

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Active
MIPS32® microAptiv™
32-Bit Single-Core
25MHz
IrDA, LINbus, SPI, UART/USART, USB, USB OTG
Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
52
256KB (256K x 8)
FLASH
-
32K x 8
2V ~ 3.6V
A/D 20x10/12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
64-TQFP
64-TQFP (10x10)
https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0256gpm064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MM0256GPM064 FAMILY

Pin Diagrams (Continued)

Pin	Function	Pin	Function
1	TMS/ RP14 /SDA1/OCM1B/INT2/RB9 ⁽¹⁾	25	AN4/C1INB/RP8/SDA2/OCM2E/RB2
2	RP23/RC6	26	TDI/AN11/C1INA/ RP9 /SCL2/OCM2F/RB3
3	RP20/RC7	27	AN12/C2IND/T2CK/T2G/RC0
4	AN14/LVDIN/C2INC/RC8	28	AN13/T3CK/T3G/RC1
5	PGEC3/TDO/RP18/ASCL1 ⁽²⁾ /USBOEN/RC9 ⁽¹⁾	29	RP19/OCM2A/RC2
6	Vss	30	VDD
7	VCAP	31	Vss
8	RTCC/RA15	32	OSC1/CLKI/AN5/ RP3 /OCM1C/RA2
9	D-/RB10	33	OSC2/CLKO/AN6/C3IND/ RP4 /RA3 ⁽¹⁾
10	D+/RB11	34	SDO3/RA8 ⁽¹⁾
11	VUSB3V3	35	SOSCI/AN7/ RP10 /OCM3C/RB4
12	AN8/ RP15 /SCL3/RB13 ⁽¹⁾	36	SOSCO/SCLKI/ RP5 /PWRLCLK/OCM3D/RA4
13	RP22/SCK3/RA10 ⁽¹⁾	37	RP24/OCM3A/RA9
14	RP21/SDI3/RA7	38	REFCLKI/T1CK/T1G/U1RTS/U1BCLK/SDO1/RD0 ⁽¹⁾
15	CVREF/AN9/C3INB/RP16/VBUSON/SDI1/OCM3B/INT1/RB14	39	OCM2B/RC3
16	AN10/C3INA/REFCLKO/RP17/SS1/FSYNC1/INT0/RB15 ⁽¹⁾	40	OCM1E/INT3/RC4
17	AVss/Vss	41	AN15/OCM1D/RC5
18	AVdd/Vdd	42	Vss
19	MCLR	43	VDD
20	AN19/U1RX/RA6	44	U1TX/RC12
21	PGEC2/VREF+/CVREF+/AN0/ RP1 /RA0	45	PGED3/RP11/ASDA1 ⁽²⁾ /USBID/SS3/FSYNC3/OCM3E/RB5
22	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	46	VBUS/RB6
23	PGED1/AN2/C1IND/C2INB/C3INC/RP6/OCM2C/RB0	47	RP12/SDA3/OCM3F/RB7
24	PGEC1/AN3/C1INC/C2INA/ RP7 /OCM2D/RB1	48	TCK/RP13/SCL1/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾

TABLE 6: **COMPLETE PIN FUNCTION DESCRIPTIONS FOR 48-PIN UQFN/TQFP DEVICES**

 Note 1:
 High drive strength pin.

 2:
 Alternate pin assignments for I2C1 as determined by the I2C1SEL Configuration bit.

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the documents listed below,
	browse the documentation section of the
	Microchip web site (www.microchip.com).

- Section 1. "Introduction" (DS60001127)
- Section 5. "Flash Programming" (DS60001121)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupts" (DS61108)
- Section 10. "Power-Saving Modes" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 14. "Timers" (DS60001105)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference" (DS61109)
- Section 21. "UART" (DS61107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS61106)
- Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS61116)
- Section 25. "12-Bit Analog-to-Digital Converter (ADC) with Threshold Detect" (DS60001359)
- Section 27. "USB On-The-Go (OTG)" (DS61126)
- Section 28. "RTCC with Timestamp" (DS60001362)
- Section 30. "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS60001381)
- Section 31. "DMA Controller" (DS60001117)
- Section 33. "Programming and Diagnostics" (DS61129)
- Section 36. "Configurable Logic Cell" (DS60001363)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 59. "Oscillators with DCO" (DS60001329)
- Section 62. "Dual Watchdog Timer" (DS60001365)

NOTES:

NOTES:

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x (CONTINUED)

bit 12-10 IP1<2:0>: Interrupt Priority 1 bits

	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 9-8	IS1<1:0>: Interrupt Subpriority 1 bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP0<2:0>: Interrupt Priority 0 bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS0<1:0>: Interrupt Subpriority 0 bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	01 = Interrupt subpriority is 100 = Interrupt subpriority is 0

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

TABLE 8-2: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

sss			Bits																
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0.4.50	DOULOOA	31:16								0110	04 -04 0								0000
8A50	DCH1SSA	15:0								CHS	SA<31:0>								0000
0460		31:16									CA -21:0>								0000
6A60	DCHIDSA	15:0		0000												0000			
8470		31:16	_	_	—	_	_	_		—		_	_	_	_	_		—	0000
OATU	DCITI3312	15:0								CHSS	SIZ<15:0>				-				0000
8480	DCH1DSIZ	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_	—	0000
0/100	DOITIDOIZ	15:0						•		CHDS	SIZ<15:0>							•	0000
8A90	8A90 DCH1SPTR	31:16	—	—	—	—	—	—		—		—	—	—	—	—	—	—	0000
15:0 CHSPTR<15:0>									0000										
8AA0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDF	PTR<15:0>								0000
8AB0	DCH1CSIZ	31:16		—	—		—										—	—	0000
		15:0						1		CHCS	SIZ<15:0>							1	0000
8AC0	DCH1CPTR	31:16	—	—	—	_	—	—	_	—	—	_	_	_	_	_	—	—	0000
		15:0								CHCF	PTR<15:0>								0000
8AD0	DCH1DAT	31:16	—			—	—		_			_				—	—	—	0000
		15:0	_	_		_	_		_					CHPDA	AT<7:0>				0000
8AE0	DCH2CON	31:16				_			_									-	0000
		15.0	CHBUST							СПСПИЗ	CHEN	CHAED	СПСПИ			CHEDEI	CHPR	(1<1.0>	0000
8AF0	DCH2ECON	15.0	_	_	_			—		_	CEORCE	CAROPT							TEOO
		31.16										CHSHIE					CHTAIE		0000
8B00	DCH2INT	15.0									CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		31.16									ONODI	onorm	ONDDI	ONDIM	OLIDOIL	0110011	Orna	ONER	0000
8B10	DCH2SSA	15.0								CHS	SA<31:0>								0000
		31:16																	0000
8B20	DCH2DSA	15:0								CHD	SA<31:0>								0000
		31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	—	_	_	0000
8B30	DCH2SSIZ	15:0								CHSS	SIZ<15:0>								0000

PIC32MM0256GPM064 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 10.1 "CLR, SET and INV Registers" for more information.

TABLE 14-1: MCCP/SCCP REGISTER MAP (CONTINUED)

ress		Bits																	
Virtual Addi (BF80_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0260	CCD2DA	31:16	—	—	_	_	—	_	—	_	_	—	—	_	_	_	_	_	0000
0200	UUF2RA	15:0								CI	MPA<15:0>								0000
0270	CCD2DB	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0270	CCF2RB	15:0								CI	MPB<15:0>								0000
0280	CCP2BLIE	31:16								Bl	JFH<15:0>								0000
0200		15:0								В	UFL<15:0>								0000
0300	CCP3CON1	31:16	OPSSRC	RTRGEN	—	—		OPS<	:3:0>		TRIGEN	ONESHOT	ALTSYNC		•	SYNC<4:0	>		0000
0000		15:0	ON	—	SIDL	CCPSLP	TMRSYNC	C	LKSEL<2:0	>	TMRF	PS<1:0>	T32	CCSEL		MO	D<3:0>		0000
0310	CCP3CON2	31:16	OENSYNC	—	OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN	ICGS	M<1:0>	—	AUXO	UT<1:0>		ICS<2:0>		0100
0010	001 000112	15:0	PWMRSEN	ASDGM	—	SSDG	—	—	—	—				ASDO	G<7:0>				0000
0320	CCP3CON3	31:16	OETRIG	0	SCNT<2:0)>	—		OUTM<2:0>		—	—	POLACE	POLBDF	PSSAC	E<1:0>	PSSBD)F<1:0>	0000
0020		15:0	—	—	—	—	—	—	—	_	—	—			DT	<5:0>	1	1	0000
0330	CCP3STAT	31:16	_	—	—	—	_	—	—	_	—	—	—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP	0000
		15:0	—	_	—	_	—	ICGARM	_	-	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
0340	CCP3TMR	31:16								TN	//RH<15:0>								0000
		15:0								T	MRL<15:0>								0000
0350	CCP3PR	31:16								P	'RH<15:0>								0000
		15:0						1		P	PRL<15:0>								0000
0360	CCP3RA	31:16	—	_	—	_	—			—	—		—	—	—	—	—	—	0000
		15:0								CI	MPA<15:0>								0000
0370	CCP3RB	31:16	—	_	—	—	—		_	—	—	—	—	_	—	_	—	—	0000
		15:0								CI	MPB<15:0>								0000
0380	CCP3BUF	31:16								Bl	JFH<15:0>								0000
		15:0		1			1			В	UFL<15:0>	1	1	1					0000
0400	CCP4CON1	31:16	OPSSRC	RTRGEN	_	—		OPS<	:3:0>		TRIGEN	ONESHOT	ALTSYNC		1	SYNC			0000
		15:0	ON	—	SIDL	CCPSLP	TMRSYNC	C	LKSEL<2:0	>	TMRF	PS<1:0>	T32	CCSEL		MO	D<3:0>		0000
0410	CCP4CON2	31:16	OENSYNC	—	_	—	_		_	OCAEN	ICGS	M<1:0>	_	AUXO	UT<1:0>		ICS<2:0>		0100
		15:0	PWMRSEN	ASDGM	—	SSDG	—	—	_	—			1	ASDO	G<7:0>				0000
0420	CCP4CON3	31:16	OETRIG	0	SCNT<2:0)>	—	—	—	_	-	—	POLACE	-	PSSAC	E<1:0>	—	-	0000
0.20		15:0	—	-	_	_	—	—	—	—	—	—	—	-	-	-	-	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 11	 STRICT: Strict I²C Reserved Address Rule Enable bit 1 = Strict reserved addressing is enforced; device does not respond to reserved address space or generates addresses in reserved address space 0 = Strict I²C reserved address rule is not enabled
bit 10	A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled 0 = Slew rate control is enabled
bit 8	<pre>SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with the SMBus specification 0 = Disables SMBus input thresholds</pre>
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on the SDAx and SCLx pins and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C ; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master) 1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence 0 = Start condition is not in progress

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	-	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	-	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_		—		_	—	—
7.0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	UACTPND	_		USLPGRD	USBBUSY ⁽¹⁾	—	USUSPEND	USBPWR ⁽¹⁾

REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected, but an interrupt is pending; it has not been generated yet
 - 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 **USLPGRD:** USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry

bit 3 USBBUSY: USB Module Busy bit⁽¹⁾

- 1 = USB module is active or disabled, but not ready to be enabled
- 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit⁽¹⁾
 - 1 = USB module is turned on
 - USB module is disabled (Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)
- **Note 1:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

REGISTER 18-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet rejected due to CRC5 error
 - 0 = Token packet accepted

EOFEF: EOF Error Flag bit^(3,5)

- 1 = EOF error condition detected
- 0 = No EOF error condition
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check failed
 - 0 = PID check passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	—	—	—	—	—	—	—	—		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		PID<3	3:0> ⁽¹⁾		EP<3:0>					

REGISTER 18-15: U1TOK: USB TOKEN REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾ 1101 = SETUP (TX) token type transaction 1001 = IN (RX) token type transaction 0001 = OUT (TX) token type transaction
- bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The 4-bit value must specify a valid endpoint.
- Note 1: All other values not listed are reserved and must not be used.

REGISTER 18-16: U1SOF: USB SOF THRESHOLD REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—		—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	_	_	_	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CNT	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 CNT<7:0>: SOF Threshold Value bits

Typical Values of the Threshold are:

- 01001010 = 64-byte packet
- 00101010 = 32-byte packet 00011010 = 16-byte packet
- 00011010 = **10-byte packet**

© 2016-2017 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0						
23:10	—	—	_	—		—	—	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	—	—		FORM<2:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC
7.0		SSRO	C<3:0>		MODE12	ASAM	SAMP ⁽²⁾	DONE ⁽¹⁾

REGISTER 20-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-16 Unimplemented: Read as '0'
- bit 15 **ON:** ADC Operating Mode bit
 - 1 = ADC module is operating
 - 0 = ADC is off
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'
- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - For 12-Bit Operation (MODE12 bit = 1):
 - 111 = Signed fractional 32-bit (DOUT = sddd dddd dddd 0000 0000 0000)
 - 110 = Fractional 32-bit (DOUT = dddd dddd dddd 0000 0000 0000 0000)

 - 011 = Signed fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd 0000)

For 10-Bit Operation (MODE12 bit = 0):

- 111 = Signed fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000)
- 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
- 101 = Signed integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)
- 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
- 011 = Signed fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
- 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd ddd0 0000)
- 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
- **Note 1:** The DONE bit is not persistent in Automatic modes; it is cleared by hardware at the beginning of the next sample.
 - 2: The SAMP bit is cleared and cannot be written if the ADC is disabled (ON bit = 0).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—		—	—	_	_	_
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	—	—	—	DACDAT<4:0>				
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	ON	—	—	—	—	—	—	DACOE
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0					_		REFSE	L<1:0>

REGISTER 23-1: DAC1CON: VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-21 Unimplemented: Read as '0'
- bit 20-16 DACDAT<4:0>: Voltage Reference Selection bits

11111 = (DACDAT<4:0> * CVREF+/32) or (DACDAT<4:0> * AVDD/32) volts depending on the REFSEL<1:0> bits •

•

00000 = 0.0 volts

- bit 15 **ON:** Voltage Reference Enable bit
 - 1 = Voltage reference is enabled
 - 0 = Voltage reference is disabled

bit 14-9 Unimplemented: Read as '0'

- bit 8 DACOE: Voltage Reference Output Enable bit
 - 1 = Voltage level is output on the CVREF pin
 - 0 = Voltage level is disconnected from the CVREF pin

bit 7-2 Unimplemented: Read as '0'

- bit 1-0 **REFSEL<1:0>:** Voltage Reference Source Select bits
 - 11 = Reference voltage is AVDD
 - 10 = No reference is selected output is AVss
 - 01 = Reference voltage is the CVREF+ input pin voltage
 - 00 = No reference is selected output is AVss

26.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MM0256GPM064 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Programming and Diagnostics" (DS61129) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

26.1 Configuration Bits

PIC32MM0256GPM064 family devices contain a Boot Flash Memory (BFM) with an associated configuration space. All Configuration Words are listed in Table 26-3 and Table 26-4, and Register 26-1 through Register 26-6 describe the configuration options.

26.2 Code Execution from RAM

PIC32MM0256GPM064 family devices allow executing the code from RAM. The starting boundary of this special RAM space can be adjusted using the EXECADDR<7:0> bits in the CFGCON register with a 1-Kbyte step. Writing a non-zero value to these bits will move the boundary, effectively reducing the total amount of program memory space in RAM. Refer to Table 26-5 and Register 26-7 for more information.

26.3 Device ID

The Device ID identifies the device used. The ID can be read from the DEVID register. The Device IDs for the PIC32MM0256GPM064 family devices are listed in Table 26-1. Also refer to Table 26-5 and Register 26-8 for more information.

TABLE 26-1: DEVICE IDs FOR PIC32MM0256GPM064 FAMILY DEVICES

Device	DEVID
PIC32MM0064GPM028	0x07708053
PIC32MM0128GPM028	0x07710053
PIC32MM0256GPM028	0x07718053
PIC32MM0064GPM036	0x0770A053
PIC32MM0128GPM036	0x07712053
PIC32MM0256GPM036	0x0771A053
PIC32MM0064GPM048	0x0772C053
PIC32MM0128GPM048	0x07734053
PIC32MM0256GPM048	0x0773C053
PIC32MM0064GPM064	0x0770E053
PIC32MM0128GPM064	0x07716053
PIC32MM0256GPM064	0x0771E053

26.4 System Registers Write Protection

The critical registers in the PIC32MM0256GPM064 family devices are protected (locked) to prevent an accidental write. If the registers are locked, a special two-step unlock sequence is required to modify the content of these registers (refer to Example 26-1). Once an unlock sequence is performed, the registers remain unlocked until they are relocked by writing an invalid key value.

A system unlock sequence is invalidated by writes to addresses other than SYSKEY. To prevent this, DMA transfers and interrupts should be disabled or the unlock sequence can be performed until a read of SYSKEY indicates a successful unlock (refer to Example 26-2).

To unlock the registers, the following steps should be done:

- 1. Disable interrupts and DMA transfers prior to the system unlock sequence.
- 2. Write a non-key value (such as 0x0000000) to the SYSKEY register to perform a lock.
- Execute the system unlock sequence by writing the key values of 0xAA996655 and 0x556699AA to the SYSKEY register, in two back-to-back assembly or 'C' instructions.
- 4. Write the new value to the required register.
- 5. Write a non-key value (such as 0x0000000) to the SYSKEY register to perform a lock.
- 6. Re-enable interrupts and DMA transfers.

EXAMPLE 26-1: SYSTEM UNLOCK

```
SYSKEY = 0; // force lock
SYSKEY = AA996655; // unlock sequence
SYSKEY = 556699AA; // lock sequence
// user code to modify register contents
SYSKEY = 0; // relock
```

EXAMPLE 26-2: SYSTEM UNLOCK WITH DMA AND INTERRUPTS ENABLED

While (SYSKEY == 0)	//	repeat unlock sequence until unlock succeeds
SYSKEY = 0; SYSKEY = AA996655; SYSKEY = 556699AA; }	 	force lock unlock sequence lock sequence
<pre>// user code to modi SYSKEY = 0;</pre>	lfy //	register contents relock

28.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

28.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	M	ILLIMETERS	i
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			2.00
Center Pad Length	Y2			2.00
Contact Pad Spacing	C1		3.90	
Contact Pad Spacing	C2		3.90	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.85
Contact Pad to Center Pad (X28)	G1		0.52	
Contact Pad to Pad (X24)	G2	0.20		
Contact Pad to Corner Pad (X8)	G3	0.20		
Corner Anchor Width (X4)	X3			0.78
Corner Anchor Length (X4)	Y3			0.78
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2333-M6 Rev B

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.40 BSC	-
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N	64			
Lead Pitch	е		0.50 BSC	-	
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0° 3.5° 7°			
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2