

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c601t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Pin N	umber						
Pin Na	ime	PIC1	BC601	PIC1	8C801	Pin Type	Buffer Type			
		TQFP	PLCC	TQFP	PLCC	туре	Type	Description		
								PORTF is a bi-directional I/O port.		
RF0/AN5		18	28	24	36					
RF0						I/O	ST	Digital I/O.		
AN5						1	Analog	Analog input 5.		
RF1/AN6		17	27	23	35					
BF1						I/O	ST	Digital I/O.		
AN6						1	Analog	Analog input 6.		
RF2/AN7		16	26	18	30					
RF2		10	20	10	50	I/O	ST	Digital I/O.		
AN7						1/0	Analog	Analog input 7.		
RF3/CSIO		15	25	17	29		/ indiog	, malog mpar / .		
RF3		15	25	17	29	I/O	ST	Digital I/O.		
CSIO						1/O	ST	System bus chip select I/O.		
			0.4			1/0	31	System bus chip select i/O.		
RF4/A16 RF4/CS2		14	24	16	28					
RF4/052 RF4		_	_	10	28	I/O	ST	Digital I/O.		
A16						1/O 1/O	TTL	External memory address 16.		
CS2						0	TTL	Chip select 2.		
		10		45	07	0	116	Chip select 2.		
RF5/CS1		13	23	15	27	1/0	OT	Distribut 1/O		
RF5 CS1						1/O O	ST TTL	Digital I/O.		
						0	IIL	Chip select 1.		
RF6/LB		12	22	14	26					
RF6						I/O	ST	Digital I/O.		
LB						0	TTL	Low byte select signal for external		
								memory interface.		
RF7/UB		11	21	13	25					
RF7						I/O	ST	Digital I/O.		
UB						0	TTL	High byte select signal for external		
								memory interface.		
	TL = TTL							OS compatible input or output		
S	ST = Sch		ger input v	with CMC	S levels		alog = Ana	0 1		
I	= Inpi	ut				0	= Out	tput		

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power

OD = Open Drain (no P diode to VDD)

6.3.4 16-BIT EXTERNAL TABLE WRITE (BYTE SELECT MODE)

This mode allows Table Writes to word-wide external memories that have byte selection capabilities. This generally includes word-wide FLASH devices and word-wide static RAM devices.

During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The WRH line is strobed for each write cycle and the $\overline{\text{WRL}}$ line is unused. The BA0 or $\overline{\text{UB}}$ or $\overline{\text{UL}}$ lines are used to select the byte to be written, based on the LSb of the TBLPTR.

JEDEC standard flash memories will require a I/O port line to become a BYTE/WORD input signal and will use the BA0 signal as a byte address. JEDEC standard static RAM memories will use the UB or UL signals to select the byte.

Figure 6-10 shows the timing associated with this mode.

Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 A<19:16> 0h 0h Ch 0h 0h Ch 000Dh AAB 6FF4h 000Ch 9292h AD<15:0> 5656h AAC 3440 0E55h CF33 CE33 BA0 ALE OE WRH WRL '1' UB LB **Opcode Fetch** Memory Opcode Fetch TBLWT 56h Opcode Fetch Opcode Fetch TBLWT 92h Cycle TBLWT*+ MOVWE TABLAT to 199E66h TBI WT* MOVLW 55h to 199E67h from 00755Ah from 007554h from 007556h from 007558h Instruction INST(PC-2) TBLWT*+ Cycle1 | TBLWT*+ Cycle2 | MOVWF TBLWT* Cycle1 | TBLWT* Cycle2 Execution

TABLE 9-7: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/AD0/A0 ⁽²⁾	bit0	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 0
RD1/AD1/A1 ⁽²⁾	bit1	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 1
RD2/AD2/A2 ⁽²⁾	bit2	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 2
RD3/AD3/A3 ⁽²⁾	bit3	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 3
RD4/AD4/A4 ⁽³⁾	bit4	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 4
RD5/AD5/A5 ⁽²⁾	bit5	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 5
RD6/AD6/A6 ⁽²⁾	bit6	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 6
RD7/AD7/A7 ⁽²⁾	bit7	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 7

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.

2: RDx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an address only for PIC18C801 in 8-bit mode.

IADLE 9-0: SUMIMART OF REGISTERS ASSOCIATED WITH PORTU	TABLE 9-8:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
--	------------	--

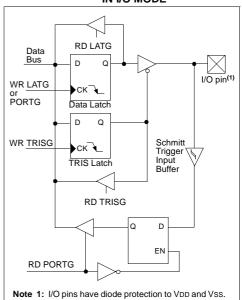
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Data	a Output R		XXXX XXXX	uuuu uuuu					
TRISD	PORTD Data Direction Register								1111 1111	1111 1111
MEMCON	EBDIS	PGRM	WAIT1	WAIT0			WM1	WM0	000000	000000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

9.7 PORTG, LATG, and TRISG Registers

PORTG is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISG. Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATG register read and write the latched output value for PORTG.


PORTG is multiplexed with system bus control signals ALE, OE, WRH, WRL and BA0. The WRH signal is the only signal that is disabled and configured as a port pin (RG3) during external program execution in 8-bit mode. All other pins are by default, system bus control signals. PORTG can be configured as an I/O port by setting EBDIS bit in the MEMCON register and when execution is taking place in internal program RAM.

Note:	On Power-on Reset, PORTG defaults to							
	system bus signals.							

EXAMPLE 9-8: INITIALIZING PORTG

CLRF	PORTG	; Initialize PORTG by
		; clearing output
		; data latches
CLRF	LATG	; Alternate method
		; to clear output
		; data latches
MOVLW	04h	; Value used to
		; initialize data
		; direction
MOVWF	TRISG	; Set RG1:RG0 as outputs
		; RG2 as input
		; RG4:RG3 as outputs
		_

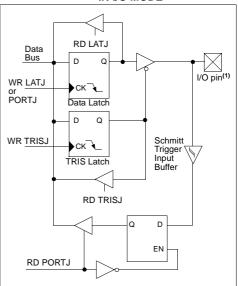
FIGURE 9-14: PORTG BLOCK DIAGRAM IN I/O MODE

9.9 PORTJ, LATJ, and TRISJ Registers

Note:	PORTJ is	available	only	on	PIC18C801
	devices.				

PORTJ is an 8-bit wide, bi-directional I/O port. The corresponding data direction register is TRISJ. Setting a TRISJ bit (= 1) will make the corresponding PORTJ pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISJ bit (= 0) will make the corresponding PORTJ pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATJ register read and write the latched output value for PORTJ.


PORTJ is multiplexed with de-multiplexed system data bus D7:D0, when device is configured in 8-bit execution mode. Register MEMCON configures PORTJ as I/O or system bus pins.

Note:	On Power-on Reset, PORTJ defaults to								
	system bus signals.								

EXAMPLE 9-10: INITIALIZING PORTJ

CLRF	PORTJ	; Initialize PORTJ by
		; clearing output
		; data latches
CLRF	LATJ	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISJ	; Set RJ3:RJ0 as inputs
		; RJ5:RJ4 as outputs
		; RJ7:RJ6 as inputs
		-

FIGURE 9-19: PORTJ BLOCK DIAGRAM IN I/O MODE

TABLE 9-17: PORTJ FUNCTIONS

Name	Bit#	Buffer Type	Function
RJ0/D0 ⁽¹⁾	bit0	ST/TTL	Input/output port pin or Data bit 0 for external memory interface
RJ1/D1 ⁽¹⁾	bit1	ST/TTL	Input/output port pin or Data bit 1 for external memory interface
RJ2/D2 ⁽¹⁾	bit2	ST/TTL	Input/output port pin or Data bit 2 for external memory interface
RJ3/D3 ⁽¹⁾	bit3	ST/TTL	Input/output port pin or Data bit 3 for external memory interface
RJ4/D4 ⁽¹⁾	bit4	ST/TTL	Input/output port pin or Data bit 4 for external memory interface
RJ5/D5 ⁽¹⁾	bit5	ST/TTL	Input/output port pin or Data bit 5 for external memory interface
RJ6/D6 ⁽¹⁾	bit6	ST/TTL	Input/output port pin or Data bit 6 for external memory interface
RJ7/D7 ⁽¹⁾	bit7	ST/TTL	Input/output port pin or Data bit 7 for external memory interface

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: PORTJ is available only on PIC18C801 devices.

TABLE 9-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISJ	PORTJ Data Direction Control Register								1111 1111	1111 1111
PORTJ	Read PORTJ pin/Write PORTJ Data Latch								xxxx xxxx	uuuu uuuu
LATJ	TJ Read PORTJ Data Latch/Write PORTJ Data Latch								xxxx xxxx	uuuu uuuu
MEMCON	EBDIS	PGRM	WAIT1	WAIT0	_	—	WM1	WM0	000000	000000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTJ.

11.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers: TMR1H and TMR1L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from CCP module special event trigger

Register 11-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module as well as contains the Timer1 oscillator enable bit (T10SCEN). Timer1 can be enabled/disabled by setting/clearing control bit TMR10N (T1CON register).

Figure 11-1 is a simplified block diagram of the Timer1 module.

Note: Timer1 is disabled on POR.

REGISTER 11-1: T1CON REGISTER

	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
	bit 7							bit 0
bit 7	RD16: 16-	oit Read/W	/rite Mode E	nable bit				
		•			one 16-bit ope wo 8-bit oper			
bit 6	Unimplem	ented: Re	ad as '0'					
bit 5-4	T1CKPS1:	T1CKPS0	: Timer1 Inp	ut Clock Pres	scale Select b	oits		
	11 = 1:8 Pr 10 = 1:4 Pr 01 = 1:2 Pr 00 = 1:1 Pr	rescale va rescale va	lue lue					
bit 3	T1OSCEN	: Timer1 C	scillator Ena	able bit				
	1 = Timer1 0 = Timer1 The os	Oscillator	is shut-off	dback resist	or are turned	off to elimin	ate power d	rain.
bit 2	T1SYNC:	Fimer1 Ext	ernal Clock	Input Synchr	onization Sele	ect bit		
	When TMF 1 = Do not 0 = Synchr When TMF	R1CS = 1: synchroni onize exte R1CS = 0:	ze external o ernal clock in	clock input put	ock when TMI			
bit 1	TMR1CS:	Timer1 Clo	ock Source S	Select bit				
	1 = Externa 0 = Interna		•	T1OSO/T130	CKI (on the ris	ing edge)		
bit 0	TMR10N:	Timer1 Or	n bit					
	1 = Enable 0 = Stops ⊺							
	Legend:							
	R = Reada	ble bit	W =	Writable bit	U = Unim	plemented	bit, read as	'0'

'1' = Bit is set

- n = Value at POR

'0' = Bit is cleared

x = Bit is unknown

bit

bit

bit

bit

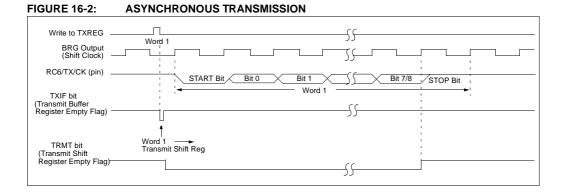
bit

bit

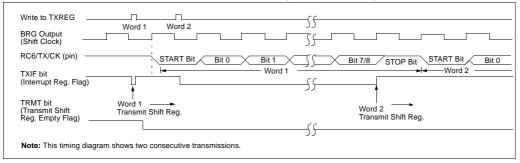
bit

bit

- n = Value at POR


REGISTER 15-3: SSPCON2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
1 = Enable	neral Call Ena interrupt whe al call address	en a general			eceived in	the SSPSR	1
In Master 7	Acknowledge ransmit mode vledge was ne vledge was re	<u>ə:</u> ot received f	rom slave	r mode only	()		
In Master F		<u>.</u>		• •	quence at	the end of a	a receive
In Master F 1 = Initiate Automa	cknowledge S Receive mode Acknowledge atically cleare vledge seque	<u>:</u> sequence o d by hardwa	on SDA and S				ta bit.
	ceive Enable s Receive mo e idle		laster mode	only)			
SCK releas	P Condition E se control STOP conditi condition idle			• •	ally cleare	d by hardwa	are.
1 = Initiate by hard	Deated STAR Repeated ST dware. ted START co	ART conditi					d
SEN: STAR 1 = Initiate	RT Condition START condi condition idle	Enabled bit (ition on SDA				ed by hardv	vare.
I	For bits ACKI mode, this bit writes to the S	may not be	set (no spoo				
Legend:							
R = Reada	ble bit	W = Wr	itable bit	U = Unimp	lemented I	oit, read as	'0'


'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

FIGURE 16-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Value on all other RESETS	DR,	Value on POR, BOR	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Name
0000 000u	000x	0000 000x	RBIF	INT0IF	TMR0IF	RBIE	INT0IE	TMR0IE	PEIE/GIEL	GIE/GIEH	INTCON
000 0000	0000	-000 0000	TMR1IF	TMR2IF	CCP1IF	SSPIF	TXIF	RCIF	ADIF	—	PIR1
000 0000	0000	-000 0000	TMR1IE	TMR2IE	CCP1IE	SSPIE	TXIE	RCIE	ADIE	—	PIE1
000 0000	0000	-000 0000	TMR1IP	TMR2IP	CCP1IP	SSPIP	TXIP	RCIP	ADIP	—	IPR1
0000 -00x	-00x	0000 -00x	RX9D	OERR	FERR	—	CREN	SREN	RX9	SPEN	RCSTA
0000 0000	0000	0000 0000						ster	ansmit Regis	USART Tra	TXREG
0000 0010	0010	0000 0010	TX9D	TRMT	BRGH	ADDEN	SYNC	TXEN	TX9	CSRC	TXSTA
0000 0000	0000	0000 0000						Register	Generator I	Baud Rate	SPBRG
	-00x 0000 0010	0000 -00x 0000 0000 0000 0010	TMR1IP RX9D	TMR2IP OERR	CCP1IP FERR BRGH	SSPIP — ADDEN	TXIP CREN SYNC	RCIP SREN ster TXEN Register	ADIP RX9 ansmit Regis TX9	USART Tra CSRC Baud Rate	IPR1 RCSTA TXREG TXSTA

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

REGISTER 17-2: ADCON1 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
0 0	Avdd	Avss
01	External VREF+	Avss
10	Avdd	External VREF-
11	External VREF+	External VREF-

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
0000	Α	А	А	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	А	А	А	А	А	А	А	Α	Α	А	А	А
0010	А	А	А	А	А	А	А	Α	Α	А	А	А
0011	А	А	А	А	А	А	А	А	А	А	А	А
0100	D	А	А	А	А	Α	А	Α	Α	А	А	Α
0101	D	D	А	А	А	А	А	А	А	А	А	А
0110	D	D	D	Α	А	Α	А	Α	Α	А	Α	А
0111	D	D	D	D	А	А	А	А	А	А	А	А
1000	D	D	D	D	D	А	А	А	А	А	А	А
1001	D	D	D	D	D	D	А	Α	Α	А	А	А
1010	D	D	D	D	D	D	D	А	А	А	А	А
1011	D	D	D	D	D	D	D	D	Α	Α	Α	А
1100	D	D	D	D	D	D	D	D	D	А	А	А
1101	D	D	D	D	D	D	D	D	D	D	А	А
1110	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input D = Digital I/O

Shaded cells = Additional A/D channels available on PIC18C801 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2Tosc
- 4Tosc
- 8Tosc
- 16Tosc
- 32Tosc
- 64Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 17-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

17.3 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

AD Clock S	ource (TAD)	Maximum Device Frequency				
Operation	ADCS2:ADCS0	PIC18C601/801	PIC18LC601/801 ⁽⁵⁾			
2Tosc	000	1.25 MHz	666 kHz			
4Tosc	100	2.50 MHz	1.33 MHz			
8Tosc	001	5.00 MHz	2.67 MHz			
16Tosc	101	10.0 MHz	5.33 MHz			
32Tosc	010	20.0 MHz	10.67 MHz			
64Tosc	110	—	_			
RC	x11	—	_			

TABLE 17-1: TAD VS. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 4 µs.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be out of specification.

5: This column is for the LC devices only.

19.0 SPECIAL FEATURES OF THE CPU

There are several features intended to maximize system reliability, minimize cost through elimination of external components and provide power saving operating modes:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- ID Locations

PIC18C601/801 devices have a Watchdog Timer, which can be permanently enabled/disabled via the configuration bits, or it can be software controlled. By default, the Watchdog Timer is disabled to allow software control. It runs off its own RC oscillator for cost reduction. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Powerup Timer (PWRT), which provides a fixed delay on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. By default, HS oscillator mode is selected. There are two main modes of operations for external memory interface: 8-bit and 16-bit (default). A set of configuration bits are used to select various options.

19.1 Configuration Bits


The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h - 3FFFFh), which can only be accessed using table reads and table writes.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	-	—		-	—	—	FOSC1	FOSC0	11
300002h	CONFIG2L	_	BW	_	_	—	—	_	PWRTEN	-11
300003h	CONFIG2H	_	—	_	_	WDTPS2	WDTPS1	WDTPS0	WDTEN	1110
300006h	CONFIG4L	r	_	_	_	—	—	_	STVREN	11
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	0000 0000
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0000

TABLE 19-1: CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, maintain '1'. Shaded cells are unimplemented, read as '0'.

- 3: TOST = 1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes.
- 4: CLKOUT is not available in these oscillator modes, but shown here for timing reference.

20.0 INSTRUCTION SET SUMMARY

The PIC18C601/801 instruction set adds many enhancements to the previous PIC^{\otimes} MCU instruction sets, while maintaining an easy migration path from them.

With few exceptions, instructions are a single program memory word (16-bits). Each single word instruction is divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

The PIC18C601/801 instruction set summary in Table 20-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- The file register (represented by 'f')
 The destination of the result
- (represented by 'd')
- 3. The accessed memory (represented by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- The file register (represented by 'f')
 The bit in the file register
- (represented by 'b')
- The accessed memory (represented by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (represented by 'k')
- The desired FSR register to load the literal value into (represented by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (represented by 'n')
- The mode of the Call or Return instructions (represented by 's')
- The mode of the Table Read and Table Write instructions (represented by 'm')
- No operand required (specified by '—')

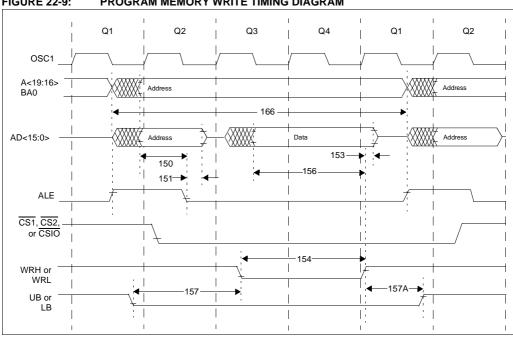
All instructions are a single word, except for four double word instructions. These four instructions were made double word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are 1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. The double word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have. All examples use the format `nnh' to represent a hexadecimal number, where `h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-2, lists the instructions recognized by the Microchip assembler (MPASMTM).


Section 20.1 provides a description of each instruction.

BNC	Branch in	Not Carry		BN	N	Branch if	Not Negativ	ve
Syntax:	[<i>label</i>] E	3NC n		Syn	tax:	[label] B	NN n	
Operands:	-128 ≤ n :	≤ 127		Оре	rands:	-128 ≤ n ≤	127	
Operation:	if carry bi (PC) + 2	t is '0' + 2n → PC		Оре	eration:	if negative (PC) + 2 +		
Status Affecte	d: None			Stat	us Affected:	None		
Encoding:	1110	0011 nn	nn nnnn	Enc	oding:	1110	0111 nn	nn nnnn
Description:	program The 2's c added to have incr instruction	the PC. Since emented to fe n, the new ad	umber '2n' is the PC will etch the next ldress will be ttion is then a	Des	cription:	program w The 2's co added to t have incre instruction	mplement n he PC. Sinc mented to fe , the new ac	', then the umber '2n' is the PC will etch the next ldress will be ttion is then a
	two-cycle	instruction.				two-cycle	instruction.	
Words:	1			Wor	ds:	1		
Cycles:	1(2)			Сус	les:	1(2)		
Q Cycle Activ If Jump:	ity:				ycle Activity: imp:			
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
No	No	No	No		No	No	No	No
operation If No Jump:	n operation	operation	operation	lf N	operation	operation	operation	operation
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
Example:	HERE	BNC Jump		<u>Exa</u>	mple:	HERE	BNN Jump)
Before Ir					Before Instr			
PC After Inst If Ca If Ca	ruction ry = 0; PC = ac ry = 1;	ddress (Jump)			PC After Instruc If Negat PC If Negat PC	tion ive = 0; = ad ive = 1;	dress (HERE) dress (Jump) dress (HERE+	

тэт	FSZ	Test f, ski	ip if 0	
Synt	ax:	[label] T	"STFSZ f[,a	1]
Ope	rands:	$0 \le f \le 255$	5	
		a ∈ [0,1]		
Ope	ration:	skip if f = 0	C	
State	us Affected:	None		
Enco	oding:	0110	011a ff	ff ffff
Des	cription:	during the cution, is o executed, instruction Bank will b BSR value	current instr discarded an making this a. If 'a' is 0, t be selected, c	d a NOP is a two-cycle he Access overriding the the Bank will
Wor	ds:	1		
Cycl	es:		ycles if skip a 2-word ins	and followed truction
QC	vcle Activity:			
	Q1	Q2	Q3	Q4
	Decode	Read	Process	No
lf sk	in:	register 'f'	Data	operation
11 54	ip. Q1	Q2	Q3	Q4
	No	No	No	No
	operation	operation	operation	operation
lf sk	ip and followe			
	Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation
	No	No	No	No
	operation	operation	operation	operation
<u>Exa</u>	<u>mple</u> :	NZERO	ISTFSZ CNI : :	ſ
	Before Instru	iction		
	PC	= Ad	dress (HERE)	
	After Instruct	ion = 00	h,	
	PC		dress (ZERO)	
	If CNT PC	≠ 00 = Ad	h, dress (NZERC))
	FU	- Au	UICOO (NZERO	,

[<i>label</i>] 0 ≤ k ≤ 2 (WREG) N,Z	55		∃G
(WREG) N,Z		\rightarrow WRI	ΞG
N,Z	.XOR. k	\rightarrow WRI	EG
0000			
0000	1010	kkkk	kkkk
XOR'ed	with the 8	-bit liter	al 'k'. The
1			
1			
2	Q3	Q	4
Read literal 'k'			Write to WREG
	XOR'ed' result is 1 1 22 Read literal 'k'	XOR'ed with the 8 result is placed in 1 1 22 Q3 Read Proces literal 'k' Data	1 12 Q3 Q4 Read Process 1 literal 'k' Data

Before Instruction		
WREG	=	0B5h
Ν	=	?
Z	=	?
After Instruction		
After Instruc	tion	
After Instruc WREG	tion =	1Ah
		1Ah 0
WREG	=	

FIGURE 22-9: **PROGRAM MEMORY WRITE TIMING DIAGRAM**

Operating Conditions: 2.0V <Vcc <5.5V, -40°C <TA <125°C unless otherwise stated.

TABLE 22-8:	PROGRAM MEMORY WRITE TIMING REQUIREMENTS
IADLE 22-0:	PROGRAM MEMORI WRITE HIMING REQUIREMENTS

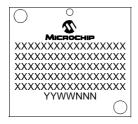
Param No.	Symbol	Characteristics	Min	Тур	Max	Units
150	TadV2alL	Address out valid to ALE \downarrow (address setup time)	0.25TCY-10	_		ns
151	TalL2adl	ALE \downarrow to address out invalid (address hold time)	5	_	_	ns
153	TwrH2adl	WRn 1 to data out invalid (data hold time)	5			ns
154	TwrL	WRn pulse width	0.5Tcy-5	0.5Tcy	_	ns
156	TadV2wrH	Data valid before WRN 1 (data setup time)	0.5Tcy-10	_	_	ns
157	TbsV2wrL	Byte select valid before WRn \downarrow (byte select setup time)	0.25Tcy	_	_	ns
157A	TwrH2bsl	WRn \uparrow to byte select invalid (byte select hold time)	0.125Tcy-5	_	_	ns
166	TalH2alH	ALE↑ to ALE↑ (cycle time)	—	0.25Tcy	_	ns
36	TIVRST	Time for Internal Reference Voltage to become stable	—	20	50	μs

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

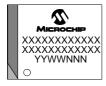
Graphs and Tables are not available at this time.


24.0 PACKAGING INFORMATION

24.1 Package Marking Information



68-Lead PLCC



Example

80-Lead TQFP

Example

Legenc	I: XXX YY WW NNN	Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters er specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX E: DEVELOPMENT TOOL VERSION REQUIREMENTS

This lists the minimum requirements (software/ firmware) of the specified development tool to support the devices listed in this data sheet.

MPLAB [®] IDE:	TBD
-------------------------	-----

MPLAB® SIMULATOR: TBD

MPLAB® ICE 3000:

PIC18C601/801 Proc Part Number -	essor Module: TBD
PIC18C601/801 Devi Socket 64-pin TQFP 68-pin PLCC 80-pin TQFP 84-pin PLCC	ce Adapter: Part Number TBD TBD TBD TBD TBD
MPLAB [®] ICD:	TBD
PRO MATE [®] II:	TBD
PICSTART [®] Plus:	TBD
MPASM [™] Assembler:	TBD
MPLAB [®] C18 C Compiler:	TBD

Note:	Please read all associated README.TXT
	files that are supplied with the develop-
	ment tools. These "read me" files will dis-
	cuss product support and any known
	limitations.