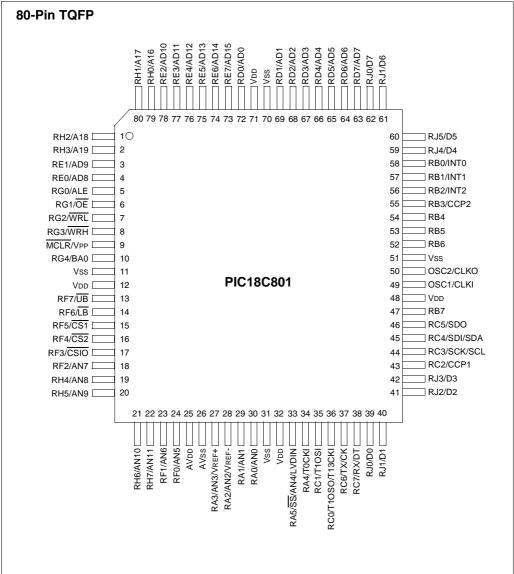


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18c801t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

		Pin N	umber		Pin		
Pin Name	PIC1	PIC18C601		PIC18C801		Buffer Type	
	TQFP	PLCC	TQFP PLC		Туре	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description
							PORTB is a bi-directional I/O port. PORTE can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0	48	60	58	72			
RB0					I/O	TTL	Digital I/O.
INT0					I	ST	External interrupt 0.
RB1/INT1	47	59	57	71			
RB1					I/O	TTL	Digital I/O.
INT1					I	ST	External interrupt 1.
RB2/INT2	46	58	56	70			
RB2					I/O	TTL	Digital I/O.
INT2					I	ST	External interrupt 2.
RB3/CCP2	45	57	55	69			
RB3					I/O	TTL	Digital I/O.
CCP2					I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RB4	44	56	54	68	I/O	TTL	Digital I/O, Interrupt-on-change pin.
RB5	43	55	53	67	I/O	TTL	Digital I/O, Interrupt-on-change pin.
RB6	42	54	52	66	I/O	TTL	Digital I/O, Interrupt-on-change pin.
					I	ST	ICSP programming clock.
RB7	37	48	47	60	I/O	TTL	Digital I/O, Interrupt-on-change pin.
					I/O	ST	ICSP programming data.

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output Analog = Analog input

O = Output

OD = Open Drain (no P diode to VDD)

TABLE 1-2:	PINOUT I/O DESCRIPTIONS (CONTINUED)	
------------	-------------------------------------	--

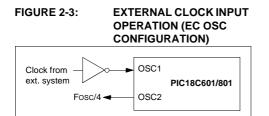
		Pin N	umber					
Pin Name	PIC1	BC601	PIC1	8C801	Pin Type	Buffer Type		
	TQFP	PLCC	TQFP	PLCC	Type	Type	Description	
							PORTJ is a bi-directional I/O port.	
RJ0/D0	_	_	39	52				
RJ0					I/O	ST	Digital I/O.	
D0					I/O	TTL	System bus data bit 0.	
RJ1/D1	_	—	40	53				
RJ1					I/O	ST	Digital I/O.	
D1					I/O	TTL	System bus data bit 1.	
RJ2/D2	_	_	41	54				
RJ2					I/O	ST	Digital I/O.	
D2					I/O	TTL	System bus data bit 2.	
RJ3/D3	_	—	42	55				
RJ3					I/O	ST	Digital I/O.	
D3					I/O	TTL	System bus data bit 3.	
RJ4/D4	_	—	59	73				
RJ4					I/O	ST	Digital I/O.	
D4					I/O	TTL	System bus data bit 4.	
RJ5/D5	_	—	60	74				
RJ5					I/O	ST	Digital I/O.	
D5					I/O	TTL	System bus data bit 5.	
RJ6/D6	—	—	61	75				
RJ6					I/O	ST	Digital I/O.	
D6					I/O	TTL	System bus data bit 6.	
RJ7/D7	_	—	62	76				
RJ7					I/O	ST	Digital I/O.	
D7					I/O	TTL	System bus data bit 7.	
Vss	9, 25, 41, 56	19, 36, 53, 68	11,31, 51, 70	23, 44, 65, 84	Р	—	Ground reference for logic and I/O pins.	
VDD	10,26,	2, 20,	12,32,	2, 24,	Р		Positive supply for logic and I/O pins.	
00	10,26, 38, 57	2, 20, 37, 49	12,32, 48, 71	2, 24, 45, 61	Г	_	Fostive supply for logic and i/O plns.	
Avss	20	30	26	38	Р	_	Ground reference for analog modules.	
AVDD	19	29	25	37	P	_	Positive supply for analog modules.	
	L compati	-	20	07		MOS = CN	IOS compatible input or output	

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

Analog = Analog input O = Output

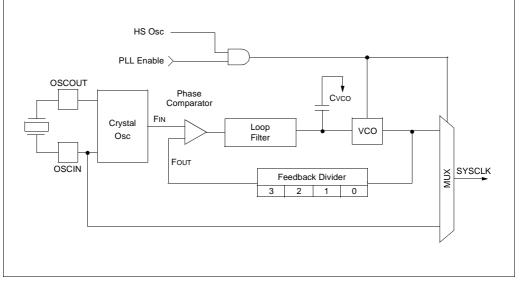

OD

= Open Drain (no P diode to VDD)

2.4 External Clock Input

The EC oscillator mode requires an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from SLEEP mode.

In the EC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-3 shows the pin connections for the EC oscillator mode.


FIGURE 2-4: PLL BLOCK DIAGRAM

2.5 HS4 (PLL)

A Phase Lock Loop (PLL) circuit is provided as a software programmable option for users that want to multiply the frequency of the incoming crystal oscillator signal by 4. For an input clock frequency of 6 MHz, the internal clock frequency will be multiplied to 24 MHz. This is useful for customers who are concerned with EMI due to high frequency crystals.

The PLL is enabled by configuring HS oscillator mode and setting the PLLEN bit in the OSCON register. If HS oscillator mode is not selected, or PLLEN bit in OSCCON register is clear, the PLL is not enabled and the system clock will come directly from OSC1. HS oscillator mode is the default for PIC18C601/801. In all other modes, the PLLEN bit and the SCS1 bit are forced to '0'.

A PLL lock timer is used to ensure that the PLL has locked before device execution starts. The PLL lock timer has a time-out, referred to as TPLL.

Register	Applicable Devices		Power-on Reset	MCLR Reset WDT Reset Reset Instruction Stack Over/Underflow Reset	Wake-up via WDT or Interrupt		
POSTINC2	601	801	(Note 5)	(Note 5)	(Note 5)		
POSTDEC2	601	801	(Note 5)	(Note 5)	(Note 5)		
PREINC2	601	801	(Note 5)	(Note 5)	(Note 5)		
PLUSW2	601	801	(Note 5)	(Note 5)	(Note 5)		
FSR2H	601	801	0000	0000	uuuu		
FSR2L	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
STATUS	601	801	x xxxx	u uuuu	u uuuu		
TMR0H	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR0L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
T0CON	601	801	1111 1111	1111 1111	uuuu uuuu		
OSCCON	601	801	00 0-00	uu u-u0	uu u-uu		
LVDCON	601	801	00 0101	00 0101	uu uuuu		
WDTCON	601	801	1111	uuuu	uuuu		
RCON ⁽⁴⁾	601	801	0r-1 11qr	0r-1 qqur	ur-u qqur		
TMR1H	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TMR1L	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu		
T1CON	601	801	0-00 0000	u-uu uuuu	u-uu uuuu		
TMR2	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
PR2	601	801	1111 1111	1111 1111	1111 1111		
T2CON	601	801	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
SSPADD	601	801	0000 0000	0000 0000	uuuu uuuu		
SSPSTAT	601	801	0000 0000	0000 0000	uuuu uuuu		
SSPCON1	601	801	0000 0000	0000 0000	uuuu uuuu		
SSPCON2	601	801	0000 0000	0000 0000	uuuu uuuu		
ADRESH	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADRESL	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu		
ADCON0	601	801	00 0000	00 0000	uu uuuu		
ADCON1	601	801	-000 0000	-000 0000	-uuu uuuu		
ADCON2	601	801	0 0 0 0	0000	uuuu		
CCPR1H	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCPR1L	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
CCP1CON	601	801	00 0000	00 0000	uu uuuu		

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', ~q = value depends on condition, r = reserved, maintain '0'

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (00008h or 00018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are updated with the current value of the PC. The SKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for RESET value for specific condition.
- 5: This is not a physical register. It is an indirect pointer that addresses another register. The contents returned is the value contained in the addressed register.

Name	Bit#	Buffer Type	Function
RE0/AD8/A8 ⁽²⁾	bit0	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 8
RE1/AD9/A9 ⁽²⁾	bit1	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 9
RE2/AD10/A10 ⁽²⁾	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 10
RE3/AD11/A11 ⁽²⁾	bit3	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 11
RE4/AD12/A12 ⁽²⁾	bit4	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 12
RE5/AD13/A13 ⁽²⁾	bit5	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 13
RE6/AD14/A14 ⁽²⁾	bit6	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 14
RE7/AD15/A15 ⁽²⁾	bit7	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 15

TABLE 9-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.
2: REx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an

address only for PIC18C801 in 8-bit mode.

TABLE 9-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--

Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR								- ,	Value on all other RESETS	
TRISE	PORTE	PORTE Data Direction Control Register 1111 1111 1111 1111									
PORTE	Read PC	Read PORTE pin/Write PORTE Data Latch xxxx xxxx uuuu uuuu									
LATE	Read PC	Read PORTE Data Latch/Write PORTE Data Latch xxxx xxxx uuuu uuuu									
MEMCON	EBDIS PGRM WAIT1 WAIT0 — — WM1 WM0								000000	000000	

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTE.

NOTES:

NOTES:

15.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received, simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- · Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL/LVOIN

Additionally, a fourth pin may be used when in any Slave mode of operation:

Slave Select (SS) - RA5/SS/AN4

15.3.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits SSPCON1<5:0> and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 15-1 shows the block diagram of the MSSP module, when in SPI mode.

FIGURE 15-1: MSSP BLOCK DIAGRAM

(SPI MODE) Internal Data Bus Read Write SSPBUF reg SSPSR reg SDI bit0 Shift Clock SS Control \ge Enable SS Edge Select 2 Clock Select SSPM3:SSPM0 SMP:CKE 4 MR2 Output ∤2 Edge Select \mathbb{X} Prescaler Tosc SCK 4, 16, 64 Data to TX/RX in SSPSR TRIS bit Note: I/O pins have diode protection to VDD and VSS.

15.4.16.2 Bus Collision During a Repeated START Condition

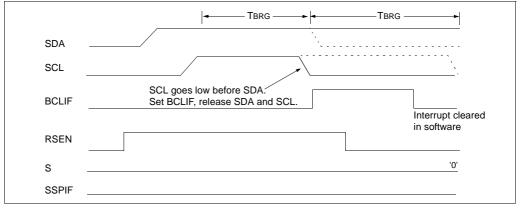
During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 15-24). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition (Figure 15-25).

If, at the end of the BRG time-out both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 15-25: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

16.2 USART Asynchronous Mode

In this mode, data is transmitted in non-return-to-zero (NRZ) format. Data consists of one START bit, eight or nine data bits and one STOP bit. Data is transmitted in serial fashion with LSb first. An on-chip 8-bit baud rate generator can be programmed to generate the desired baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH bit (TXSTA register). USART does not automatically calculate the parity bit for the given data byte. If parity is to be transmitted, USART must be programmed to transmit nine bits and software must set/ clear ninth data bit as parity bit. Asynchronous mode is stopped during SLEEP.

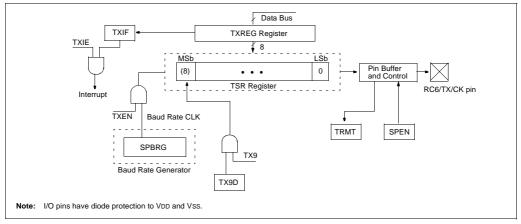
Asynchronous mode is selected by clearing the SYNC bit (TXSTA register).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

16.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The TSR register obtains its data from the Read/Write Transmit Buffer register (TXREG). The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available).


Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR registers) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE registers). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA register) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- Note 1: The TSR register is not mapped in data memory, so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set.

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 16.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 16-1: USART TRANSMIT BLOCK DIAGRAM

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA register).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

When setting up a Synchronous Slave Reception, follow these steps:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH PEIE/GIEL TMROIE INTOIE RBIE TMROIF INTOIF RBIF							0000 000x	0000 000u	
PIR1	ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF						-000 0000	-000 0000		
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN RX9 SREN CREN — FERR OERR RX9D						RX9D	0000 -00x	0000 -00x	
TXREG	USART Tra	USART Transmit Register								0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Baud Rate Generator Register 0000 0000 0000 0000 0000 0000 0000 0								0000 0000

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

17.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 17-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is $2.5k\Omega$. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

Note:	When the conversion is started, the hold-
	ing capacitor is disconnected from the
	input pin.

EQUATION 17-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time +
		Holding Capacitor Charging Time +
		Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 17-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	$-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 17-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TAMP + TC + TCOFF TACO Temperature coefficient is only required for temperatures > 25°C. TACO = $2 \mu s + TC + [(Temp - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$ TC -CHOLD (RIC + RSS + RS) ln(1/2047) - $-120 \text{ pF} (1 \text{ k}\Omega + 7 \text{ k}\Omega + 2.5 \text{ k}\Omega) \ln(0.0004885)$ $-120 \text{ pF} (10.5 \text{ k}\Omega) \ln(0.0004885)$ -1.26 µs (-7.6241) 9.61 µs TACQ $2 \mu s + 9.61 \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$ = 11.61 µs + 1.25 µs 12.86 µs

To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 17-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	120 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

17.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2Tosc
- 4Tosc
- 8Tosc
- 16Tosc
- 32Tosc
- 64Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 17-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

17.3 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

AD Clock S	ource (TAD)	Maximum De	vice Frequency
Operation	ADCS2:ADCS0	PIC18C601/801	PIC18LC601/801 ⁽⁵⁾
2Tosc	000	1.25 MHz	666 kHz
4Tosc	100	2.50 MHz	1.33 MHz
8Tosc	001	5.00 MHz	2.67 MHz
16Tosc	101	10.0 MHz	5.33 MHz
32Tosc	010	20.0 MHz	10.67 MHz
64Tosc	110	—	_
RC	x11	—	_

TABLE 17-1: TAD VS. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 4 µs.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be out of specification.

5: This column is for the LC devices only.

POP	Pop Top of	Return Sta	ack	PUS	н	Push Top	of Return S	stack
Syntax:	[label] PO	OP		Synt	ax:	[label]	PUSH	
Operands:	None			Ope	rands:	None		
Operation:	(TOS) \rightarrow bit	t bucket		Ope	ration:	$(PC+2) \rightarrow$	TOS	
Status Affected:	None			State	us Affected:	None		
Encoding:	0000 0	000 000	0 0110	Enco	oding:	0000	0000 00	00 0101
Description:	The TOS va return stack TOS value t ous value th	and is disc then becom	arded. The es the previ-	Des	cription:	the return value is ρι	stack. The p ushed down	nto the top of revious TOS on the stack. mplementing
	return stack	tion is provid	led to enable			a software		difying TOS,
	return stack		ate a soft-	Wor	ds:	1		
	ware stack.			Cycl	es:	1		
Words:	1			QC	cle Activity			
Cycles:	1				Q1	Q2	Q3	Q4
Q Cycle Activity:					Decode	Push PC+2	No	No
Q1	Q2	Q3	Q4			onto return	operation	operation
Decode	No operation	Pop TOS value	No operation			stack		
			I	Exa	<u>mple</u> :	PUSH		
Example:	POP GOTO I	NEW			Before Instr TOS	uction	= 00345	Ah
Before Instr	uction				PC		= 00012	4h
TOS Stack (4		= 0031A						
Stack (1	level down)	= 014332	źn		After Instruc	ction		
After Instruc	tion				PC TOS		= 00012 = 00012	
TOS PC		= 014332 = NEW	2h			level down)	= 00012 = 00345	

RRNO	CF	Rotate Rig	ght f (no ca	rry)	SETF	Set f		
Synta	IX:	[label] F	RRNCF f[,	d [,a]]	Syntax:	[<i>label</i>] SE	Ff[,a]	
Opera	ands:	$0 \le f \le 255$	j		Operands:	$0 \le f \le 255$;	
		d ∈ [0,1]				a ∈ [0,1]		
-		a ∈ [0,1]			Operation:	$FFh\tof$		
Opera	ation:	$(f < n >) \rightarrow d$ $(f < 0 >) \rightarrow d$			Status Affected:	None		
Statur	s Affected:	(I<0>) → 0 N,Z	631<1>		Encoding:	0110	100a ff	ff ffff
		· · · · ·			Description:	The conter	nts of the spe	cified register
Enco	0	0100	00da ff), the Access
Descr	ription:		nts of registe	er Tare ght. If 'd' is 0,				overriding the the Bank will
				VREG. If 'd' is			,	BSR value.
		1, the resu	It is placed l	back in regis-	Words:	1	·	
), the Access overriding the	Cycles:	1		
			,	the Bank will	Q Cycle Activity:			
			d as per the		Q1	Q2	Q3	Q4
			register	rf 🕨	Decode	Read	Process	Write
						register 'f'	Data	register 'f'
Words		1						
Cycle	s:	1			Example:	SETF	REG	
Q Cyc	cle Activity:				Before Instru REG	uction = 5A	h	
г	Q1	Q2	Q3	Q4	After Instruc			
	Decode	Read register 'f'	Process Data	Write to destination	REG	= 0F	Fh	
L		- g.c.c.						
<u>Exam</u>	<u>ple 1</u> :	RRNCF R	EG					
В	Before Instru	iction						
	REG							
		= 1101 0	111					
	N Z	= ?	111					
Δ	Z	= ? = ?	111					
A		= ? = ?						
А	Z After Instruct REG N	= ? = ? tion = 1110 1 = 1						
Α	Z After Instruct REG	= ? = ? tion = 1110 1						
	Z After Instruct REG N	= ? = ? tion = 1110 1 = 1 = 0						
Exam	Z After Instruct REG N Z	= ? = ? tion = 1110 1 = 1 = 0 RRNCF R	011					
Exam	Z REG N Z apple <u>2</u> : Before Instru WREG	= ? = ? tion = 1110 1 = 1 = 0 RRNCF R iction = ?	011 REG, 0, 0					
Exam	Z After Instruct REG N Z aple 2: Before Instru	= ? = ? tion = 1110 1 = 1 = 0 RRNCF R	011 REG, 0, 0					
Exam	Z After Instruct REG N Z apple 2: Before Instru WREG REG	= ? = ? tion = 1110 1 = 1 = 0 RRNCF F iction = ? = 1101 0	011 REG, 0, 0					
<u>Exam</u> B	Z After Instruct REG N Z apple 2: Before Instru- WREG REG N Z After Instruct	= ? = ? tion = 1110 1 = 1 = 0 RRNCF R iction = ? = 1101 0 = ? = ?	011 REG, 0, 0					
<u>Exam</u> B	Z After Instruct REG N Z Before Instru WREG REG N Z After Instruct WREG	= ? = ? tion = 1110 1 = 1 = 0 RRNCF F action = ? = 1101 0 = ? = 1101 0 = ? = 1101 1	011 REG, 0, 0 111					
<u>Exam</u> B	Z After Instruct REG N Z apple 2: Before Instru- WREG REG N Z After Instruct	= ? = ? tion = 1110 1 = 1 = 0 RRNCF F intrino = ? = 1101 0 = ? = ? = ? tion	011 REG, 0, 0 111					

TBL	.wt	Table W	/rite			TBLWT (Co
Syn	tax:	[label]	TBLWT	(*; *+; *-;	+*)	Example 1:
Ope	rands:	None	None			
Ope	ration:	Holding	T*, T) → Prog Register; ₹ - No Cha		_PTR) or	TA TE MI After Ir
		if TBLW				TA TE
			T) \rightarrow Prog Register;	Mem (IBL	PIR) or	MI
		•	R) +1 \rightarrow T	BLPTR;		Example 2:
		if TBLW				Before
			T) → Prog Register;	Mem (TBL	PIR) or	TA TE
		•	R) -1 \rightarrow TE	BLPTR;		MI
		if TBLW				M
			R) +1 \rightarrow T T) \rightarrow Prog			After Ir
			Register;			TA TE
Stat	us Affecte	-	0 /			M
Enc	oding:	0000	0000	0000	11nn	MI
	5				nn=0 *	
					=1 *+	
					=3 +*	
Des	cription:		truction is ι s of Progra			1
		each by TBLPTF The LSt	PTR (a 21- te in the pro has a 2 M o of the TBL he program	ogram mer Byte addre _PTR seleo	nory. ss range. cts which	
		TBI	_PTR[0] =		Program	
		TBI	_PTR[0] =	1:Most Sig	gnificant Program	
			JWT instruc			
		 no ch 	ange			
			ncrement			
			lecrement crement			
Wor	de.	1	orement			
Cycl			if long wri	to is to on	chin	
Cyc	165.		if long wri I program r		-cnip	
QC	ycle Activi			_		
	Q1	Q2	Q3	Q		T
	Decode	No operation	No operation	N opera		
	NI.	Newson	N	Sp Si C		ł

TBLWT (Cont.)

<u>xample 1</u> :	TBLWT	*+;	
Before Instru TABLAT TBLPTR MEMORY	ction ′(00A356h)	= = =	55h 00A356h 0FFh
After Instructi TABLAT TBLPTR MEMORY	ons (table (00A356h)	write co = = =	ompletion) 55h 00A357h 55h
<u>Example 2</u> :	TBLWT	+*;	
	ction 7(01389Ah) 7(01389Bh)	= = =	34h 01389Ah 0FFh 0FFh
	on (table w (01389Ah) (01389Bh)	rite co = = = =	mpletion) 34h 01389Bh 0FFh 34h

No

operation

No operation

(Read

TABLAT)

No operation No operation

(Write to Holding

Register or Memory)

Timing Diagrams and Specifications275	
A/D Conversion	
Capture/Compare/PWM (CCP)	
CLKOUT and I/O276	
External Clock275	
I ² C Bus Data287	
I ² C Bus START/STOP Bits	
Oscillator Start-up Timer (OST)	
Power-up Timer (PWRT)280	
RESET	
Timer0 and Timer1281	
USART Synchronous Receive	
(Master/Slave)	
USART Synchronous Transmission	
(Master/Slave)291	
Watchdog Timer (WDT)	
TRISE Register	
TSTFSZ	
Two-Word Instructions	
TXSTA Register	
BRGH Bit	

U

Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
USART	177
Asynchronous Mode	183
Master Transmission	184
Receive Block Diagram	185
Reception	
Registers Associated with Reception	186
Registers Associated with Transmission	184
Transmit Block Diagram	183
Baud Rate Generator (BRG)	179
Baud Rate Error, Calculating	179
Baud Rate Formula	179
High Baud Rate Select (BRGH Bit)	179
Sampling	179
Serial Port Enable (SPEN Bit)	177
Synchronous Master Mode	187
Reception	189
Registers Associated with Reception	189
Registers Associated with Transmission	187
Timing Diagram,	
Synchronous Receive	
Timing Diagram,	
Synchronous Transmission	
Transmission	188
Synchronous Slave Mode	190
Registers Associated with Reception	191
Registers Associated with Transmission	190

W

Wake-up from SLEEP207	, 212
Timing Diagram	
Watchdog Timer (WDT)207	
Associated Registers	. 211
Block Diagram	. 211
Postscaler. See Postscaler, WDT	
Programming Considerations	. 210
RC Oscillator	. 210
Time-out Period	
Timing Diagram	. 280
WDTCON Register	. 210
Waveform for General Call Address Sequence	. 162
WCOL	, 170
WCOL Status Flag	. 165
Worldwide Sales and Service	. 318
WWW, On-Line Support7	, 315
x	

XORLW	
XORWF	