

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc601-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

		Pin N	umber				
Pin Name	PIC1	PIC18C601		PIC18C801		Buffer Type	
	TQFP PLCC		TQFP PLCC		Туре	1960	Description
							PORTA is a bi-directional I/O port.
RA0/AN0	24	34	30	42			
RA0					I/O	TTL	Digital I/O.
AN0					1	Analog	Analog input 0.
RA1/AN1	23	33	29	41		0	
RA1					I/O	TTL	Digital I/O.
AN1					1	Analog	Analog input 1.
RA2/AN2/VREF-	22	32	28	40			
RA2		02	20	10	I/O	TTL	Digital I/O.
AN2					., C	Analog	Analog input 2.
VREF-					i	Analog	A/D reference voltage (Low) input.
RA3/AN3/VREF+	21	31	27	39		J	····································
RA3	21	01	21	00	I/O	TTL	Digital I/O.
AN3					.″Ŭ	Analog	Analog input 3.
VREF+					i	Analog	A/D reference voltage (High) input.
RA4/T0CKI	28	39	34	47		J	······································
RA4	20	03	04	77	I/O	ST/OD	Digital I/O – Open drain when
					"	01/00	configured as output.
TOCKI					1	ST	Timer0 external clock input.
RA5/AN4/SS/LVDIN	27	38	33	46			
RA5		00	00	-0	I/O	TTL	Digital I/O.
AN4						Analog	Analog input 4.
SS						ST	SPI slave select input.
LVDIN					i	Analog	Low voltage detect input.
Legend: TTL = TTL	compati	hle innut	1	I	CI	v	OS compatible input or output

TABLE 1-2: PINOUT I/O	DESCRIPTIONS	(CONTINUED)
-----------------------	--------------	-------------

ST = Schmitt Trigger input with CMOS levels

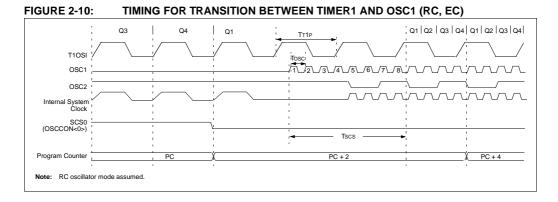
- = Input L
- P = Power

Analog = Analog input

0 = Output

= Open Drain (no P diode to VDD) OD

			Pin N	umber				
Pin Na	ame	PIC18	BC601	PIC18	BC801	Pin Type	Buffer Type	
		TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description
								PORTD is a bi-directional I/O port. These pins have TTL input buffers when external memory is enabled.
RD0/AD0		58	3	72	3			
RD0						I/O	ST	Digital I/O.
AD0						I/O	TTL	External memory address/data 0.
RD1/AD1		55	67	69	83			
RD1						I/O	ST	Digital I/O.
AD1						I/O	TTL	External memory address/data 1.
RD2/AD2		54	66	68	82			
RD2						I/O	ST	Digital I/O.
AD2						I/O	TTL	External memory address/data 2.
RD3/AD3		53	65	67	81			
RD3						I/O	ST	Digital I/O.
AD3						I/O	TTL	External memory address/data 3.
RD4/AD4		52	64	66	80			
RD4						I/O	ST	Digital I/O.
AD4						I/O	TTL	External memory address/data 4.
RD5/AD5		51	63	65	79			
RD5						I/O	ST	Digital I/O.
AD5						I/O	TTL	External memory address/data 5.
RD6/AD6		50	62	64	78			
RD6						I/O	ST	Digital I/O.
AD6						I/O	TTL	External memory address/data 6.
RD7/AD7		49	61	63	77			
RD7						I/O	ST	Digital I/O.
AD7						I/O	TTL	External memory address/data 7.
Legend: 1	TTL = TTL	compati	ble input			CI	MOS = CM	OS compatible input or output


TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

O = Output

OD = Open Drain (no P diode to VDD)

2.6.3 SCS0, SCS1 PRIORITY

If both SCS0 and SCS1 are set to '1' simultaneously, the SCS0 bit has priority over the SCS1 bit. This means that the low power option will take precedence over the PLL option. If both bits are cleared simultaneously, the system clock will come from OSC1, after a ToST time-out. If only the SCS0 bit is cleared, the system clock will come from the PLL output, following ToST and TPLL time.

TABLE 2-3: SCS0, SCS1 PRIORITY

SCS1	SCS0	Clock Source
0	0	Ext Oscillator OSC1
0	1	Timer1 Oscillator
1	0	HS + PLL
1	1	Timer1 Oscillator

2.7 Effects of SLEEP Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP, will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

2.8 Power-up Delays

Power-up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET until the device power supply and clock are stable. For additional information on RESET operation, see Section 3.0 RESET.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of TPWRT (parameter #33) on power-up only. The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable.

PIC18C601/801 devices provide a configuration bit, PWRTEN in CONFIG2L register, to enable or disable the Power-up Timer. By default, the Power-up Timer is enabled.

With the PLL enabled (HS4 oscillator mode), the time-out sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: the PWRT time-out is invoked after a POR time delay has expired, then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional time-out, called TPLL (parameter #7), to allow the PLL ample time to lock to the incoming clock frequency.

TABLE 2-4: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin
RC	Floating, external resistor should pull high	At logic low
EC	Floating	At logic low
LP and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at guiescent voltage level

Note: See Table 3-1 in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.

4.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. Figure 4-8 shows the data memory organization for PIC18C601/801 devices.

The data memory map is divided into banks that contain 256 bytes each. The lower four bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFR's are used for control and status of the controller and peripheral functions, while GPR's are used for data storage and scratch pad operations in the user's application. The SFR's start at the last location of Bank 15 (0FFFh) and grow downwards. GPR's start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

GPR banks 4 and 5 serve as a Program Memory called "Boot RAM", when PGRM bit in MEMCON is set. When PGRM bit is set, any read from "Boot RAM" returns '0's, while any write to it is ignored.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSR). Each FSR holds a 12-bit address value that can be used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing, or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access bank. Section 4.10 provides a detailed description of the Access bank.

4.9.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly. Indirect addressing operates through the File Select Registers (FSR). The operation of indirect addressing is shown in Section 4.12.

PIC18C601/801 devices have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all instructions. Bank 15 (0F80h to 0FFFh) contains SFR's. All other banks of data memory contain GPR registers starting with bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 4-2.

The SFR's can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations are unimplemented and read as '0's. See Table 4-2 for addresses for the SFRs.

4.9.3 SECURED ACCESS REGISTERS

PIC18C601/801 devices contain software programming options for safety critical peripherals. Because these safety critical peripherals can be programmed in software, registers used to control these peripherals are given limited access by the user code. This way, errant code will not accidentally change settings in peripherals that could cause catastrophic results.

The registers that are considered safety critical are the Watchdog Timer register (WDTCON), the External Memory Control register (MEMCON), the Oscillator Control register (OSCCON) and the Chip Select registers (CSSEL2 and CSELIO).

Two bits called Combination Lock (CMLK) bits, located in the lower two bits of the PSPCON register, must be set in sequence by user code to gain access to Secured Access registers.

6.3 Table Write

Table Write operations store data from the data memory space into external program memory.

PIC18C601/801devices perform Table Writes one byte at a time. Table Writes to external memory are two-cycle instructions, unless wait states are enabled. The last cycle writes the data to the external memory location.

16-bit interface Table Writes depend on the type of external device that is connected and the WM<1:0> bits in the MEMCON register (See Figure 5-2).

Example 6-2 describes how to use TBLWT.

EXAMPLE 6-2: TABLE WRITE CODE EXAMPLE

: Write	a byte to	location 0020h
CLRF	TBLPTRU	; clear upper 5 bits of TBLPTR
CLRF	TBLPTRH	; clear higher 8 bits of TBLPTR
MOVLW	20h	: Load 20h into
MOVWF	TBLPTRL	: TBLPTRL
MOVLW	55h	; Load 55h into
MOVWF	TBLAT	: TBLAT
TBLWT*		: Write it

7.0 8 X 8 HARDWARE MULTIPLIER

An 8 x 8 hardware multiplier is included in the ALU of PIC18C601/801 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the STATUS register.

Making the 8×8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in some applications previously reserved for Digital Signal Processors.

Table 7-1 shows a performance comparison between enhanced devices using the single cycle hardware multiply, and performing the same function without the hardware multiply.

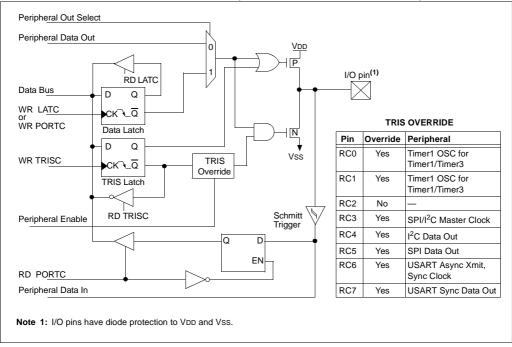
		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 25 MHz	@ 10 MHz	@ 4 MHz	
Q v Q uncigned	Without hardware multiply	13	69	11.0 μs	27.6 μs	69.0 μs	
8 x 8 unsigned	Hardware multiply	1	1	160.0 ns	400.0 ns	1.0 μs	
9 x 9 olanod	Without hardware multiply	33	91	14.6 μs	36.4 μs	91.0 μs	
8 x 8 signed	Hardware multiply	6	6	960.0 ns	2.4 μs	6.0 μs	
16 x 16 unsigned	Without hardware multiply	21	242	38.7 μs	96.8 μs	242.0 μs	
16 x 16 unsigned	Hardware multiply	24	24	3.8 μs	9.6 μs	24.0 μs	
16 x 16 signed	Without hardware multiply	52	254	40.6 μs	102.6 μs	254.0 μs	
TO A TO SIGNED	Hardware multiply	36	36	5.8 μs	14.4 μs	36.0 μs	

TABLE 7-1: PERFORMANCE COMPARISON

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.


PORTC is multiplexed with several peripheral functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC3:RC0 as inputs
		; RC5:RC4 as outputs
		; RC7:RC6 as inputs

FIGURE 9-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

Name	Bit#	Buffer Type	Function
RE0/AD8/A8 ⁽²⁾	bit0	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 8
RE1/AD9/A9 ⁽²⁾	bit1	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 9
RE2/AD10/A10 ⁽²⁾	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 10
RE3/AD11/A11 ⁽²⁾	bit3	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 11
RE4/AD12/A12 ⁽²⁾	bit4	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 12
RE5/AD13/A13 ⁽²⁾	bit5	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 13
RE6/AD14/A14 ⁽²⁾	bit6	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 14
RE7/AD15/A15 ⁽²⁾	bit7	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 15

TABLE 9-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.
2: REx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an

address only for PIC18C801 in 8-bit mode.

TABLE 9-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISE	PORTE Data Direction Control Register								1111 1111	1111 1111
PORTE	Read PORTE pin/Write PORTE Data Latch								XXXX XXXX	uuuu uuuu
LATE	Read PORTE Data Latch/Write PORTE Data Latch								xxxx xxxx	uuuu uuuu
MEMCON	EBDIS	PGRM	WAIT1	WAIT0		—	WM1	WM0	000000	000000

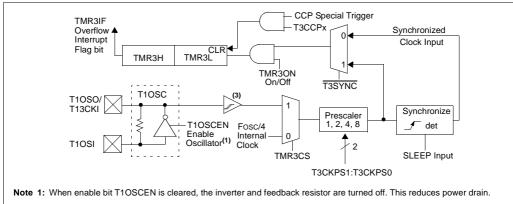
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTE.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
TMR1L	R1L Holding register for the Least Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu	
TMR1H	1H Holding register for the Most Significant Byte of the 16-bit TMR1 register								xxxx xxxx	uuuu uuuu
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

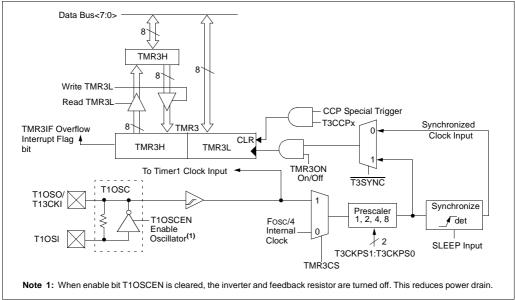
13.1 Timer3 Operation

Timer3 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON register).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.


When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer3 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 13.0).

FIGURE 13-1: TIMER3 BLOCK DIAGRAM

FIGURE 13-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE

15.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

15.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface[™] (SPI)
- Inter-Integrated Circuit[™] (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I^2C interface supports the following modes in hardware:

- · Master mode
- Multi-Master mode
- · Slave mode

15.2 Control Registers

The MSSP module has three associated registers. These include a status register and two control registers.

REGISTER 15-1: SSPSTAT REGISTER

Register 15-1 shows the MSSP Status Register (SSPSTAT), Register 15-2 shows the MSSP Control Register 1 (SSPCON1), and Register 15-3 shows the MSSP Control Register 2 (SSPCON2).

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
	SMP	CKE	D/A	Р	S	R/W	UA	BF				
	bit 7							bit 0				
bit 7	0 = Input da <u>SPI Slave n</u> SMP must l <u>In I²C Mast</u> 1= Slew rat	<u>mode:</u> ata sampled at ata sampled at	middle of dat en SPI is used ide: iled for standa	a output time d in Slave mo ard speed mo	ode ode (100 kH	z and 1 MH:	z)					
bit 6	CKE: SPI Clock Edge Select <u>CKP = 0:</u> 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK <u>CKP = 1:</u> 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK											
bit 5	1 = Indicate	D/A: Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address										
bit 4	 P: STOP bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last 											
bit 3	1 = Indicate	oit only. This bit is es that a STAR bit was not de	T bit has beer					ed.)				
bit 2	 RW: Read/Write bit Information (I²C mode only) This bit holds the R/W bit information following the last add<u>ress</u> match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit. In I²C Slave mode: 1 = Read 0 = Write In I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress. OR-ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. 											
bit 1	1 = Indicate	e Address (10-l es that the user s does not nee	needs to upo	date the addr	ess in the S	SPADD reg	ister					
bit 0	$\frac{\text{Receive (SI}}{1 = \text{Receive}}$ $0 = \text{Receive}$ $\frac{\text{Transmit (I}^2}{1 = \text{Data tra}}$	 a Address does not need to be updated BF: Buffer Full Status bit <u>Receive (SPI and I²C modes):</u> Receive complete, SSPBUF is full Receive not complete, SSPBUF is empty Transmit (I²C mode only): Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty 										
	Legend:											
	R = Readat		W = Writa	able bit	U = Unimp	lemented bi	t, read as '0'					
	- n = Value	at POR	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									

bit

bit

bit

bit

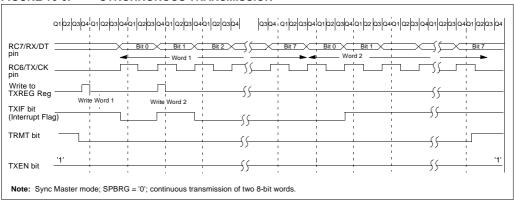
bit

bit

bit

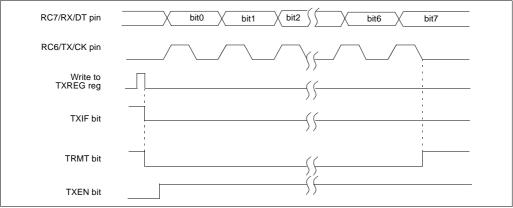
bit

- n = Value at POR


REGISTER 15-3: SSPCON2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit C	
1 = Enable	eneral Call En e interrupt whe al call address	en a general			eceived in	the SSPSR	1	
<u>In Master</u> 1 = Ackno	: Acknowledge Transmit mode wledge was ne wledge was re	<u>e:</u> ot received f	rom slave	er mode only	()			
<u>In Master</u> Value tran	cknowledge E <u>Receive mode</u> smitted when cknowledge wledge	<u>):</u>			quence at	the end of a	a receive	
<u>In Master</u> 1 = Initiate Autom	ACKEN: Acknowledge Sequence Enable bit (In I ² C Master mode only) In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle							
	eceive Enable es Receive mo /e idle		laster mode	only)				
SCK relea	P Condition E se control STOP conditi condition idle				ally cleare	d by hardwa	are.	
1 = Initiate by har	peated STAR Repeated ST dware. ated START co	ART conditi					d	
SEN: STA 1 = Initiate	RT Condition START cond Condition idle	Enabled bit (ition on SDA				ed by hardv	vare.	
Note:	For bits ACKI mode, this bit writes to the S	may not be	set (no spoo					
Legend:								
R = Reada	able bit	W = Wr	itable bit	U = Unimp	lemented l	bit, read as	'0'	

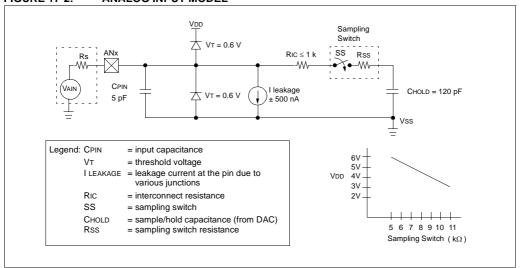
'1' = Bit is set


'0' = Bit is cleared

x = Bit is unknown

FIGURE 16-6: SYNCHRONOUS TRANSMISSION

FIGURE 16-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)



The value in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 17.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared, OR
 - Waiting for the A/D interrupt
- Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 17-2: ANALOG INPUT MODEL

BCF	Bit Clear	f					
Syntax:	[label] E	[<i>label</i>] BCF f, b [,a]					
Operands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$						
Operation:	$0 \rightarrow f < b >$						
Status Affected:	None						
Encoding:	1001	bbba	ffff	ffff			
Description:	Bit 'b' in re 0, the Acc overriding the Bank BSR valu	cess Ban the BSI will be se	k will be: R value.	selected, If 'a' = 1,			
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read register 'f'	Proce Data		Write gister 'f'			
Example:	BCF	FLAG_RE	G, 7				
Before Instru FLAG_R	iction EG = 0C7h						
After Instruct FLAG_R	tion EG = 47h						

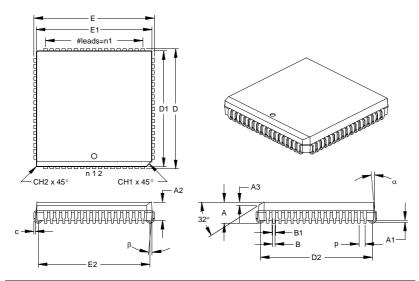
BN	Branch if	Negati	ve					
Syntax:	[<i>label</i>] B	[<i>label</i>] BN n						
Operands:	-128 ≤ n ≤	127						
Operation:	if negative (PC) + 2 +							
Status Affected:	None	None						
Encoding:	1110	0110	nnnn	ı nnnn				
Description:	gram will t The 2's co added to t have incre instruction	If the Negative bit is '1', then the pro- gram will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a						
Words:	1	IIISUUCU	011.					
Cycles:	1(2)	•						
Q Cycle Activity: If Jump:	1(2)							
Q1	Q2	Q3	3	Q4				
Decode	Read literal 'n'	Proce Data		Write to PC				
No	No	No		No				
operation	operation	operat	ion	operation				
If No Jump:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'n'	Proce Data		No operation				
	HERE	BN						
Example:	11151(15	DIN	Jump					
Example: Before Instru		DIN	Jump					
<u>Example</u> : Before Instru PC	uction	dress (H	-					

=

0; =

address (HERE+2)

If Negative PC


BRA	۱	Unconditi	onal Branch	า	BSI	F	Bit Set f		
Synt	ax:	[<i>label</i>] B	RA n		Syn	tax:	[label] B	SF f, b [,a]	
Ope	rands:	-1024 ≤ n	≤ 1023		Ope	erands:	$0 \le f \le 255$	5	
Ope	ration:	(PC) + 2 +	$2n \to PC$				0 ≤ b ≤ 7 a ∈ [0,1]		
Statu	us Affected:	None			On	eration:	a ∈ [0,1] 1 → f 		
Enco	oding:	1101	0nnn nnr	nn nnnn	•	us Affected:	None None		
Dese	Description: Add the 2's complement n to the PC. Since the PC				oding:	1000	bbba ff	ff ffff	
incremented to fetch the instruction, the new addr PC+2+2n. This instruction cycle instruction.		e next dress will be		scription:	Access Ba riding the I Bank will b	BSR value. e selected as	et. If 'a' is 0 elected, over- If 'a' is 1, the s per the BSR		
Wor	ds:	1					value (defa	ault).	
Cycl	es:	2			Wo	rds:	1		
QC	cle Activity:				Сус	les:	1		
	Q1	Q2	Q3	Q4	QC	ycle Activity:			
	Decode	Read literal	Process	Write to PC		Q1	Q2	Q3	Q4
	No operation	'n' No operation	Data No operation	No operation		Decode	Read register 'f'	Process Data	Write register 'f'
					Exa	imple:	BSF F	LAG_REG, 7	
	<u>mple</u> : Before Instru	HERE	BRA Jump			Before Instru FLAG_R		h	
	PC	= ade	dress (HERE)			After Instruct FLAG R		h	
	After Instruct PC		dress (Jump)						

CPFSGT	-	Compare f with WREG, skip if f > WREG					
Syntax:	[label] (CPFSGT f[,a]				
Operands:	• •	$0 \le f \le 255$					
Operation:	(f) – (WRE skip if (f) >	(f) – (WREG), skip if (f) > (WREG) (unsigned comparison)					
Status Affected:	None						
Encoding:	0110	010a ffi	ff ffff				
Description:	memory lo	Compares the contents of data memory location 'f' to the contents of the WREG by performing an unsigned subtraction.					
	the conter instruction is execute two-cycle Access Ba riding the	If the contents of 'f' are greater than the contents of , then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.					
Words:	1						
Cycles:		ycles if skip a a 2-word inst					
Q Cycle Activity:	00	02	04				
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	No operation				
If skip:			operanen				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
If skip and follow	ed by 2-word	instruction:					
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No operation	No operation	No operation	No operation				
Example:	HERE NGREATER GREATER	NGREATER :					
Before Instru							
PC WREG After Ins If REG	= Ad = ? truction	ldress (HERE) REG;					
PC		Idress (GREAT	'ER)				
If REG		REG;	-,				
PC	= Ad	dress (NGREA	TER)				

CPFSL	т	-	Compare f with WREG, skip if f < WREG						
Syntax:		[label]	[label] CPFSLT f[,a]						
Operan	ds:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]						
Operati	Operation:		(f) – (WREG), skip if (f) < (WREG) (unsigned comparison)						
Status /	Affected:	None	None						
Encodir	ng:	0110	000a fff	f ffff					
Description:		memory lo of WREG unsigned s If the conter contents o instruction is execute	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If the contents of 'f' are less than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the						
		Access Ba 1, the Ban	Access Bank will be selected. If 'a' is 1, the Bank will be selected as per the BSR value.						
Words:		1							
Cycles:			ycles if skip a a 2-word inst						
Q Cycle	Activity:								
	Q1	Q2	Q3	Q4					
[Decode	Read register 'f'	Process Data	No operation					
If skip:		0							
	Q1	Q2	Q3	Q4					
	No	No	No	No					
·	peration	operation	operation	operation					
If skip a		ed by 2-word							
r	Q1	Q2	Q3	Q4					
0	No peration	No operation	No operation	No operation					
-	No	No	No	No					
o	peration	operation	operation	operation					
<u>Exampl</u>	<u>e</u> :	NLESS	NLESS :						
Be	fore Instru PC WREG		= Address (HERE)						
Aft	er Instruct If REG PC If REG PC	< ₩ = Ad ≥ ₩	REG; dress (LESS) REG; dress (NLESS)					

84-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047 Drawing No. C04-093