

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc601t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Oscillator Configurations	21
3.0	RESET	
4.0	Memory Organization	
5.0	External Memory Interface	63
6.0	Table Reads/Table Writes	73
7.0	8 X 8 Hardware Multiplier	
8.0	Interrupts	
9.0	I/O Ports	
10.0	Timer0 Module	
11.0	Timer1 Module	
12.0	Timer2 Module	
13.0	Timer3 Module	
14.0	Capture/Compare/PWM (CCP) Modules	
15.0	Master Synchronous Serial Port (MSSP) Module	
16.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
17.0	10-bit Analog-to-Digital Converter (A/D) Module	
18.0	Low Voltage Detect	
19.0	Special Features of the CPU	
20.0	Instruction Set Summary	215
21.0	Development Support	
22.0	Electrical Characteristics	
23.0	DC and AC Characteristics Graphs and Tables	
24.0	Packaging Information	
Appen	dix A: Data Sheet Revision History	
Appen	dix B: Device Differences	
Appen	dix C: Device Migrations	
Appen	dix D: Migrating from other PICmicro Devices	
Appen	dix E: Development Tool Version Requirements	
Index .		
On-Lin	ne Support	
Reade	r Response	
Produc	ct Identification System	

NOTES:

	Pin Number						
Pin Name	PIC18C601		PIC1	8C801	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	iype	1960	Description
							PORTC is a bi-directional I/O port.
RC0/T1OSO/T13CKI	30	41	36	49			
RC0					I/O	ST	Digital I/O.
T1OSO					0		Timer1 oscillator output.
T13CKI					I	ST	Timer1/Timer3 external clock input.
RC1/T1OSI	29	40	35	48			
RC1					I/O	ST	Digital I/O.
T1OSI					I	CMOS	Timer1 oscillator input.
RC2/CCP1	33	44	43	56			
RC2					I/O	ST	Digital I/O.
CCP1					I/O	ST	Capture1 input/Compare1
							output/PWM1 output.
RC3/SCK/SCL	34	45	44	57			
RC3					I/O	ST	Digital I/O.
SCK					I/O	ST	Synchronous serial clock
							input/output for SPI mode.
SCL					I/O	ST	Synchronous serial clock
							input/output for I ² C mode.
RC4/SDI/SDA	35	46	45	58			
RC4					I/O	ST	Digital I/O.
SDI					I	ST	SPI data in.
SDA					I/O	ST	I ² C data I/O.
RC5/SDO	36	47	46	59			
RC5					I/O	ST	Digital I/O.
SDO					0		SPI data out.
RC6/TX/CK	31	42	37	50			
RC6					I/O	ST	Digital I/O.
ТХ					0	_	USART asynchronous transmit.
CK					I/O	ST	USART synchronous clock.
RC7/RX/DT	(RX/DT 32 43 38 51		51				
RC7					I/O	ST	Digital I/O.
RX					I	ST	USART asynchronous receive.
DT					I/O	ST	USART synchronous data.
Legend: TTL = TTL	compati	ble input			CI	MOS = CM	OS compatible input or output
ST = Schmitt Trigger input with CMOS levels Analog = Analog input							

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED	SCRIPTIONS (CONTINUED)
---	------------------------

igg ۱Ļ

L = Input

Р = Power

0

 Analog input
 Output
 Open Drain (no P diode to VDD) OD

		Pin N	umber				
Pin Name	PIC1	PIC18C601		8C801	Pin Type	Buffer	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description
							PORTF is a bi-directional I/O port.
RF0/AN5	18	28	24	36			
RF0					I/O	ST	Digital I/O.
AN5					I	Analog	Analog input 5.
RF1/AN6	17	27	23	35			
					1/0	SI	Digital I/O.
AINO					1	Analog	Analog Input 6.
RF2/AN7	16	26	18	30	1/0	OT	Distingt 1/0
RF2					1/0	51 Analog	Digital I/O.
	15	05	17	20	'	Analog	Analog input 7.
RF3/CSIU RF3	15	25	17	29	1/0	ST	
					1/0	ST	System bus chin select I/O
BF4/416	14	24		_	"."	01	Cyclem bud omp boloot #C.
BF4/CS2			16	28			
RF4					I/O	ST	Digital I/O.
A16					I/O	TTL	External memory address 16.
CS2					0	TTL	Chip select 2.
RF5/CS1	13	23	15	27			
RF5					I/O	ST	Digital I/O.
CS1					0	TTL	Chip select 1.
RF6/LB	12	22	14	26			
RF6					I/O	ST	Digital I/O.
LB					0	TTL	Low byte select signal for external
057/110		~ (memory interface.
RF7/UB	11	21	13	25	1/0	OT	Distingt 1/0
					0	51	Digital I/O. High byte select signal for external
05							memory interface.
Legend: TTL = TTL	compati	ble input	1	1	CI	MOS = CM	OS compatible input or output
ST = Sch	mitt Trigg	ger input v	with CMC	OS levels	Ar	nalog = Ana	alog input
I = Input O = Output							

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power

OD = Open Drain (no P diode to VDD)

TABLE 1-2:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	--------------------------------	-------------

	Pin Number							
Pin Name	PIC18C601		PIC1	BC801	Pin Type	Buffer Type		
	TQFP PLCC TQFP PLCC		Description					
							PORTJ is a bi-directional I/O port.	
RJ0/D0	—	—	39	52				
RJ0					I/O	ST	Digital I/O.	
D0					I/O	TTL	System bus data bit 0.	
RJ1/D1	—	—	40	53				
RJ1					I/O	ST	Digital I/O.	
D1					I/O	TTL	System bus data bit 1.	
RJ2/D2	—	—	41	54				
RJ2					I/O	ST	Digital I/O.	
D2					I/O	TTL	System bus data bit 2.	
RJ3/D3	—	—	42	55				
RJ3					I/O	ST	Digital I/O.	
D3					I/O	TTL	System bus data bit 3.	
RJ4/D4	—	—	59	73				
RJ4					I/O	ST	Digital I/O.	
D4					I/O	TTL	System bus data bit 4.	
RJ5/D5	—	—	60	74				
RJ5					I/O	ST	Digital I/O.	
D5					I/O	TTL	System bus data bit 5.	
RJ6/D6	—	—	61	75				
RJ6					I/O	ST	Digital I/O.	
D6					I/O	TTL	System bus data bit 6.	
RJ7/D7	—	—	62	76				
RJ7					1/0	ST	Digital I/O.	
D7					I/O	IIL	System bus data bit 7.	
Vss	9, 25,	19, 36,	11,31,	23, 44,	Р	_	Ground reference for logic and I/O pins.	
	41, 56	53, 68	51,70	65, 84				
VDD	10,26,	2, 20,	12,32,	2, 24,	P	—	Positive supply for logic and I/O pins.	
	38, 57	37, 49	48, 71	45, 61				
Avss	20	30	26	38	Р	—	Ground reference for analog modules.	
AVDD	19	29	25	37	Р	—	Positive supply for analog modules.	
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output								

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

Analog = Analog input O = Output

OD

= Open Drain (no P diode to VDD)

GURE 4-9:	SPECIAL	FUNCT	ION REGISTE	R MAP			
FFFh	TOSU	FDFh	INDF2	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2	FBCh	CCPR2H	F9Ch	MEMCON
FFBh	PCLATU	FDBh	PLUSW2	FBBh	CCPR2L	F9Bh	
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ
FF9h	PCL	FD9h	FSR2L	FB9h	Reserved	F99h	TRISH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	Reserved	F98h	TRISG
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	Reserved	F97h	TRISF
FF6h	TBLPTRL	FD6h	TMR0L	FB6h		F96h	TRISE
FF5h	TABLAT	FD5h	T0CON	FB5h		F95h	TRISD
FF4h	PRODH	FD4h	Reserved	FB4h	—	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH
FEFh	INDF0	FCFh	TMR1H	FAFh	SPBRG	F8Fh	LATG
FEEh	POSTINC0	FCEh	TMR1L	FAEh	RCREG	F8Eh	LATF
FEDh	POSTDEC0	FCDh	T1CON	FADh	TXREG	F8Dh	LATE
FECh	PREINC0	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD
FEBh	PLUSW0	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh		F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h		F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h		F88h	PORTJ
FE7h	INDF1	FC7h	SSPSTAT	FA7h	CSEL2	F87h	PORTH
FE6h	POSTINC1	FC6h	SSPCON1	FA6h	CSELIO	F86h	PORTG
FE5h	POSTDEC1	FC5h	SSPCON2	FA5h	—	F85h	PORTF
FE4h	PREINC1	FC4h	ADRESH	FA4h	—	F84h	PORTE
FE3h	PLUSW1	FC3h	ADRESL	FA3h	—	F83h	PORTD
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

8.1.2 PIR REGISTERS

The Peripheral Interrupt Request (PIR) registers contain the individual flag bits for the peripheral interrupts (Register 8-5). There are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON register).

> 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt.

8.1.3 PIE REGISTERS

The Peripheral Interrupt Enable (PIE) registers contain the individual enable bits for the peripheral interrupts (Register 8-6). There are two two Peripheral Interrupt Enable registers (PIE1, PIE2). When IPEN is clear, the PEIE bit must be set to enable any of these peripheral interrupts.

8.1.4 IPR REGISTERS

The Interrupt Priority (IPR) registers contain the individual priority bits for the peripheral interrupts (Register 8-9). There are two Peripheral Interrupt Priority registers (IPR1, IPR2). The operation of the priority bits requires that the Interrupt Priority Enable bit (IPEN) be set.

8.1.5 RCON REGISTER

The Reset Control (RCON) register contains the bit that is used to enable prioritized interrupts (IPEN).

REGISTER 8-4: RCON REGISTER

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0
IPEN	r	—	RI	TO	PD	POR	r
bit 7							bit 0

- bit 7 IPEN: Interrupt Priority Enable bit
 - 1 = Enable priority levels on interrupts
 - 0 = Disable priority levels on interrupts (16CXXX compatibility mode)
- bit 6 Reserved: Maintain as '0'
- bit 5 Unimplemented: Read as '0'
- bit 4 RI: RESET Instruction Flag bit For details of bit operation, see Register 4-4
- bit 3 **TO:** Watchdog Time-out Flag bit For details of bit operation, see Register 4-4
- bit 2 **PD:** Power-down Detection Flag bit For details of bit operation, see Register 4-4
- bit 1 **POR:** Power-on Reset Status bit For details of bit operation, see Register 4-4
- bit 0 Reserved: Maintain as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

14.0 CAPTURE/COMPARE/PWM (CCP) MODULES

REGISTER 14-1:

Each CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM Duty Cycle register. Table 14-1 shows the timer resources of the CCP module modes.

CCP1CON REGISTER

CCP2CON REGISTER

The operation of CCP1 is identical to that of CCP2, with the exception of the special event trigger. Therefore, operation of a CCP module in the following sections is described, with respect to CCP1.

Table 14-2 shows the interaction of the CCP modules.

Register 14-1 shows the CCPx Control registers (CCPxCON). For the CCP1 module, the register is called CCP1CON and for the CCP2 module, the register is called CCP2CON.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 CCP1CON ____ DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 bit 7 bit 0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CCP2CON DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0 bit 7 bit 0 bit 7-6 Unimplemented: Read as '0' bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0 Capture mode: Unused Compare mode: Unused PWM mode: These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits (DCx9:DCx2) of the duty cycle are found in CCPRxL. bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM off (resets CCPx module) 0001 = Reserved 0010 = Compare mode, toggle output on match (CCPxIF bit is set) 0011 = Reserved 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set) 1001 = Compare mode, Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set) 1010 = Compare mode, Generate software interrupt on compare match (CCPIF bit is set, CCP pin is unaffected) 1011 = Compare mode, Trigger special event (CCPIF bit is set, reset TMR1 or TMR3) 11xx = PWM mode Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 15-2:	SSPCON1 REGISTER								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	
	bit 7	-1	-1	1		<u> </u>	<u> </u>	bit 0	
 bit 7 WCOL: Write Collision Detect bit Master mode: 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for transmission to be started 0 = No collision Slave mode: 1 = The SSPBUF register is written while it is still transmitting the previous word (must be clea software) 								id for a e cleared in	
bit 6	0 = No collis SSPOV: Re In SPI mode 1 = A new b overflow user mu mode, t to the S 0 = No over	sion eceive Overflo <u>e:</u> oyte is receivee w, the data in S ust read the SS the overflow bi SSPBUF regist rflow	w Indicator bit d while the SS SSPSR is loss SPBUF, even i tis not set sind ter. (Must be c	t SPBUF registr Overflow car if only transm ce each new i leared in soft	ər is still holdi n only occur i nitting data, to reception (an ware.)	ing the previ in Slave moo avoid settir d transmissi	ious data. In de. In Slave ng overflow. I ion) is initiate	case of mode, the In Master d by writing	
bit 5	In I ² C mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.) 0 = No overflow								
Dit S	bit 5 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output. In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port port 0 = Disables serial port and configures these pins as I/O port pins In I ² C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port port						t. ial port pins rial port pins		
bit 4	bit 4 CKP: Clock Polarity Select bit <u>In SPI mode:</u> 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level <u>In I²C Slave mode:</u> SCK release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) <u>In I²C Master mode</u> Unued								
Unused in this mode bit 3 - 0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = FOSC/64 0011 = SPI Slave mode, clock = SCK pin. SS pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS car 0101 = SPI Slave mode, 7-bit address 0111 = I ² C Slave mode, 10-bit address 1000 = I ² C Master mode, clock = Fosc / (4 * (SSPADD+1)) 1001 = Reserved 1010 = Reserved 1011 = I ² C firmware controlled Master mode (Slave idle) 1100 = Reserved 1101 = Reserved 1101 = Reserved 1101 = Reserved 1101 = I ² C Slave mode, 7-bit address with START and STOP bit interrupi 1111 = I ² C Slave mode, 10-bit address with START and STOP bit interrupi						⊭d. ∋d. SS can ł it interrupts bit interrupt:	be used as I enabled s enabled	VO pin.	
	Legend:								
	R = Readat	ble bit	W = Writ	table bit	U = Unimp ^r	lemented bi	t, read as '0	,	
	- n = Value	at POR	'1' = Bit i	is set	'0' = Bit is c	cleared	x = Bit is ur	nknown	

15.4.6 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START Condition Enable (SEN) bit (SSPCON2 register). If the SDA and SCL pins are sampled high, the baud rate generator is re-loaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high, is the START condition, and causes the S bit (SSPSTAT register) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2 register) will be automatically cleared by hardware, the baud rate generator is suspended leaving the SDA line held low and the START condition is complete.

Note:	If at the beginning of the START condition, the SDA and SCL pins are already sam- pled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag
	BCLIF is set, the START condition is aborted, and the l^2 C module is reset into its IDLE state.

15.4.6.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

FIGURE 15-13: FIRST START BIT TIMING

15.4.10 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence enable bit, ACKEN (SSPCON2 register). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge Data bit (ACKDT) is presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is asampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 15-17).

15.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

15.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2 register). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT register) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-18).

15.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-17: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 15-18: STOP CONDITION RECEIVE OR TRANSMIT MODE

Advance Information

TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	F	osc = 25 N	IHz		20 MHz	
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-	
1.2	NA	-	-	NA	-	-
2.4	2.40	-0.15	162	2.40	+0.16	129
9.6	9.53	-0.76	40	9.47	-1.36	32
19.2	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	4	78.13	+1.73	3
96	97.66	+1.73	3	NA	-	-
300	NA	-	-	312.50	+4.17	0
500	NA	-	-	NA	-	-
HIGH	390.63	-	0	312.50	-	0
LOW	1.53	-	255	1.22	-	255

BAUD	F	osc = 16 N	IHz		10 MHz			7.15909 M⊦	Iz		5.0688 MH	lz
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-		NA	-		NA	-	
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	NA	-	-	78.13	+1.73	1	NA	-	-	79.20	+3.13	0
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
	1											

BAUD		Fosc = 4 M	Hz	3	3.579545 M	Hz		1 MHz			32.768 kH	Iz
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)									
0.3	0.30	-0.16		0.30	+0.23		0.30	+0.16		NA	-	
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	NA	-	-	NA	-	-
9.6	NA	-	-	9.32	-2.90	5	NA	-	-	NA	-	-
19.2	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	NA	-	-									
96	NA	-	-									
300	NA	-	-									
500	NA	-	-									
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA register).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

When setting up a Synchronous Slave Reception, follow these steps:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART Tra	ansmit Regist	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

Model Model <th< th=""><th></th><th>PIC12CXXX</th><th>PIC14000</th><th>PIC16C5X</th><th>X9D91DI9</th><th>PIC16CXXX</th><th>PIC16F62X</th><th>PIC16C7X</th><th>XX7281219</th><th>PIC16C8X</th><th>PIC16F8XX</th><th>XX62912I4</th><th>X4371319</th><th>XXTOTIOI9</th><th>PIC18CXX2</th><th>83CXX 52CXX/ 54CXX/</th><th>нсаххх</th><th>мсвеххх</th><th>MCP2510</th></th<>		PIC12CXXX	PIC14000	PIC16C5X	X9D91DI9	PIC16CXXX	PIC16F62X	PIC16C7X	XX7281219	PIC16C8X	PIC16F8XX	XX62912I4	X4371319	XXTOTIOI9	PIC18CXX2	83CXX 52CXX/ 54CXX/	нсаххх	мсвеххх	MCP2510
MPLAB* Complex Number of the complex <th>MPLAB[®] Integrated Development Environment</th> <th>`</th> <th>></th> <th></th> <th></th> <th></th> <th></th>	MPLAB [®] Integrated Development Environment	`	>	>	>	>	>	>	>	>	>	>	>	>	>				
MetAB Controlled Implementation Controlled Implementation Controlled Implementation Controlled Contred Contred Contre	MPLAB® C17 C Compiler												>	>					
Metal CEEPCulti-Circuit Emulator C <thc< th=""> C <thc< th=""><th>g MPLAB® C18 C Compiler</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>></th><th></th><th></th><th></th><th></th></thc<></thc<>	g MPLAB® C18 C Compiler														>				
MetAd* GE MetAd* MetA	MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
CEPC ¹ Control Control <t< th=""><th>MPLAB® ICE In-Circuit Emulator</th><th>></th><th>></th><th>></th><th>></th><th>></th><th>**`</th><th>></th><th>></th><th>></th><th>></th><th>></th><th>></th><th>></th><th>></th><th></th><th></th><th></th><th></th></t<>	MPLAB® ICE In-Circuit Emulator	>	>	>	>	>	**`	>	>	>	>	>	>	>	>				
MPLAB MPLAB <th< th=""><th>ICEPICTM In-Circuit Emulator</th><th>></th><th></th><th>></th><th>`</th><th>></th><th></th><th>></th><th>></th><th>></th><th></th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	ICEPIC TM In-Circuit Emulator	>		>	`	>		>	>	>		>							
Procession Proprint Level Contraction Contraction <thcontraction< th=""> <thcontraction< th=""></thcontraction<></thcontraction<>	MPLAB® ICD In-Circuit Debugger				*			*,			>								
Product Product <t< td=""><th>PICSTART® Plus Entry Level</th><td>></td><td>></td><td>></td><td>></td><td>></td><td>**></td><td>></td><td>></td><td>></td><td>`</td><td>></td><td>></td><td>></td><td>></td><td></td><td></td><td></td><td></td></t<>	PICSTART® Plus Entry Level	>	>	>	>	>	**>	>	>	>	`	>	>	>	>				
PICDEM [™] 1 Demonstration T <th>ଅନ୍ତ ସୁସ୍ଥ PRO MATE® I Device Programmer</th> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>** ></td> <td>></td> <td></td> <td></td>	ଅନ୍ତ ସୁସ୍ଥ PRO MATE® I Device Programmer	>	>	>	>	>	** >	>	>	>	>	>	>	>	>	>	>		
PICDEM ^{TW} 2 bemonstration · + · + Board · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	PICDEM TM 1 Demonstration Board			`		`		5		>			>						
PICDEM™ 3 Demonstration PICDEM™ 44 DEMONSTRATICE PICE DEMONSTRATICE PICE DEMONSTRATICE PICDEM™ 44 DEMONSTRATICE PICE DEMONSTRATE PICE DEMONSTRATICE PICE DEMON	PICDEM TM 2 Demonstration Board				÷			4							>				
PICDEMIN 14A Demonstration Board •<	PICDEM TM 3 Demonstration Board											`							
PICDEM ^{TW} 17 Demonstration Demonstration Demonstration Demonstration Board KEELo [®] Evaluation Kit N <	E PICDEM [™] 14A Demonstration Board		>																
KELOO® Evaluation Kit Image: Comparison Mathematical Kit Image: C	☐ PICDEM [™] 17 Demonstration E Board													>					
KELOO® Transponder Kit Image: Comparison for the	KEELoq® Evaluation Kit																>		
microID TM Programmer's Kit microID TM Programmer's Kit <th< td=""><th>KEELoq® Transponder Kit</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>`</td><td></td><td></td></th<>	KEELoq® Transponder Kit																`		
125 kHz microlD TM 125 kHz microlD TM Developer's kit Developer's kit Developer's kit 125 kHz anticollision 1356 MHz Anticollision 1356 MHz Anticollision microlD TM Developer's kit 1 MCP2510 CAN Developer's kit 1	microlD TM Programmer's Kit																	>	
125 kHz Anticollision microlD ^{1M} 125 kHz Anticollision microlD ^{1M} Developer's Kit 13.56 MHz Anticollision microlD ^{1M} Developer's Kit 13.56 MHz Anticollision MCP2510 CAN Developer's Kit 1	Developer's Kit																	>	
13.56 MHz Anticollision 13.56 MHz Anticollision microID TM Developer's Kit C MCP2510 CAN Developer's Kit C	125 kHz Anticollision microlD TM Developer's Kit																	>	
MCP2510 CAN Developer's Kit	13.56 MHz Anticollision microlD™ Developer's Kit																	>	
	MCP2510 CAN Developer's Kit																		>

TABLE 21-1: DEVELOPMENT TOOLS FROM MICROCHIP

© 2001-2013 Microchip Technology Inc.

22.1 DC Characteristics (Continued)

PIC18LC60 (Industria	1/801		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial						
PIC18C601 (Industria	/801 I, Extended)		Standa Operat	ard Ope ing temp	rating C perature	ondition -40°C -40°C	ns (unless otherwise stated) ≤ TA ≤ +85°C for industrial ≤ TA ≤ +125°C for extended		
Param No.	Symbol	Characteristic/ Device	Min	Тур	Max	Units	Conditions		
D010	Idd	Supply Current ^(2,4)							
		PIC18LC601/801	_	TBD	TBD	mA	RC osc option Forsc = 4 MHz, VDp = 2.5V		
D010		PIC18C601/801	_	TBD	TBD	(mA	RC osc options Fosc = 4 MHz, VDD = 4.2V		
D010A		PIC18LC601/801		TBD <	ABD ,	HA	LP osc option Fosc = 32 kHz, VDD = 2.5V		
D010A		PIC18C601/801	\sim	TBP	твр	A	LP osc option Fosc = 32 kHz, VDD = 4.2V		
D010C		PIC18LC601/801		TBD	45	mA	EC osc option, Fosc = 25 MHz, VDD = 5.5V		
D010C		PIC186601/801			45	mA	EC osc option, Fosc = 25 MHz, VDD = 5.5V		
D013		FIE18LC601/801		_	TBD 50	mA mA	HS osc options FOSC = 6 MHz, VDD = $2.5V$ FOSC = 25 MHz, VDD = $5.5V$ HS + PLL osc option		
D013	S/	PIC18C601/801	_	_	50	mA	POSC = 10 MHz, VDD = 5.5 V HS osc option FOSC = 25 MHz, VDD = 5.5 V HS + PLL osc option		
D014		PIC18LC601/801	-	_	50	mA	FOSC = 10 MHz, VDD = 5.5V Timer1 osc option		
			_	—	48 TBD	μΑ μΑ	Fosc = 32 kHz, VDD = 2.5V Fosc = 32 kHz, VDD = 2.5V, 25°C		
D014		PIC18C601/801			TBD TBD	μΑ μΑ	OSCB osc option Fosc = 32 kHz, VDD = 4.2V Fosc = 32 kHz, VDD = 4.2V, 25°C		

Legend: Rows with industrial-extended data are shaded for improved readability.

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSs, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).
- 4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

FIGURE 22-7: **PROGRAM MEMORY READ TIMING DIAGRAM**

Operating Conditions: 2.0V <Vcc <5.5V, -40°C <TA <125°C, unless otherwise stated.

TABLE 22-6:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	---

Param No.	Symbol	Characteristics	Min	Тур	Max	Units
150	TadV2alL	Address out valid to ALE \downarrow (address setup time)	0.25TcY-10	—	—	ns
151	TalL2adl	$ALE\downarrow$ to address out invalid (address hold time)	5	—	—	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$		0.125Tcy	—	ns
160	TadZ2oeL	AD high-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	1228	_	—	ns
161	ToeH2adD	OE ↑ to AD driven	0.125Tcy-5	_	—	ns
162	TadV2oeH	LS data valid before OE ↑ (data setup hime)	20	_	—	ns
163	ToeH2adl	OE ↑ to data in invalid (data hold time)	0	_	—	ns
164	TalH2alL	ALE pulse width	_	Тсү	—	ns
165	ToeL2oeH	OE pulse width	0.5Tcy-5	0.5TCY	—	ns
166	TalH2alH	ALE↑ to ALE↑ (cycle time)	_	0.25Tcy	—	ns
167	Tacc	Address valid to data valid	0.75Tcy-25	_	—	ns
168	Тое	$\overline{OE} \downarrow$ to data valid		_	0.5Tcy-25	ns
169	TalL2oeH	ALE \downarrow to \overline{OE} \uparrow	0.625Tcy-10	_	0.625Tcy+10	ns
171	TalH2csL	Chip select active to ALE \downarrow	0.25Tcy-20	_	—	ns
171A	TubL2oeH	AD valid to chip select active	_	_	10	ns

TABLE 22-11: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param. No.	Symbol		Characteris	tic	Min	Max	Units	Conditions
50	TccL	CCPx input low	No Presca	ler	0.5Tcy + 20	_	ns	
		time	With	PIC18C601/801		^ _	ns	
			Prescaler	PIC18LC601/8Q1	10 20	_	ns	
51	TccH	CCPxinputhigh	No Presca	ler	015TCY + 20		ns	
		time	With	PIC180601/801	10	—	ns	
			Prescaler	P1C18LC601/801	20		ns	
52	TccP	CCPx input peri	od		<u>3Tcy + 40</u>		ns	N = prescale
					N			value (1, 4 or 16)
53	TccR	CCPx output fat	time /	PIC18C601/801	—	25	ns	
			120	PIC18LC601/801	—	45	ns	
54	TccF	CCPx output fall	l time	PIC18C601/801	—	25	ns	
				PIC18LC601/801	—	45	ns	

NOTES: