

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0256gpm048t-i-m4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN SSOP DEVICES

Pin	Function	Pin	Function
1	MCLR	15	VBUS/RB6
2	PGEC2/VREF+/CVREF+/AN0/RP1/OCM1E/INT3/RA0	16	RP12/SDA3/SDI3/OCM3F/RB7
3	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	17	TCK/ RP13 /SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾
4	PGED1/AN2/C1IND/C2INB/C3INC/ RP6 /OCM2C/RB0	18	TMS/REFCLKI/ RP14 /SDA1/T1CK/T1G/T2CK/T2G/U1RTS/U1BCLK/SDO1/OCM1B/ INT2/RB9 ⁽¹⁾
5	PGEC1/AN3/C1INC/C2INA/RP7/OCM2D/RB1	19	PGEC3/TDO/ RP18 /ASCL1 ⁽²⁾ /T3CK/T3G/USBOEN/SDO3/OCM2A/RC9 ⁽¹⁾
6	AN4/C1INB/RP8/SDA2/OCM2E/RB2	20	VCAP
7	TDI/AN11/C1INA/RP9/SCL2/OCM2F/RB3	21	D-/RB10
8	Vss	22	D+/RB11
9	OSC1/CLKI/AN5/RP3/OCM1C/RA2	23	VUSB3V3
10	OSC2/CLKO/AN6/C3IND/RP4/OCM1D/RA3 ⁽¹⁾	24	AN8/LVDIN/ RP15 /SCL3/SCK3/OCM3A/RB13 ⁽¹⁾
11	SOSCI/AN7/RP10/OCM3C/RB4	25	CVREF/AN9/C3INB/RP16/RTCC/U1TX/VBUSON/SDI1/OCM3B/INT1/RB14
12	SOSCO/SCLKI/RP5/PWRLCLK/OCM3D/RA4	26	AN10/C3INA/REFCLKO/RP17/U1RX/SS1/FSYNC1/OCM2B/INT0/RB15 ⁽¹⁾
13	Vdd	27	AVss/Vss
14	PGED3/ RP11 /ASDA1 ⁽²⁾ /USBID/SS3/FSYNC3/ OCM3E/RB5	28	AVdd/Vdd

Note 1: High drive strength pin.

2: Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

Pin	Function	Pin	Function
1	RP21/SDI3/RA7	33	OCM3B/RD3
2	CVREF/AN9/C3INB/RP16/VBUSON/RB14	34	REFCLKI/T1CK/T1G/U1RTS/U1BCLK/SDO1/RD0 ⁽¹⁾
3	AN10/C3INA/REFCLKO/ RP17 /RB15 ⁽¹⁾	35	OCM2B/RC3
4	AVss	36	OCM1E/INT3/RC4
5	AVdd	37	AN15/OCM1D/RC5
6	AN16/U1CTS/RA13	38	Vss
7	AN17/OCM1A/RA12	39	Vdd
8	AN18/RA11	40	U1TX/RC12
9	MCLR	41	OCM3D/RC14
10	AN19/U1RX/RA6	42	OCM3E/RC15
11	PGEC2/VREF+/CVREF+/AN0/ RP1 /RA0	43	PGED3/ RP11 /ASDA1 ⁽²⁾ /USBID/RB5
12	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	44	VBUS/RB6
13	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0	45	OCM3F/RC10
14	PGEC1/AN3/C1INC/C2INA/RP7/OCM2D/RB1	46	RP12/SDA3/RB7
15	AN4/C1INB/RP8/SDA2/OCM2E/RB2	47	SCK1/RC13 ⁽¹⁾
16	TDI/AN11/C1INA/ RP9 /SCL2/OCM2F/RB3	48	TCK/ RP13 /SCL1/RB8 ⁽¹⁾
17	Vdd	49	TMS/ RP14 /SDA1/INT2/RB9 ⁽¹⁾
18	Vss	50	RP23/RC6
19	AN12/C2IND/T2CK/T2G/RC0	51	RP20/RC7
20	AN13/T3CK/T3G/RC1	52	AN14/LVDIN/C2INC/RC8
21	RP19/OCM2A/RC2	53	OCM1B/RD1
22	SS3/FSYNC3/RC11	54	OCM3A/RA5
23	Vdd	55	PGEC3/TDO/ RP18 /ASCL1 ⁽²⁾ /USBOEN/RC9 ⁽¹⁾
24	Vss	56	VCAP
25	OSC1/CLKI/AN5/RP3/OCM1C/RA2	57	Vdd
26	OSC2/CLKO/AN6/C3IND/ RP4 /RA3 ⁽¹⁾	58	RTCC/RA15
27	SDO3/RA8 ⁽¹⁾	59	OCM3C/RA14
28	SOSCI/AN7/ RP10 /RB4	60	D-/RB10
29	SOSCO/SCLKI/ RP5 /PWRLCLK/RA4	61	D+/RB11
30	RP24/RA9	62	Vusb3v3
31	SDI1/INT1/RD4	63	AN8/ RP15 /SCL3/RB13 ⁽¹⁾
32	SS1/FSYNC1/INT0/RD2	64	RP22/SCK3/RA10 ⁽¹⁾

TABLE 7: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 64-PIN QFN/TQFP DEVICES

Note 1: High drive strength pin.

2: Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

			Pin Nu	mber							
Pin Name	28-Pin SSOP	28-Pin QFN/ UQFN	36-Pin QFN	40-Pin UQFN	48-Pin QFN/ TQFP	64-Pin QFN/ TQFP	Pin Type	Buffer Type	Description		
RA0	2	27	33	36	21	11	I/O	ST/DIG	PORTA digital I/Os		
RA1	3	28	34	37	22	12	I/O	ST/DIG			
RA2	9	6	7	7	32	25	I/O	ST/DIG			
RA3	10	7	8	8	33	26	I/O	ST/DIG			
RA4	12	9	10	10	36	29	I/O	ST/DIG			
RA5	—					54	I/O	ST/DIG			
RA6	—				20	10	I/O	ST/DIG			
RA7	—				14	1	I/O	ST/DIG			
RA8	—				34	27	I/O	ST/DIG			
RA9	—	_	11	11	37	30	I/O	ST/DIG			
RA10	—				13	64	I/O	ST/DIG			
RA11	—					8	I/O	ST/DIG			
RA12	—	_	_	_		7	I/O	ST/DIG			
RA13	—					6	I/O	ST/DIG			
RA14	—					59	I/O	ST/DIG			
RA15	—	_	_	_	8	58	I/O	ST/DIG			
RB0	4	1	35	38	23	13	I/O	ST/DIG	PORTB digital I/Os		
RB1	5	2	36	39	24	14	I/O	ST/DIG			
RB2	6	3	1	1	25	15	I/O	ST/DIG			
RB3	7	4	2	2	26	16	I/O	ST/DIG			
RB4	11	8	9	9	35	28	I/O	ST/DIG			
RB5	14	11	15	15	45	43	I/O	ST/DIG			
RB6	15	12	16	16	46	44	I/O	ST/DIG			
RB7	16	13	17	17	47	46	I/O	ST/DIG			
RB8	17	14	18	18	48	48	I/O	ST/DIG			
RB9	18	15	19	20	1	49	I/O	ST/DIG			
RB10	21	18	24	27	9	60	I/O	ST/DIG			
RB11	22	19	25	28	10	61	I/O	ST/DIG			
RB13	24	21	27	30	12	63	I/O	ST/DIG			
RB14	25	22	28	31	15	2	I/O	ST/DIG			
RB15	26	23	29	32	16	3	I/O	ST/DIG			

TABLE 1-1: PIC32MM0256GPM064 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: ST = Schmitt Trigger input buffer I2C = $I^2C/SMBus$ input buffer

DIG = Digital input/output ANA = Analog level input/output P = Power

Register Number	Register Name	Function
0-3	Reserved	Reserved in the microAptiv™ UC.
4	UserLocal	User information that can be written by privileged software and read via RDHWR Register 29.
5-6	Reserved	Reserved in the microAptiv UC.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-Privileged mode.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the microAptiv UC.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status/ IntCtl/ SRSCtl/ SRSMap1/ View_IPL/ SRSMAP2	Processor status and control; interrupt control and shadow set control.
13	Cause ⁽¹⁾ / View_RIPL	Cause of last exception.
14	EPC ⁽¹⁾	Program Counter at last exception.
15	PRId/ EBase/ CDMMBase	Processor identification and revision; exception base address; Common Device Memory Map Base register.
16	CONFIG/ CONFIG1/ CONFIG2/ CONFIG3/ CONFIG7	Configuration registers.
7-22	Reserved	Reserved in the microAptiv UC.
23	Debug/ Debug2/ TraceControl/ TraceControl2/ UserTraceData1/ TraceBPC ⁽²⁾	EJTAG Debug register. EJTAG Debug Register 2. EJTAG Trace Control register. EJTAG Trace Control Register 2. EJTAG User Trace Data 1 register. EJTAG Trace Breakpoint register.
24	DEPC ⁽²⁾ / UserTraceData2	Program Counter at last debug exception. EJTAG User Trace Data 2 register.
25	PerfCtl0/ PerfCnt0/ PerfCtl1/ PerfCnt1	Performance Counter 0 control. Performance Counter 0. Performance Counter 1 control. Performance Counter 1.
26	ErrCtl	Software parity check enable.
27	CacheErr	Records information about SRAM parity errors.
28-29	Reserved	Reserved in the PIC32 core.
30	ErrorEPC ⁽¹⁾	Program Counter at last error.
31	DeSAVE ⁽²⁾	Debug Handler Scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used in debug.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- Master Clear Reset Pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

SWR

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

Software Reset

TABLE 8-2: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

sss				Bits															
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0.4.50	DOULOOA	31:16								0110	04 -04 0								0000
8A50	DCH1SSA	15:0								CHS	SA<31:0>								0000
0460		31:16									CA -21:0>								0000
6A6U	DCHIDSA	15:0								CHD	5A<31.0>								0000
8470		31:16	_	_	—	_	_	_		—		_	_	_	_	_		—	0000
OATU	DCITI3312	15:0								CHSS	SIZ<15:0>		_		_				0000
8480	DCH1DSIZ	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_	—	0000
0/100	DOITIDOIZ	15:0						•		CHDS	SIZ<15:0>							•	0000
8A90	DCH1SPTR	31:16	—	—	—	—	—	—		—		—	—	—	—	—	—	—	0000
0,100		15:0								CHSF	PTR<15:0>								0000
8AA0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDF	PTR<15:0>								0000
8AB0	DCH1CSIZ	31:16		—	—		—										—	—	0000
		15:0						1		CHCS	SIZ<15:0>							1	0000
8AC0	DCH1CPTR	31:16	—	—	—	_	—	—	_	—	—	_	_	_	_	_	—	—	0000
		15:0								CHCF	PTR<15:0>								0000
8AD0	DCH1DAT	31:16	—			—	—		_			_				—	—	—	0000
		15:0	_	_		_	_		_					CHPDA	AT<7:0>				0000
8AE0	DCH2CON	31:16				_			_									-	0000
		15.0	CHBUST							СПСПИЗ	CHEN	CHAED	СПСПИ			CHEDEI	CHPR	(1<1.0>	0000
8AF0	DCH2ECON	15.0	_	_	—			—		_	CEORCE	CAROPT							TEOO
		31.16										CHSHIE					CHTAIE		0000
8B00	DCH2INT	15.0									CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		31.16									ONODI	onorm	ONDDI	ONDIM	OLIDOIL	0110011	Orna	ONER	0000
8B10	DCH2SSA	15.0								CHS	SA<31:0>								0000
		31:16																	0000
8B20	DCH2DSA	15:0								CHD	SA<31:0>								0000
		31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	—	_	_	0000
8B30	DCH2SSIZ	15:0								CHSS	SIZ<15:0>								0000

PIC32MM0256GPM064 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	—	—	_	—	—	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	RI<1:0>

REGISTER 8-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled

bit 14-9 Unimplemented: Read as '0'

- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events if Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allows channel to be chained
- 0 = Does not allow channel to be chained

bit 4 CHAEN: Channel Automatic Enable bit

- 1 = Channel is continuously enabled and not automatically disabled after a block transfer is complete
- 0 = Channel is disabled on a block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected

bit 1-0 **CHPRI<1:0>:** Channel Priority bits

- 11 = Channel has Priority 3 (highest)
- 10 = Channel has Priority 2
- 01 = Channel has Priority 1
- 00 = Channel has Priority 0

Note 1: The chain selection bit takes effect when chaining is enabled (CHCHN = 1).

2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

PIC32MM0256GPM064 FAMILY

10.1 CLR, SET and INV Registers

Every I/O module register has a corresponding CLR (Clear), SET (Set) and INV (Invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the effects of a write operation to a SET, CLR or INV register, the base register must be read.

10.2 Parallel I/O (PIO) Ports

All port pins have 14 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. The LATx register controls the pin level when it is configured as an output. Reads from the PORTx register read the port pins, while writes to the port pins write the latch, LATx.

10.3 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, the port pins can also be individually configured for either digital or open-drain outputs. This is controlled by the Open-Drain Control x register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V), on any desired 5V tolerant pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.4 Configuring Analog and Digital Port Pins

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared. The ANSELx register has a default value of 0xFFFF. Therefore, all pins that share analog functions are analog (not digital) by default. If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is used by an analog peripheral, such as the ADC or comparator module.

10.5 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

There is a three-instruction cycle delay in the port read synchronizer. When a port or port bit is read, the returned value is the value that was present on the port three system clocks prior.

10.6 GPIO Port Merging

Port merging creates a 32-bit wide port from two GPIO ports. When the PORT32 bit is set, the next I/O port is mapped to the upper 16 bits of the lower port.

Only the next higher letter port can be merged to a given port (i.e., PORTA can only be merged with PORTB).

Note:	All 32 pins may not be available. Refer to
	the pin diagrams for information regarding
	GPIO port pin availability.

10.7 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC32MM devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on the input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 10-1.

TABLE 10-1:CHANGE NOTIFICATION
EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

10.8 Pin Pull-up and Pull-Down

Each I/O pin also has a weak pull-up and a weak pulldown connected to it. The pull-ups act as a current source, or sink source, connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

10.9 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.9.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn", in their full pin designation, where "RP" designates a Remappable Peripheral and "n" is the remappable port number.

10.9.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (MCCP, SCCP) and others.

In comparison, some digital only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

10.9.3 CONTROLLING PPS

PPS features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 11	 STRICT: Strict I²C Reserved Address Rule Enable bit 1 = Strict reserved addressing is enforced; device does not respond to reserved address space or generates addresses in reserved address space 0 = Strict I²C reserved address rule is not enabled
bit 10	A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled 0 = Slew rate control is enabled
bit 8	<pre>SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with the SMBus specification 0 = Disables SMBus input thresholds</pre>
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on the SDAx and SCLx pins and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C ; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master) 1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence 0 = Start condition is not in progress

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—		—	—
00.40	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:10	SLPEN	ACTIVE	—	_	—	CLKSE	L<1:0>	OVFDIS
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	_	UEN<	1:0> (1)
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 17-1: UXMODE: UARTX MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

- bit 23 SLPEN: UARTx Run During Sleep Enable bit
 - 1 = UARTx clock runs during Sleep
 - 0 = UARTx clock is turned off during Sleep
- bit 22 ACTIVE: UARTx Running Status bit
 - 1 = UARTx is active (UxMODE register shouldn't be updated)
 - 0 = UARTx is not active (UxMODE register can be updated)
- bit 21-19 Unimplemented: Read as '0'
- bit 18-17 **CLKSEL:** UARTx Clock Selection bits
 - 11 = The UARTx clock is the Reference Output (REFO1) clock
 - 10 = The UARTx clock is the FRC oscillator clock
 - 01 = The UARTx clock is the SYSCLK
 - 00 = The UARTx clock is the PBCLK
- bit 16 **OVFDIS:** Run During Overflow Condition Mode bit
 - 1 = When an Overflow Error (OERR) condition is detected, the shift register continues to run to remain synchronized
 - 0 = When an Overflow Error (OERR) condition is detected, the shift register stops accepting new data (Legacy mode)

bit 15 **ON:** UARTx Enable bit

- 1 = UARTx is enabled; UARTx pins are controlled by UARTx, as defined by the UEN<1:0> and UTXEN control bits
- 0 = UARTx is disabled; all UARTx pins are controlled by the corresponding bits in the PORTx, TRISx and LATx registers, UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: UARTx Stop in Idle Mode bit
 - 1 = Discontinues operation when device enters Idle mode
 - 0 = Continues operation in Idle mode
- bit 12 IREN: IrDA[®] Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- Note 1: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 10.9 "Peripheral Pin Select (PPS)" for more information).

19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "RTCC with Timestamp" (DS60001362) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. Key features of the RTCC module are:

- Time: Hours, Minutes and Seconds
- · 24-Hour Format (military time)
- · Visibility of One-Half Second Period
- Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are Configurable for Half of a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week, 1 Month and 1 Year
- · Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- · Leap Year Correction
- · BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- · Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Uses External 32.768 kHz Crystal, 32 kHz Internal Oscillator, PWRLCLK Input Pin or Peripheral Clock
- Alarm Pulse, Seconds Clock or Internal Clock Output on RTCC Pin

FIGURE 19-1: RTCC BLOCK DIAGRAM

REGISTER 21-1: CLCxCON: CLCx CONTROL REGISTER (CONTINUED)

- bit 6 LCOUT: CLCx Data Output Status bit 1 = CLCx output high 0 = CLCx output low
- bit 5 LCPOL: CLCx Output Polarity Control bit 1 = The output of the module is inverted 0 = The output of the module is not inverted
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Cell is a 1-input transparent latch with S and R
 - 110 = Cell is a JK flip-flop with R
 - 101 = Cell is a 2-input D flip-flop with R
 - 100 = Cell is a 1-input D flip-flop with S and R
 - 011 = Cell is an SR latch
 - 010 = Cell is a 4-input AND
 - 001 = Cell is an OR-XOR
 - 000 = Cell is a AND-OR
- Note 1: The INTP and INTN bits should not be set at the same time for proper interrupt functionality.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:10	—	—	—	—	—	—	—	—	
45.0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	—		DS4<2:0>		—	DS3<2:0>			
7.0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
7:0	_		DS2<2:0>		_	DS1<2:0>			

REGISTER 21-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-12 DS4<2:0>: Data Selection MUX 4 Signal Selection bits For CLC1: 111 = SCCP5 OCMP compare match event 110 = MCCP1 OCMP compare match event 101 = RTCC event

- 100 = CMP3 out 011 = SPI1 SDI1 in 010 = SCCP5 OCM5 output 001 = CLC2 out 000 = CLCINB I/O pin For CLC2: 111 = SCCP5 OCMP compare match event 110 = MCCP1 OCMP compare match event 101 = RTCC event 100 = CMP3 out 011 = SPI2 SDI2 in 010 = SCCP5 OCM6 output 001 = CLC1 out 000 = CLCINB I/O pin For CLC3: 111 = SCCP7 OCMP compare match event 110 = MCCP2 OCMP compare match event 101 = RTCC event 100 = CMP3 out 011 = SPI3 SDI3 in 010 = SCCP7 OCM7A output 001 = CLC4 out 000 = CLCINB I/O pin For CLC4:
- 111 = SCCP7 OCMP compare match event
- 110 = MCCP3 OCMP compare match event
- 101 = RTCC event
- 100 = CMP3 out
- 011 = Reserved
- 010 = SCCP7 OCM3A output
- 001 = CLC3 out
- 000 = CLCINB I/O pin

TABLE 25-2: PERIPHERAL MODULE DISABLE REGISTERS MAP

ess		â	Bits																
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2500		31:16	_	_	_	_	_	_	_	_				—		_	_		FFFF
3380	FINDCON	15:0	—	—	—	_	PMDLOCK	—	—	_	—	—		—		—	—		F7FF
3500		31:16	—	—	—	—	—	—	—	—	—	—		HLVDMD	_	—	—	—	FFEF
3300	FIVIDI	15:0	—	—	—	VREFMD	—	—	—	—	—	—		—	_	—	—	ADCMD	EFFE
3500		31:16	—	—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—		—	_	—	—	—	FOFF
3300	FIVIDZ	15:0	—	—	—	—	—	—	—	—	—	—		—	_	CMP3MD	CMP2MD	CMP1MD	FFF8
3550	DMD3	31:16	—	—	—	—	—	—	—	—	—	—		—	_	—	—	CCP9MD	FFFE
33L0	FINDS	15:0	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	—	—		—	_	—	—	—	00FF
3550		31:16	—	—	—	—	—	—	—	—	—	—		—	_	—	—	—	FFFF
331.0	F IVID4	15:0	—	—	—	—	—	—	—	—	—	—		—	_	T3MD	T2MD	T1MD	FFF8
3600	DMD5	31:16	—	—	—	—	—	—	—	USBMD	—	—		—	_	I2C3MD	I2C2MD	I2C1MD	FEF8
3000	F IVID3	15:0	—	—	—	—	—	SPI3MD	SPI2MD	SPI1MD	—	—	—	—	_	U3MD	U2MD	U1MD	F8F8
2610	DMD6	31:16	—	—	—	_	—	—	—	_	—	—		—		—	—		FEFF
3010	FIVIDO	15:0	—	—	—	_	—	—	—	REFOMD	—	—		—		—	—	RTCCMD	FEFE
3620		31:16	_	_	_	_	_	_	—	_	_	_		_	_	_	_	_	FFFF
3020		15:0	_	_	_	_	_	_	_	_	_	_	—	DMAMD	_	—	_	_	FFEF

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

NOTES:

TABLE 29-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristics	eristics Min Ty		Max	Units	Comments		
DVR10	Vbg	Internal Band Gap Reference	—	1.2	—	V			
DVR20	Vrgout	Regulator Output Voltage	_	1.8	—	V	VDD > 1.9V		
DVR21	Cefc	External Filter Capacitor Value	4.7	10	—	μF	Series Resistance < 3Ω recommended; < 5Ω required		
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	0.9	_	1.2	V	RETEN = 1, RETVR (FPOR<2>) = 0		

TABLE 29-13: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operati	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristic			Тур	Max	Units	Conditions	
DC18	Vhlvd	HLVD Voltage on VDD	HLVDL<3:0> = 0101	3.25		3.63	V		
		Transition	HLVDL<3:0> = 0110	2.95		3.30	V		
			HLVDL<3:0> = 0111	2.75		3.09	V		
			HLVDL<3:0> = 1000	2.65		2.98	V		
			HLVDL<3:0> = 1001	2.45		2.80	V		
			HLVDL<3:0> = 1010	2.35		2.69	V		
			HLVDL<3:0> = 1011	2.25		2.55	V		
			HLVDL<3:0> = 1100	2.15	—	2.44	V		
			HLVDL<3:0> = 1101	2.08		2.33	V		
			HLVDL<3:0> = 1110	2.00		2.22	V		
DC101	VTHL	HLVD Voltage on LVDIN Pin Transition	HLVDL<3:0> = 1111		1.2	_	V		

PIC32MM0256GPM064 FAMILY

FIGURE 29-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	—	_	ns		
SP11	TscH	SCKx Output High Time ⁽³⁾	Tscк/2	—	_	ns		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—		ns	See Parameter DO32	
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—		ns	See Parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—		ns	See Parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid	—	—	7	ns	VDD > 2.0V	
	TscL2DoV	after SCKx Edge	_	_	10	ns	VDD < 2.0V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	5	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 10 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	M	i			
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		0.65 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E		6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.50	0.55	0.70		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2