

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc801-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin N	umber				
Pin Name	PIC1	BC601	PIC18C801		Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description
							PORTE is a bi-directional I/O port.
RE0/AD8	2	11	4	15			
RE0					I/O	ST	Digital I/O.
AD8					I/O	TTL	External memory address/data 8.
RE1/AD9	1	10	3	14			
RE1					I/O	ST	Digital I/O.
AD9					I/O	TTL	External memory address/data 9.
RE2/AD10	64	9	78	9			-
RE2			_		I/O	ST	Digital I/O.
AD10					I/O	TTL	External memory address/data 10.
RE3/AD11	63	8	77	8			
RE3					I/O	ST	Digital I/O.
AD11					I/O	TTL	External memory address/data 11.
RE4/AD12	62	7	76	7			-
RE4					I/O	ST	Digital I/O.
AD12					I/O	TTL	External memory address/data 12.
RE5/AD13	61	6	75	6			-
RE5		Ŭ		č	I/O	ST	Digital I/O.
AD13					I/O	TTL	External memory address/data 13.
RE6/AD14	60	5	74	5			,
RE6	00	5		5	I/O	ST	Digital I/O.
AD14					1/O	TTL	External memory address/data 14.
RE7/AD15	59	4	73	4			,
RE7	00	•		•	I/O	ST	Digital I/O.
AD15					1/O	ST	External memory address/data 15.
-	TL compati	ble input	1			-	IOS compatible input or output

TABLE 1-2:	PINOUT I/O DESCRIPTIONS	(CONTINUED)

ST = Schmitt Trigger input with CMOS levels

= Input I.

P = Power

Analog = Analog input

0 = Output

OD = Open Drain (no P diode to VDD)

Register	Applicable Devices		Power-on Reset	MCLR Reset WDT Reset Reset Instruction Stack Over/Underflow Reset	Wake-up via WDT or Interrupt		
POSTINC2	601	801	(Note 5)	(Note 5)	(Note 5)		
POSTDEC2	601	801	(Note 5)	(Note 5)	(Note 5)		
PREINC2	601	801	(Note 5)	(Note 5)	(Note 5)		
PLUSW2	601	801	(Note 5)	(Note 5)	(Note 5)		
FSR2H	601	801	0000	0000	uuuu		
FSR2L	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
STATUS	601	801	x xxxx	u uuuu	u uuuu		
TMR0H	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR0L	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu		
T0CON	601	801	1111 1111	1111 1111	uuuu uuuu		
OSCCON	601	801	00 0-00	uu u-u0	uu u-uu		
LVDCON	601	801	00 0101	00 0101	uu uuuu		
WDTCON	601	801	1111	uuuu	uuuu		
RCON ⁽⁴⁾	601	801	0r-1 11qr	0r-1 qqur	ur-u qqur		
TMR1H	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TMR1L	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu		
T1CON	601	801	0-00 0000	u-uu uuuu	u-uu uuuu		
TMR2	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
PR2	601	801	1111 1111	1111 1111	1111 1111		
T2CON	601	801	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
SSPADD	601	801	0000 0000	0000 0000	uuuu uuuu		
SSPSTAT	601	801	0000 0000	0000 0000	uuuu uuuu		
SSPCON1	601	801	0000 0000	0000 0000	uuuu uuuu		
SSPCON2	601	801	0000 0000	0000 0000	uuuu uuuu		
ADRESH	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADRESL	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu		
ADCON0	601	801	00 0000	00 0000	uu uuuu		
ADCON1	601	801	-000 0000	-000 0000	-uuu uuuu		
ADCON2	601	801	0 0 0 0	0000	uuuu		
CCPR1H	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCPR1L	601	801	XXXX XXXX	uuuu uuuu	uuuu uuuu		
CCP1CON	601	801	00 0000	00 0000	uu uuuu		

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', ~q = value depends on condition, r = reserved, maintain '0'

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (00008h or 00018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are updated with the current value of the PC. The SKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for RESET value for specific condition.
- 5: This is not a physical register. It is an indirect pointer that addresses another register. The contents returned is the value contained in the addressed register.

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pop values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These RESETS are enabled/disabled by programming the STVREN configuration bit in CONFIG4L register.

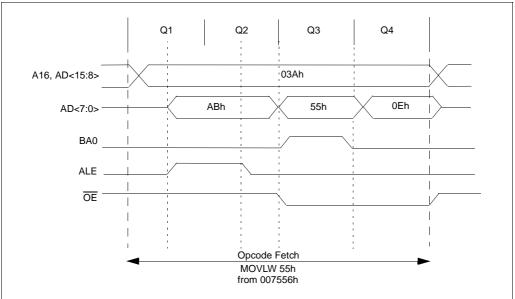
When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR.

4.3 Fast Register Stack

A "fast return" option is available for interrupts and calls. A fast register stack is provided for the STATUS, WREG and BSR registers, and is only one layer in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the fast register stack are then loaded back into the working registers, if the fast return instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.


If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a fast call instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
• SUB1 •	
• • RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

5.2.2 8-BIT DE-MULTIPLEXED MODE

The 8-bit De-Multiplexed mode applies only to the PIC18C801. Data and address lines are available separately. External components are not necessary in this mode.

For 8-bit De-Multiplexed mode on the PIC18C801, the instructions are fetched as two 8-bit bytes on a dedicated data bus (PORTJ). The address will be presented for the entire duration of the fetch cycle on a separate address bus. The two instruction bytes are sequentially fetched within one instruction cycle (TcY). Therefore, the designer must choose external memory devices according to timing calculations, based on 1/2 TcY (2 times instruction rate). For proper memory speed selection, setup and hold times must be considered. The Address Latch Enable (ALE) pin is left unconnected, since glue logic is not necessary. The \overline{OE} output enable signal will enable one byte of program memory for a portion of the instruction cycle, then BA0 will change and the second byte will be enabled to form the 16-bit instruction word. The least significant bit of the address, BA0, must be connected to the memory devices in this mode. Figure 5-3 shows an example of 8-bit De-Multiplexed mode on the PIC18C801. The control signals used in 8-bit De-Multiplexed mode are outlined in Register 5-2. Register 5-4 describes 8-bit De-Multiplexed mode timing.

8.0 INTERRUPTS

PIC18C601/801 devices have 15 interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high priority level, or a low priority level. The high priority interrupt vector is at 000008h and the low priority interrupt vector is at 000018h. High priority interrupt events will override any low priority interrupts that may be in progress.

There are 10 registers that are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2
- PIE1, PIE2
- IPR1, IPR2

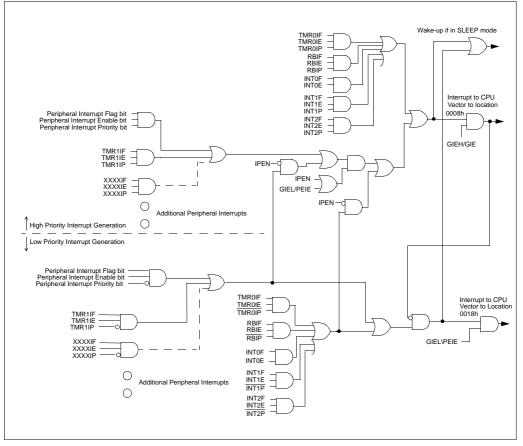
It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- · Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON register). When interrupt priority is enabled, there are two bits that enable interrupts globally. Setting the GIEH bit (INTCON register) enables all interrupts that have the priority bit set. Setting the GIEL bit (INTCON register) enables all interrupts that have the priority bit cleared. When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority level. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. The PEIE bit (INTCON register) enables/disables all peripheral interrupt sources. The GIE bit (INTCON register) enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.


When an interrupt is responded to, the Global Interrupt Enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts, to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

REGISTER 8-3: INTCON3 REGISTER

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
INT2IP	INT1IP	_	INT2IE	INT1IE	—	INT2IF	INT1IF			
bit 7							bit			
INT2IP: IN 1 = High pr 0 = Low pri		nterrupt Prior	ity bit							
INT1IP: IN 1 = High pr 0 = Low pri		nterrupt Prior	ity bit							
Unimplem	ented: Read	as '0'								
INT2IE: INT2 External Interrupt Enable bit 1 = Enables the INT2 external interrupt 0 = Disables the INT2 external interrupt										
1 = Enable	T1 External Ir s the INT1 ex s the INT1 e:	ternal interru	ıpt							
Unimplem	ented: Read	as '0'								
1 = The IN	T2 External Ir T2 external in T2 external in	terrupt occu	rred (must l	be cleared in	software)					
1 = The IN	T1 External Ir T1 external in T1 external in	terrupt occu	rred (must b	e cleared in	software)					
Legend:										
R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented	bit, read as	'0'			
- n = Value	at POR	'1' = Bit	is set	'0' = Bit is (cleared	x = Bit is u	nknown			

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

REGISTER 8-8: PIE2 REGISTER

- n = Value at POR

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	_	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE					
	bit 7							bit 0					
bit 7-4	Unimplem	ented: Read	as '0'										
bit 3	1 = Enable	BCLIE: Bus Collision Interrupt Enable bit 1 = Enabled 0 = Disabled											
bit 2	LVDIE: Low 1 = Enable 0 = Disable		tect Interrupt	Enable bit									
bit 1	1 = Enables	MR3 Overflo s the TMR3 o s the TMR3	overflow inte	rrupt									
bit 0	1 = Enable:	 0 = Disables the TMR3 overflow interrupt CCP2IE: CCP2 Interrupt Enable bit 1 = Enables the CCP2 interrupt 0 = Disables the CCP2 interrupt 											
	Legend:												
	R = Readat	ole bit	W = Wr	itable bit	U = Unimp	lemented b	oit, read as '	0'					

'0' = Bit is cleared

x = Bit is unknown

'1' = Bit is set

REGISTER 8-9: IPR1 REGISTER

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP					
bit 7							bit 0					
Unimplom	ontod: Pood	as '0'										
•			h.:.									
ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority												
 B = Low priority RCIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority 												
TXIP : USART Transmit Interrupt Priority bit 1 = High priority												
1 = High p	riority	nous Serial I	Port Interrup	ot Priority bit								
1 = High p	riority	ot Priority bit										
1 = High p	riority	Match Interr	upt Priority	oit								
1 = High p	riority	w Interrupt F	Priority bit									
Legend:												
R = Reada	ble bit	W = Wr	itable bit	U = Unimp	plemented b	oit, read as	'0'					
	bit 7 bit 7 ADIP: A/D 1 = High p 0 = Low pr RCIP: USA 1 = High p 0 = Low pr TXIP: USA 1 = High p 0 = Low pr SSPIP: Ma 1 = High p 0 = Low pr SSPIP: Ma 1 = High p 0 = Low pr CCP1IP: CC 1 = High p 0 = Low pr TMR2IP: T 1 = High p 0 = Low pr TMR1IP: T 1 = High p 0 = Low pr	ADIP bit 7 Unimplemented: Read ADIP: A/D Converter In 1 = High priority 0 = Low priority RCIP: USART Receive 1 = High priority 0 = Low priority TXIP: USART Receive 1 = High priority 0 = Low priority SSPIP: Master Synchrod 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrup 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 1 = High priority 0 = Low priority	ADIP RCIP bit 7 Unimplemented: Read as '0' ADIP: A/D Converter Interrupt Priori 1 = High priority 0 = Low priority RCIP: USART Receive Interrupt Priori 1 = High priority 0 = Low priority TXIP: USART Transmit Interrupt Priori 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial II 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority 1 = High priority 0 = Low priority TMR2IP: TMR1 Overflow Interrupt F 1 = High priority 0 = Low priority	ADIP RCIP TXIP bit 7 Unimplemented: Read as '0' ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority RCIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority TXIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority TXIP: USART Transmit Interrupt Priority bit 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial Port Interrupt 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority II 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority TMR1P: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority Legend:	ADIP RCIP TXIP SSPIP bit 7 Unimplemented: Read as '0' ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority RCIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority TXIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority TXIP: USART Transmit Interrupt Priority bit 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority TMR1P: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority Legend:	ADIP RCIP TXIP SSPIP CCP1IP bit 7 Unimplemented: Read as '0' ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority RCIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority TXIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority	ADIP RCIP TXIP SSPIP CCP1IP TMR2IP bit 7 Unimplemented: Read as '0' ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority RCIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority TXIP: USART Receive Interrupt Priority bit 1 = High priority 0 = Low priority SSPIP: USART Transmit Interrupt Priority bit 1 = High priority 0 = Low priority SSPIP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority					

'1' = Bit is set

- n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

9.0 I/O PORTS

Depending on the device selected, there are up to 9 ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- · LAT register (output latch)

The data latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

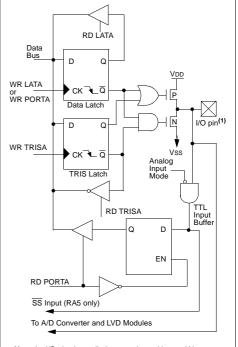
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

Read-modify-write operations on the LATA register, reads and writes the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1). On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


Note: On a Power-on Reset, PORTA pins RA3:RA0 and RA5 default to analog inputs.

EXAMPLE 9-1: INITIALIZING PORTA

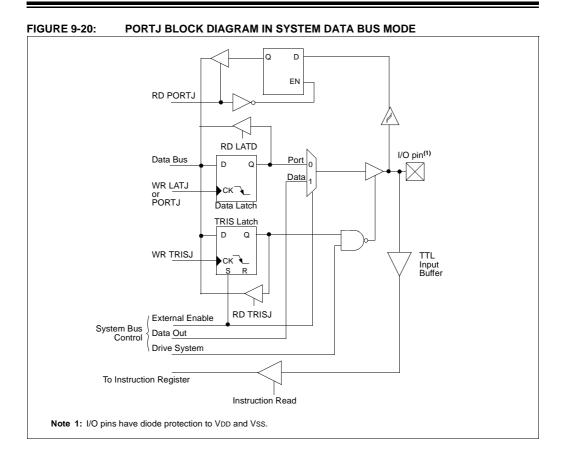

CLRF	PORTA	; Initialize PORTA by ; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA3:RA0 as inputs
		; RA5:RA4 as outputs

FIGURE 9-1:

RA3:RA0 AND RA5 PINS BLOCK DIAGRAM

18.1 Control Register

The Low Voltage Detect Control register (Register 18-1) controls the operation of the Low Voltage Detect circuitry.

REGISTER 18-1: LVDCON REGISTER

	U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1					
	_	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0					
	bit 7							bit 0					
bit 7-6	Unimplem	ented: Read	d as '0'										
bit 5	IRVST: Internal Reference Voltage Stable Flag bit												
	1 = Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified voltage range												
	 Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the LVD interrupt should not be enabled 												
bit 4	LVDEN: Lo	w Voltage D	etect Power	Enable bit									
		/ I	ers up LVD o ers down LV										
bit 3-0	LVDL3:LVI	DL0: Low Vo	ltage Detec	tion Limit bits	6								
	1111 = Ext	ernal analog	g input is use	ed (input con	nes from the	LVDIN pin)							
	1110 = 4.5	-											
	1101 = 4.2	-											
			d on PIC180										
			d on PIC180 d on PIC180										
			d on PIC180										
			d on PIC180										
	0111 = 3.0	V - Reserve	d on PIC180	2601/801									
	0110 = 2.8	V - Reserve	d on PIC180	C601/801									
			d on PIC180										
			d on PIC180										
			d on PIC180										
			d on PIC180										
			d on PIC180	01 and PIC1	81 C 801/601								
							a voltogo o	f the device					
	are not test		men result i	n a trip point		and operatin	y voltage o						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DAW	AW Decimal Adjust WREG Register		DECF		Decreme	nt f			
Syntax:	[<i>label</i>] DA	W		Syntax:		[<i>label</i>] DECF f[,d[,a]]			
Operands:	None			Operand	s:	$0 \le f \le 255$	5		
Operation:	eration: If [WREG<3:0>>9] or [DC = 1] then					d ∈ [0,1] a ∈ [0,1]			
		$(0>) + 6 \rightarrow V$	V<3:0>;	Operation	n.	$a \in [0, 1]$ (f) $-1 \rightarrow 0$	lact		
	else	.0.)	.0	Status Af		(i) = 1 → 0 C,DC,N,C			
	(WREG<3	:0>) → W<3	:0>;	Encodinc		0000		ff ffff	
	If [WREG<	:7:4> >9] or	[C = 1] then	Descripti	•		01da ff	If 'd' is 0, the	
	(WREG<7	$:4>) + 6 \rightarrow V$	VREG<7:4>;	Description	on.		•	EG. If 'd' is 1,	
			0.7.4					k in register 'f'	
Status Affected:	(WREG<7. C	$(4>) \rightarrow WRE$	G<7.4>,			· · · ·	,	Access Bank ding the BSR	
Encoding:							a' is 1, the B		
0		0000 000				selected a	as per the BS	SR value.	
Description:		sts the eight- ulting from t		Words:		1			
	addition of	two variable	es (each in	Cycles:		1			
	•		d produces a	Q Cycle	Activity:				
Words:	1	cked BCD re	suit.		Q1	Q2	Q3	Q4	
	1			De	ecode	Read register 'f'	Process Data	Write to destination	
Cycles:	1					regiotor r	Dulu	dootination	
Q Cycle Activity: Q1	Q2	Q3	Q4	Example:		DECF	CNT		
Decode	Read	Process	Write	Befo	re Instru	iction			
	gister WREG	Data	WREG		CNT Z	= 01h = 0			
Example1:	DAW				∠ Instruct				
Before Instru WREG	ction = 0A5h				CNT	= 00h			
C	= 0A311 = 0				Z	= 1			
DC	= 0								
After Instruct WREG	ion = 05h								
C	= 05n = 1								
DC	= 0								
Example 2:									
Before Instru WREG	= 0CEh								
С	= 0								
DC	= 0								
After Instruct WREG	ion = 34h								
С	= 1								
DC	= 0								

RET	RETFIE Return from Interrupt									
Synt	ax:	[label]	RETFIE [s]							
Ope	rands:	s ∈ [0,1]	s ∈ [0,1]							
$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Statu	us Affected:	None								
Enco	oding:	0000	0000 00	01 000s						
Des	cription:	popped an loaded inti enabled b high or lov enable bit of the sha STATUSS into their o WREG, S 's' = 0, no	to the PC. In by setting the w priority glo t. If 's' = 1, t adow registe and BSRS	ack (TOS) is terrupts are e either the bal interrupt he contents rs WS, are loaded og registers, BSR. If hese						
Wor	ds:	1	1							
Cycl	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q3	Q4						
	Decode	No operation	No operation	Pop PC from stack Set GIEH or GIEL						
	No	No	No	No						
	operation	operation	operation	operation						
Example: RETFIE 1 After Interrupt										

After Interrupt		
PC	=	TOS
WREG	=	WS
BSR	=	BSRS
STATUS	=	STATUSS
GIE/GIEH, PEIE/GIEL	=	1

RET	LW	Return Li	Return Literal to WREG						
Synt	ax:	[label]	RETLW k						
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$						
Ope	ration:	()	$k \rightarrow W,$ (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged						
Statu	us Affected:	None							
Enco	oding:	0000	1100 }	kkk	kkkk				
Des	cription:	'k'. The pr from the to address).	W is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.						
Wor	ds:	1	1						
Cycl	es:	2							
QC	vcle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Process Data	stack	PC from a, write to /REG				
	No	No	No		No				
	operation	operation	operation	ор	eration				
Example:									

```
CALL TABLE ; WREG contains table
; offset value
; WREG now has
; table value
:
TABLE
ADDWF PCL ; WREG = offset
RETLW k0 ; Begin table
RETLW k1 ;
:
RETLW kn ; End of table
```

```
Before Instruction
```

```
WREG = 07h
```

```
After Instruction
```

WREG = value of kn

DS39541B-page 246

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- · Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- · Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- · Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ® Demonstration Board

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows®-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- · A status bar
- · On-line help

The MPLAB IDE allows you to:

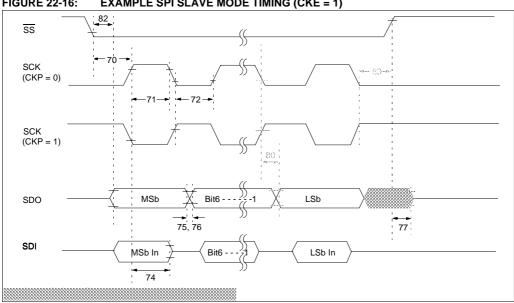
- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

21.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.


The MPASM assembler features include:

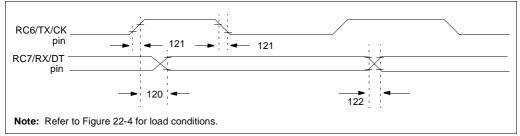
- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

21.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.


EXAMPLE SPI SLAVE MODE TIMING (CKE = 1) **FIGURE 22-16:**


TABLE 22-15: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	ns		
71	TscH	SCK input high time	Continuous	1.25TCY + 30	-	ns	
71A		(Slave mode)	Single Byte	40	-	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the 1st cl	ock edge of Byte2	 4.5TCY + 40 	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK	edge	400	—	ns	
75	TdoR	SDO data output rise time	PIC18C601/801	_	25	ns	
			RIC186C601/801		45	ns	
76	TdoF	SDO data output fall time	MAR	-	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	<u>Dr.</u>	10	50	ns	
78	TscR	SCK output rise time	PIC18C601/801		25	ns	
		(Master mode)	PIC18LC601/801	_	45	ns	
79	TscF	SCK output fail time (Master mode)			25	ns	
80	TscH2doV,	SDO data output valid after SCK	PIC18 C 601/801		50	ns	
	TscL2doV	edge	PIC18LC601/801		100	ns	
82	TssL2doV	SDO data output valid after $\overline{\text{SS}}\downarrow$	PIC18C601/801	—	50	ns	
		edge	PIC18LC601/901	_	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	ns	

Note 1: Requires the use of parameter # 73A.

2: Only if parameter #s 71A and 72A are used.

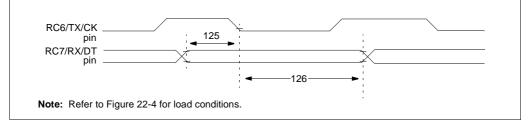


TABLE 22-20: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

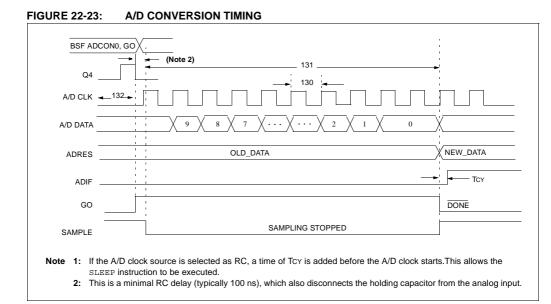

Param No.	Symbol	Characteristic	E T	Min	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (Master & Slave)	n AD				
		Clock high to data-out valid	RIG180601/801	—	40	ns	
		a tal	PIC18LC601/801	—	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC18 C 601/801		20	ns	
		(Master mode)	PIC18LC601/801		50	ns	
122	Tdtrf	Data-out rise time and tall time	PIC18 C 601/801	_	20	ns	
			PIC18 LC 601/801	_	50	ns	

FIGURE 22-22: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 22-21: USART SYNCHRONOUS RECEIVE REQUIREMENTS

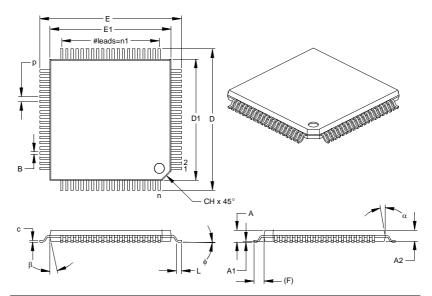
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions			
125	TdtV2ckl	SYNC RCV (Master & Slave)							
		Data-hold before CK () hold time)	10	—	ns				
126	TckL2dtl	Data-hold after EX (DT hold time)	15	—	ns				
	PRE								

TABLE 22-23: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
130	TAD	A/D clock period	PIC18 C 601/801	1.6	20 (5)	μS	Tosc based, VREF $\geq 3.0V$
			PIC18 LC 601/801	3.0	20 (5)	μS	Tosc based, VREF full range
			PIC18 C 601/801	2.0	6.0	μS	A/D RC mode
			PIC18LC601/801	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisition	on time) ⁽¹⁾		12	TAD	
132	TACQ	Acquisition time ⁽³⁾	- MAUL	15 10	_	μs μs	$\begin{array}{l} -40^\circ C \leq \text{Temp} \leq 125^\circ C \\ 0^\circ C \leq \text{Temp} \leq 125^\circ C \end{array}$
135	Tswc	Switching time from eor	wert - sample		(Note 4)		
136	Тамр	Amplifier settling time?		1	_	μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 17.0 for minimum conditions, when input voltage has changed more than 1 LSb.


3: The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω.

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		80			80		
Pitch	р		.020			0.50		
Pins per Side	n1		20			20		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039			1.00		
Foot Angle	φ	0	3.5	7	0	3.5	7	
Overall Width	E	.541	.551	.561	13.75	14.00	14.25	
Overall Length	D	.541	.551	.561	13.75	14.00	14.25	
Molded Package Width	E1	.463	.472	.482	11.75	12.00	12.25	
Molded Package Length	D1	.463	.472	.482	11.75	12.00	12.25	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.007	.009	.011	0.17	0.22	0.27	
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010° (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-092

NOTES: