTEP3	15:0	_	_	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
9740		31:16	_	—	—	—	_	—	—	—	_	—	_	_	_	—	_	_	0000
8740	U1EP4	15:0	_	_	_	—	_	—	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
9750		31:16	_	—	—	_	_	—	_	_	_	—	_	_	_	—	_	_	0000
8750	U1EP5	15:0		_		—	_	—			_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
0700		31:16	—	—	—	_	_	—	—	_	_	—	_	—	—	—	_	_	0000
8760	U1EP6	15:0	_	_	_	_		_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for these bits is undefined.

PIC32MM0256GPM064 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	—	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	_	_	—	_	_	_
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
7:0	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF ⁽²⁾	IDLEIF	TRNIF ⁽³⁾	SOFIF	UERRIF ⁽⁴⁾	URSTIF ⁽⁵⁾
	STALLIF		RESUMEIR /	IDLEIF		SOLL	UERRIFY /	DETACHIF ⁽⁶⁾

REGISTER 18-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to Clear bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 STALLIF: Stall Handshake Interrupt bit
 - I = In Host mode, a Stall handshake was received during the handshake phase of the transaction; in Device mode, a Stall handshake was transmitted during the handshake phase of the transaction
 - 0 = Stall handshake has not been sent
- bit 6 ATTACHIF: Peripheral Attach Interrupt bit⁽¹⁾
 - 1 = Peripheral attachment was detected by the USB module
 - 0 = Peripheral attachment was not detected
- bit 5 **RESUMEIF:** Resume Interrupt bit⁽²⁾
 - 1 = K-State is observed on the D+ or D- pin for 2.5 µs
 - 0 = K-State is not observed
- bit 4 IDLEIF: Idle Detect Interrupt bit
 - 1 = Idle condition detected (constant Idle state of 3 ms or more)
 - 0 = No Idle condition detected
- bit 3 TRNIF: Token Processing Complete Interrupt bit⁽³⁾
 - 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
 - 0 = Processing of current token not complete
- bit 2 SOFIF: SOF Token Interrupt bit
 - 1 = SOF token received by the peripheral or the SOF threshold reached by the host
 - 0 = SOF token was not received nor threshold reached
- bit 1 **UERRIF**: USB Error Condition Interrupt bit⁽⁴⁾
 - 1 = Unmasked error condition has occurred
 - 0 = Unmasked error condition has not occurred
- **Note 1:** This bit is only valid if the HOSTEN bit is set (see Register 18-11), there is no activity on the USB for 2.5 μs and the current bus state is not SE0.
 - 2: When not in Suspend mode, this interrupt should be disabled.
 - 3: Clearing this bit will cause the STAT FIFO to advance.
 - 4: Only error conditions enabled through the U1EIE register will set this bit.
 - 5: Device mode.
 - 6: Host mode.

REGISTER 18-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Resets all Even/Odd Buffer Pointers to the Even buffer descriptor banks
 - 0 = Even/Odd Buffer Pointers are not reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry are enabled
 - 0 = USB module and supporting circuitry are disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token is sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 18-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the Resume signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
31:24 USERID<15:8>										
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
23:16	USERID<7:0>									
45.0	R/P	R/P	r-1	r-1	r-1	r-1	r-1	r-1		
15:8	FVBUSIO	FUSBIDIO	_	—	—	_		_		
7.0	r-1	r-1	r-1	R/P	R/P	r-1	r-1	r-1		
7:0				ALTI2C	SOSCHP		_			

REGISTER 26-1: FDEVOPT/AFDEVOPT: DEVICE OPTIONS CONFIGURATION REGISTER

Legend: r = Reserved bit		r = Reserved bit	P = Programmable bit			
	R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 31-16 USERID<15:0>: User ID bits (2 bytes which can programmed to any value)

- bit 15 FVBUSIO: USB VBUS_ON Selection bit
 - 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 14 FUSBIDIO: USB USBID Selection bit
 - 1 = USBID pin is controlled by the USB module
 - 0 = USBID pin is controlled by the port function
- bit 13-5 **Reserved:** Program as '1'
- bit 4 ALTI2C: Alternate I2C1 Location Select bit
 - 1 = SDA1 and SCL1 are on pins, RB8 and RB9
 - 0 = SDA1 and SCL1 are moved to alternate I²C locations, RB5 and RC9
 - SOSCHP: Secondary Oscillator (SOSC) High-Power Enable bit
 - 1 = SOSC operates in normal power mode
 - 0 = SOSC operates in High-Power mode
- bit 2-0 Reserved: Program as '1'

bit 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1		
31:24	—	_	-	—	-	_	_	—		
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1		
23:16	—	_	-	—		_	—	—		
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
15:8	FWDTEN	RCLKSEL<1:0>		RWDTPS<4:0>						
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
7:0	WINDIS	FWDTWI	NSZ<1:0>		SWDTPS<4:0>					

REGISTER 26-4: FWDT/AFWDT: WATCHDOG TIMER CONFIGURATION REGISTER

Legend:	r = Reserved bit	P = Programmable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-16 Reserved: Program as '1'

- bit 15 **FWDTEN:** Watchdog Timer Enable bit
 - 1 = WDT is enabled
 - 0 = WDT is disabled

bit 14-13 RCLKSEL<1:0>: Run Mode Watchdog Timer Clock Source Selection bits

- 11 = Clock source is the LPRC oscillator (same as for Sleep mode)
- 10 = Clock source is the FRC oscillator
- 01 = Reserved
- 00 = Clock source is the system clock

bit 12-8 RWDTPS<4:0>: Run Mode Watchdog Timer Postscale Select bits

From 10100 to 11111 = 1:1048576.

10011	=	1:524288
		1:262144
10001	=	1:131072
10000	=	1:65536
01111	=	1:32768
01110	=	1:16384
01101	=	1:8192
01100	=	1:4096
01011	=	1:2048
01010	=	1:1024
01001	=	1:512
01000	=	1:256
00111	=	1:128
00110	=	1:64
00101	=	1:32
00100	=	1:16
00011	=	1:8
00010	=	1:4
00001	_	1.0

00001 = 1:2

00000 = 1:1

bit 7 WINDIS: Windowed Watchdog Timer Disable bit

- 1 = Windowed mode is disabled
- 0 = Windowed mode is enabled

TABLE 29-3: OPERATING VOLTAGE SPECIFICATIONS	TABLE 29-3:	OPERATING VOLTAGE SPECIFICATIONS
--	-------------	----------------------------------

DC CH	ARACTER	ISTICS	Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DC10	Vdd	Supply Voltage	2.0	_	3.6	V	
DC16	V _{POR} (1)	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	100	mV	
DC17A	SVDD ⁽¹⁾	Recommended Vod Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_		V/ms	0-3.3V in 66 ms, 0-2.0V in 40 ms
DC17B	Vbor	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	_	2.083	V	

Note 1: If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

TABLE 29-4: OPERATING CURRENT (IDD)⁽²⁾

DC CHARAG	DC CHARACTERISTICS									
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature		Conditions				
DC19	.72	.96	mA	-40°C to +85°C	2.0V	Fsys = 1 MHz				
		.96	mA	-40°C to +85°C	3.3V					
DC23	2.5	3.7	mA	-40°C to +85°C	2.0V	Fsys = 8 MHz				
	2.5	3.7	mA	-40°C to +85°C	3.3V					
DC24	7.9	10.2	mA	-40°C to +85°C	2.0V	Fsys = 25 MHz				
	7.9	10.2	mA	-40°C to +85°C	3.3V	1313 - 23 MI 12				
DC25	.4	.8	μA	-40°C to +85°C	2.0V	LPRC,				
	.4 .8 μA -40°C to +85		-40°C to +85°C	3.3V	Fsys = 32 kHz					

Note 1: Typical parameters are for design guidance only and are not tested.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD; WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- · CPU executing:

```
while(1)
 {
 NOP();
 }
```

3: JTAG is disabled

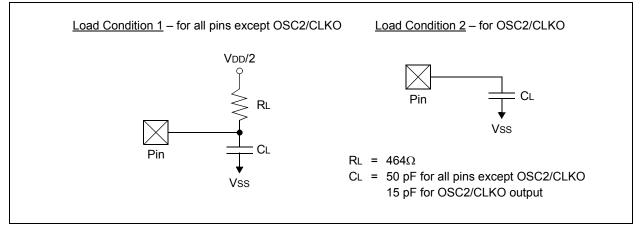
DC CHARA	CTERISTIC	S					
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions	
DC60							
	130	255	μA	+25°C	2.0V		
	145	265	μA	+85°C		Sleep with active main Voltage Regulator	
	130	255	μA	-40°C		<pre>(VREGS (PWRCON<0>) bit = 1, RETEN (PWRCON<1>) bit = 0)</pre>	
	130	265	μA	+25°C	3.3V		
	145 275 μA +85°C						
DC61	3.5	12	μA	-40°C			
	4.5	22	μA	+25°C	2.0V	Sleep with main Voltage Regulator in	
	15 35 μA +85°C		Standby mode				
	4	17	μA	-40°C	3.3V	(VREGS (PWRCON<0>) bit = 0,	
	5	30	μA	+25°C		RETEN (PWRCON<1>) bit = 0)	
	18	38	μA	+85°C			
DC62	4.3	_	μA	-40°C			
	5	_	μA	+25°C	2.0V	Sleep with enabled Retention	
	10	_	μA	+85°C		Voltage Regulator	
	5	_	μA	-40°C		(RETEN (PWRCON<1>) bit = 1,	
	5.6	_	μA	+25°C	3.3V	RETVR (FPOR<2>) bit = 0)	
	12	_	μA	+85°C			
DC63	.3	_	μA	-40°C			
	.4	_	μA	+25°C	2.0V	Sleep with enabled Retention	
	3.5		μA	+85°C		Voltage Regulator - (VREGS (PWRCON<0>) bit = 0,	
	0.35		μA	-40°C		= (VREGS(PWRCON<0>) bit = 0, RETEN (PWRCON<1>) bit = 1,	
	0.45		μA	+25°C	3.3V	RETVR(FPOR<2>) bit = 0)	
	4.5		μA	+85°C			

TABLE 29-6:POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC1 pin is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
- OSC2 is configured as an I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins (excepting OSC1) are configured as outputs and driven low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)


29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC32MM0256GPM064 family AC characteristics and timing parameters.

TABLE 29-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".

FIGURE 29-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

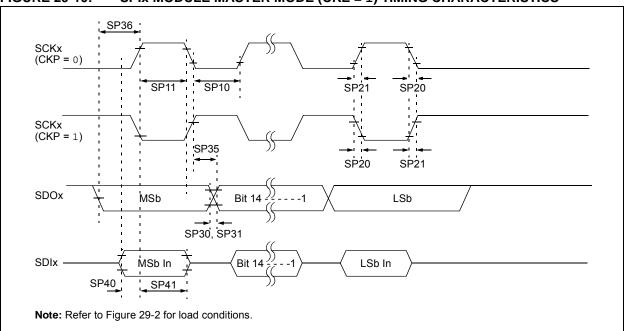


TABLE 29-17: CAPACITIVE LOADING CONDITIONS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSC2/CLKO Pin	_	—	TBD		In XT and HS modes when external clock is used to drive OSC1/CLKI
DO56	Сю	All I/O Pins and OSC2	—	—	TBD	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	TBD	pF	In I ² C mode

Legend: TBD = To Be Determined

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 29-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	—	_	ns			
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2		_	ns			
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾			_	ns	See Parameter DO32		
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	_	_	ns	See Parameter DO31		
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See Parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		7	ns	VDD > 2.0V		
					10	ns	VDD < 2.0V		
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	7	—	_	ns			
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	7		_	ns	VDD > 2.0V		
			10	_	_	ns	VDD < 2.0V		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	7		_	ns	VDD > 2.0V		
			10		_	ns	VDD < 2.0V		

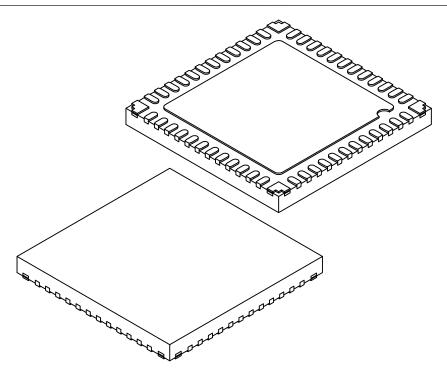
Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in the "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 10 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Terminals	N	48				
Pitch	е	0.40 BSC				
Overall Height	Α	0.50	0.55	0.60		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.15 REF				
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	4.50	4.60	4.70		
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	4.50	4.60	4.70		
Terminal Width	b	0.15	0.20	0.25		
Corner Anchor Pad	b1	0.45 REF				
Corner Anchor Pad, Metal-free Zone	b2	0.23 REF				
Terminal Length	L	0.35	0.40	0.45		
Terminal-to-Exposed-Pad	K	0.30 REF				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2