

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, LINbus, SCI, SSU, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r4f20203rnfd-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 IRQ Enable Register (IER)

Address: H'FF0521											
	Bit:	b7	b6	b5	b4	b3	b2	b1	b0		
		IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E		
Value	/alue after reset: 0 0		0	0	0	0	0	0			
Bit	Symbol	Bit Na	me	Descrip	tion				R/W		
7	IRQ7E	IRQ7 e	enable	0: IRQ7	interrupts a	are disable	d.		R/W		
				1: IRQ7	interrupts a	are enabled	d.				
6	IRQ6E	IRQ6 e	enable	0: IRQ6	interrupts a	are disable	d.		R/W		
				1: IRQ6	1: IRQ6 interrupts are enabled.						
5	IRQ5E	IRQ5 e	enable	0: IRQ5	0: IRQ5 interrupts are disabled.						
				1: IRQ5	1: IRQ5 interrupts are enabled.						
4	IRQ4E	IRQ4 e	enable	0: IRQ4	0: IRQ4 interrupts are disabled.						
				1: IRQ4	interrupts a	are enable	d.				
3	IRQ3E	IRQ3 e	enable	0: IRQ3	interrupts a	are disable	d.		R/W		
				1: IRQ3	interrupts a	are enable	d.				
2	IRQ2E	IRQ2 e	enable	0: IRQ2	interrupts a	are disable	d.		R/W		
				1: IRQ2	interrupts a	are enable	d.				
1	IRQ1E	IRQ1 e	enable	0: IRQ1	interrupts a	are disable	d.		R/W		
				1: IRQ1	interrupts a	are enable	d.				
0	IRQ0E	IRQ0 e	enable	0: IRQ0	interrupts a	are disable	d.		R/W		
				1: IRQ0	interrupts a	are enable	d.				

5.4.2 Trimming of High-Speed OCO

Users can trim the on-chip oscillator frequency, supplying the external reference pulses with the input capture function in the on-chip timer. An example of trimming flow using timer RC and a timing chart are shown in figures 5.15 and 5.16, respectively. Because HOTRMDR1 is initialized by a reset, when users have trimmed the oscillators, some operations after a reset are necessary, such as trimming it again or saving the trimming value in an external device for later reloading.

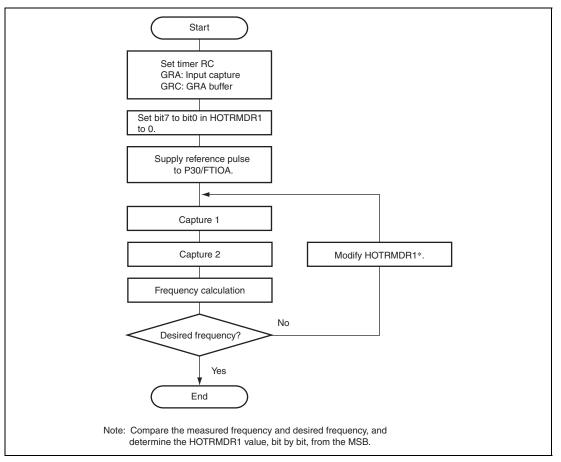


Figure 5.15 Example of Flow for Trimming High-Speed OCO Frequency

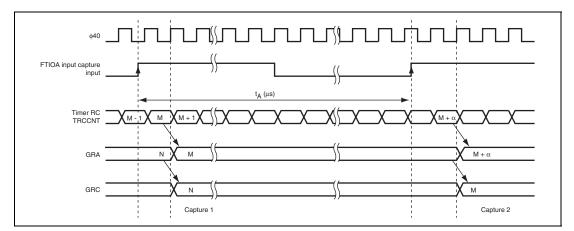


Figure 5.16 Timing Chart of Trimming of High-Speed OCO Frequency

The high-speed OCO frequency is obtained by the expression below. Since the input-capture input is sampled at the rate of the high-speed OCO, the calculated result includes a sampling error of ± 1 clock cycle.

 $Foco = \frac{(M + \alpha) - M}{t_A} (MHz)$

Foco = High-speed OCO frequency t_A = Cycle of reference clock (us) M = Timer RC counter value

Note: For the H8S/20203R, H8S/20223R, H8S/20215R, and H8S/20235R Groups, timer RD should be used instead of timer RC.

6.3 Bus Master Clock Division Function

In active or sleep mode, the operating clock for the CPU, DTC, on-chip ROM, and on-chip RAM can be divided independently of the clock supplied to the peripheral modules. Using a divided clock can reduce power consumption.

The operating clock ϕ s for the bus masters and the on-chip ROM and on-chip RAM can be selected from among ϕ , $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, and $\phi/32$ according to the PHIS[2:0] setting in LPCR3.

6.3.1 Reset States

For reset states, see section 3.3, Reset.

6.4 Module Standby Function

The module standby function is available for any peripheral module. When a module is set to the module standby state, the clock supply to the module stops placing the module in the power-down state. Setting the corresponding bit to the module in MSTCR to 1 places the module in the module standby state and clearing the bit cancels the module standby state. After release from a reset, all the modules except timer RE are in the module standby state; to use a module, cancel the module standby state of it.

Note that the registers of the module in the module standby state cannot be accessed.

6.5 PSC Divider Stop Function

When the peripheral modules do not use the PSC divider output, the PSC divider can be stopped by setting the PSCSTP bit in LPCR1 to 1.

When the PSC divider is stopped, the peripheral modules using $\phi/2$ to $\phi/8192$ can be stopped as shown in table 6.1 (register values are retained). Before setting the PSCSTP bit to 1, set the peripheral modules using the PSC divider output to the module standby state.

After release from a reset, the PSC divider is stopped since the PSCSTP bit is set to 1. For the PSCSTP bit, see section 5.2.3, Power-Down Control Register 1 (LPCR1).

Table 7.12 Bit Values in FLMSTR and Corresponding Errors

FMEBSF	FMPRSF	Error	Error Generation Conditions
0	0	Successful end	
0	1	Programming error	The programming command is executed and results in unsuccessful programming.
		Lock-bit programming error	The lock-bit program command is executed and results in unsuccessful programming.
1			The erasure command is executed and results in unsuccessful erasure.
		Blank checking error	The blank checking command is executed and it is detected that the specified block is not blank.
1	1	Command sequence error	A command is not written correctly.
			 A data value other than H'D0 and H'FF is written in the last cycle of the command that consists of two command cycles.
			 The erasure command is input in erase-suspend mode.
			 The programming command is input for the suspended block in erase-suspend mode.

Bit Values in FLMSTR

H8S/20103R, H8S/20203R, H8S/20223R, H8S/20323R, H8S/20115R, H8S/20215R, H8S/20235R, H8S/20335R Groups

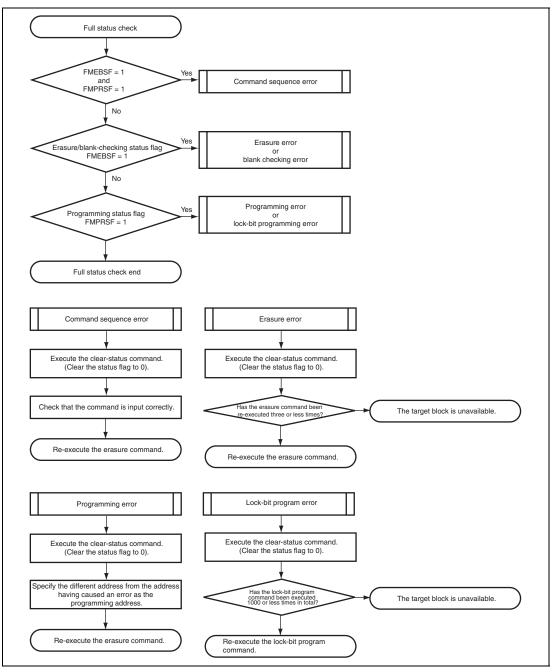


Figure 7.19 Full Status Checking Flowchart and Procedures of Handling Errors

(b) Port 6 Peripheral Function Mapping Register 2 (PMCR62)

Address:	s: H'FF0055							
Bit:	b7	b6	b5	b4	b3	b2	b1	b0
	_		P63MD[2:0]				P62MD[2:0]	
Value after reset:	0	1	0	1	0	1	0	1

Bit	Symbol	Bit Name	Description	R/W
7	_	Reserved	This bit is always read as 0. The write value should always be 0.	
6 to 4	P63MD[2:0]	P63 function	000: Setting prohibited	R/W
		select	001: IRQ3 input	
			010: TRCOI input (timer RC)*	
			011: FTIOD input/output (timer RC)*	
			100: TGIOB input/output (timer RG)	
			101: FTIOD0 input/output (timer RD_0) (initial value)	
			110: TRAO output (timer RA)	
			111: Setting prohibited	
3	—	Reserved	This bit is always read as 0. The write value should always be 0.	
2 to 0	P62MD[2:0]	P62 function	000: Setting prohibited	R/W
		select	001: IRQ2 input	
			010: TXD output (SCI3)	
			011: FTIOC input/output (timer RC)*	
			100: TGIOA input/output (timer RG)	
			101: FTIOC0 input/output (timer RD_0) (initial value)	
			110: TRBO output (timer RB)	
			111: Setting prohibited	

these groups.

10.11.3 Port Pull-Up Control Register B (PUCRB)

Bit:b7b6b5b4b3b2b1b0PUCRB7PUCRB6PUCRB5PUCRB4PUCRB3PUCRB2PUCRB1PUCRB0Value after reset:000000000BitSymbolBit NameDescriptionR/W7PUCRB7Port B7 pull-up control0: The pull-up MOS of corresponding pin is disabled.R/W6PUCRB6Port B6 pull-up control1: The pull-up MOS of corresponding pin is enabled.R/W5PUCRB5Port B5 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W4PUCRB4Port B4 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W3PUCRB3Port B4 pull-up controlR/WR/W1PUCRB1Port B1 pull-up controlR/W		Address: H'FF001A									
Value after reset:000000000BitSymbolBit NameDescriptionR/W7PUCRB7Port B7 pull-up control0: The pull-up MOS of corresponding pin is disabled.R/W6PUCRB6Port B6 pull-up control1: The pull-up MOS of corresponding pin is enabled.R/W5PUCRB5Port B5 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W4PUCRB4Port B4 pull-up controlR/WR/W3PUCRB3Port B3 pull-up controlR/W2PUCRB2Port B2 pull-up controlR/W1PUCRB1Port B1 pull-upR/W		Bit:	b7	b6	b5	b4	b3	b2	b1	b0	
BitSymbolBit NameDescriptionR/W7PUCRB7Port B7 pull-up control0: The pull-up MOS of corresponding pin is disabled.R/W6PUCRB6Port B6 pull-up control1: The pull-up MOS of corresponding pin is enabled.R/W5PUCRB5Port B5 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W4PUCRB4Port B4 pull-up controlR/WR/W3PUCRB3Port B3 pull-up controlR/W2PUCRB1Port B1 pull-up controlR/W		[PUCRB7	PUCRB6	PUCRB5	PUCRB4	PUCRB3	PUCRB2	PUCRB1	PUCRB0	
7PUCRB7 controlPort B7 pull-up control0: The pull-up MOS of corresponding pin is disabled.R/W6PUCRB6Port B6 pull-up control1: The pull-up MOS of corresponding pin is enabled.R/W5PUCRB5Port B5 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W4PUCRB4Port B4 pull-up controlR/WR/W3PUCRB3Port B3 pull-up controlR/W2PUCRB2Port B2 pull-up controlR/W1PUCRB1Port B1 pull-upR/W	Value	after reset:	0	0	0	0	0	0	0	0	
controldisabled.6PUCRB6Port B6 pull-up control1: The pull-up MOS of corresponding pin is enabled.R/W5PUCRB5Port B5 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W4PUCRB4Port B4 pull-up controlR/WR/W3PUCRB3Port B3 pull-up controlR/W2PUCRB2Port B2 pull-up controlR/W1PUCRB1Port B1 pull-upR/W	Bit	Symbo	ol Bit	Name	Descrip	otion				R/W	
controlenabled.5PUCRB5Port B5 pull-up controlPUCRB is a register that controls the pull-up MOS in bit units of the pins set as the input ports.R/W4PUCRB4Port B4 pull-up controlR/W3PUCRB3Port B3 pull-up controlR/W2PUCRB2Port B2 pull-up controlR/W1PUCRB1Port B1 pull-upR/W	7	PUCRI					S of corres	ponding pir	n is	R/W	
control in bit units of the pins set as the input ports. 4 PUCRB4 Port B4 pull-up control 3 PUCRB3 Port B3 pull-up control 2 PUCRB2 Port B2 pull-up control 1 PUCRB1 Port B1 pull-up	6	PUCRI		• •							
controlR/W3PUCRB3Port B3 pull-up controlR/W2PUCRB2Port B2 pull-up controlR/W1PUCRB1Port B1 pull-upR/W	5	PUCRI				e 1 1					
control 2 PUCRB2 Port B2 pull-up control 1 PUCRB1 Port B1 pull-up R/W	4	PUCRI)					R/W	
1 PUCRB1 Port B1 pull-up R/W	3	PUCRI)					R/W	
	2	PUCRI)					R/W	
	1	PUCRI)					R/W	
0 PUCRB0 Port B0 pull-up R/W	0	PUCRI)					R/W	

• PUCRB7 bit to PUCRB0 bit (port B7 to B0 pull-up control)

This function is valid only for the pin set as general input, and for the input pin with a function selected by the PMC. However, this setting is invalid for the analog input pin.

10.11.4 Notes on Using Port B

- 1. The PB0 pin is initially set as general I/O pin. If using this pin as the analog input pin for the A/D converter, set the PMRA2 bit in PMRA to 1.
- 2. Pins PB7 and PB6 can be used as analog input pins for the A/D converter or analog output pins for the D/A converter. Do not set these pins as analog input pins and analog output pins at the same time.

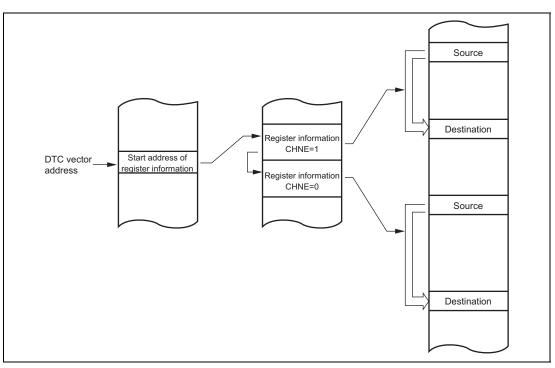


Figure 11.9 Operation of Chain Transfer

11.5.5 Interrupt Sources

An interrupt request is issued to the CPU when the DTC ends the specified number of data transfers, or when the DTC ends a data transfer for which the DISEL bit was set to 1. In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control.

In the case of activation by software, a software activated data transfer end interrupt (SWDTEND) is generated.

When the DISEL bit is 1 and one data transfer has ended or the specified number of transfers has ended, the SWDTE bit is held at 1 and an SWDTEND interrupt is generated after data transfer ends. The interrupt handling routine should clear the SWDTE bit to 0.

When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1.

13.3.7 Operation through an Event Link

Using the event link controller (ELC), timer RA can be made to operate in the following ways in relation to events occurring in other modules.

(1) Starting Counter Operation

The start of counting operations by timer RA can be selected by the ELOPA register of the ELC. When the event specified in ELSR0 occurs, the TSTART bit in the TRACR is set to 1, which starts counting by timer RA. However, if the specified event occurs when the TCSTF flag has already been set to 1, that event is not effective.

(2) Counting Events

The counting of events by timer RA can be selected by the ELOPA register of the ELC. When the event specified in ELSR0 occurs, event-counter operation proceeds with that event as the source to drive counting, regardless of the setting in the TCK[2:0] bits in TRAMR. When event-counter operation is to be employed, set the TSTART bit in TRACR to 1 beforehand. When the value of the counter is read, the value read out is the actual number of input events minus three.

Figure 15.11 shows an example of buffer operation when the FTIOB pin is set to PWM mode and GRD is set as the buffer register for GRB. TRCCNT is cleared on compare match A, and the FTIOB pin outputs 1 on compare match B and 0 on compare match A.

Due to the buffer operation, the FTIOB output levels are changed and the value of buffer register GRD is transferred to GRB whenever compare match B occurs. This procedure is repeated every time compare match B occurs.

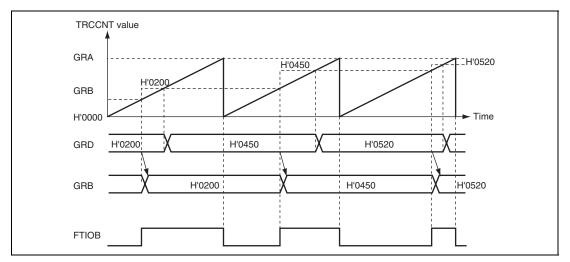


Figure 15.11 Buffer Operation Example (Output Compare)

15.4.5 Buffer Operation Timing

Figures 15.31 and 15.32 show the buffer operation timing.

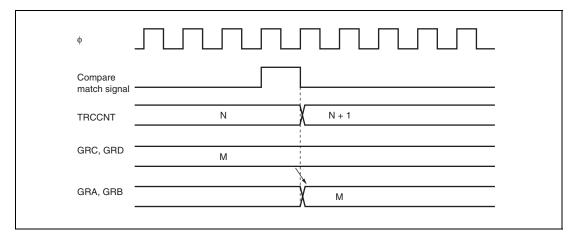



Figure 15.31 Buffer Operation Timing (Compare Match)

16.3 Operation

Timer RD has the following operating modes.

• Timer mode operation

Enables output compare and input capture functions by setting the IOA2 to IOA0 and IOB2 to IOB0 bits in TRDIORA and the IOC3 to IOC0 and IOD3 to IOD0 bits in TRDIORC

- PWM mode operation Enables PWM mode operation by setting TRDPMR
- PWM3 mode operation Enables PWM3 mode operation by setting the PWM3 bit in TRDFCR
- Reset synchronous PWM mode operation Enables reset synchronous PWM mode operation by setting the CMD1 and CMD0 bits in TRDFCR
- Complementary PWM mode operation Enables complementary PWM mode operation by setting the CMD1 and CMD0 bits in TRDFCR

The following tables show the operating modes of the FTIOA0 to FTIOD0 and FTIOA1 to FTIOD1 pins set by the appropriate bits in the registers mentioned above. Set 1 to the PMR bits corresponding to the pins allocated by the PMC.

17.2.1 Timer RE Second Data Register/Counter Data Register (TRESEC)

	Address: H'FFFFA8										
	Bit:	b7	b6	b5	b4	b3	b2	b1	b0		
		BSY	SC12	2 SC11	SC10	SC03	SC02	SC01	SC00		
Valu	Value after reset:			—	—	—	—	—	—		
-	Realtime clock mode Rit Name Description R/W										
BIT	Symbol	Bit Name		Description					R/W		
7	BSY	Timer RE I	1	y This bit is set to 1 when the timer RE is updating (calculating) R the values of second, minute, hour, and day-of-week data registers. When this bit is 0, the values of second, minute, hour, and day-of-week data registers must be adopted.							
6	SC12	Counting t		Counts on 0 to 5 for 60-second counting.							
5	SC11	position of seconds									
4	SC10	- 50001105									
3	SC03	Counting of	one's	Counts on 0 to	9 once pe	er second.	When a ca	rry is	R/W		
2	SC02	position of seconds	9	generated, 1 is added to the ten's position.							
1	SC01	- 36001103									
0	SC00	-									

• Output-compare mode

Bit	Symbol	Bit Name	Description	R/W
7	BSY	_	Used as an 8-bit register for reading the counter data.	R
6	SC12	_	The counter value is retained when counting is stopped.	R/W
5	SC11	_	This register is initialized to H'00 with a compare-match.	R/W
4	SC10	_		R/W
3	SC03	_		R/W
2	SC02	_		R/W
1	SC01	_		R/W
0	SC00	_		R/W

TRESEC counts the BCD-coded second value in realtime clock mode. TRESEC is incremented from decimal 00 to 59. TRESEC is used as an 8-bit register for reading the counter data in output-compare mode.

Page 670 of 1126

RENESAS

(c) Output compare output timing

A compare match signal is generated in the final state in which TRGCNT and GR match (the point at which the count value matched by TRGCNT is updated). When a compare match signal is generated, the output value set in TRGIOR is output at the output compare output pin (TGIOA, TGIOB). After a match between TRGCNT and GR, the compare match signal is not generated until the TRGCNT input clock is generated.

Figure 18.5 shows output compare output timing.

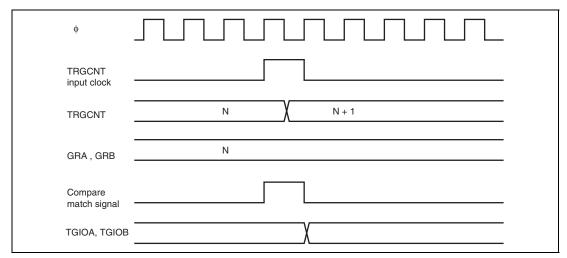


Figure 18.5 Output Compare Output Timing

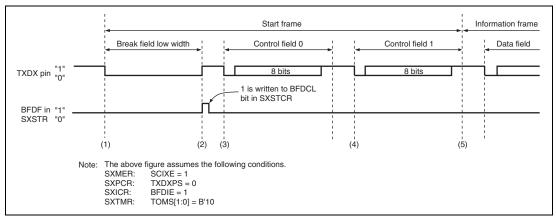


Figure 22.5 Start Frame Transmission Example

25.3.5 Operation in Clocked Synchronous Communication Mode

(1) Initialization in Clocked Synchronous Communication Mode

Figure 25.4 shows the initialization in clocked synchronous communication mode. Before transmitting and receiving data, the TE and RE bits in SSER should be cleared to 0, then the SSU should be initialized.

Note: When the operating mode, or transfer format, is changed for example, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not change the contents of the RDRF and ORER flags, or the contents of SSRDR.

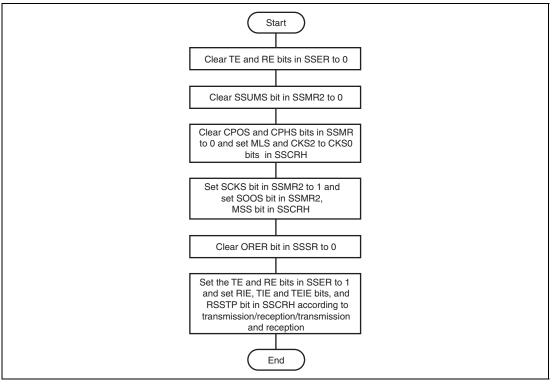


Figure 25.4 Initialization in Clocked Synchronous Communication Mode

Register

Abbrevi-									
ation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
PCR8	PCR87	PCR86	PCR85	PCR84* ²	PCR83*2	PCR82*2	PCR81* ²	PCR80* ²	I/O port
PCR9*1	PCR97	PCR96	PCR95	_	_	_	_	_	_
PCRA	PCRA7	PCRA6	PCRA5	PCRA4	PCRA3*1	PCRA2*1	PCRA1*1	PCRA0*1	_
PCRB	PCRB7	PCRB6	PCRB5	PCRB4	PCRB3	PCRB2	PCRB1	PCRB0	_
PCRJ	_	_	_	_	_	_	PCRJ1	PCRJ0	_

Notes: 1. Not provided for the H8S/20103R and H8S/20115R Groups. These bits and addresses are reserved.

2. Provided only for the H8S/20323R and H8S/20335R Groups. These bits and addresses for the other groups are reserved.

3. Provided only for the H8S/20223R, H8S/20235R, H8S/20323R, and H8S/20335R Groups. These bits for the other groups are reserved.

4. Not provided for the H8S/20223R, H8S/20235R, H8S/20323R, and H8S/20335R Groups. These addresses are reserved.

5. Provided only for the H8S/20103R, H8S/20115R, H8S/20323R, and H8S/20335R Groups. These bits for the other groups are reserved.

6. Not provided for the H8S/20103R and H8S/20115R Groups. These bits are reserved.

7. Not provided for the H8S/20103R and H8S/20115R Groups. These addresses are reserved.

 Provided only for the H8S/20223R, H8S/20235R, H8S/20323R, and H8S/20335R Groups. These addresses for the other groups are reserved.

9. Provided only for the H8S/20103R, H8S/20115R, H8S/20323R, and H8S/20335R Groups. These addresses for the other groups are reserved.

		Applicable			Value	s		
Item	Symbol	Pins	Test Condition	Min.	Тур.	Max. Unit		Notes
Sleep mode supply current	I _{SLEEP1}	V _{cc}	Sleep mode 1, $\phi_{osc} = 20 \text{ MHz}$		7.5	11.0	mA	*
			Sleep mode 1, $\phi_{osc} = 10 \text{ MHz}$	—	4.5	_	mA	Reference value*
	I _{SLEEP2}	V _{cc}	Sleep mode 2, $\phi_{osc} = 20 \text{ MHz}$	—	2.0	3.5	mA	*
			Sleep mode 2, $\phi_{osc} = 10 \text{ MHz}$	_	1.7	_	mA	Reference value*
	I _{SLEEP3}	V _{cc}	Sleep mode 3, $\phi_{osc} = 20 \text{ MHz}$		1.8	3.2	mA	*
			Sleep mode 3, $\phi_{osc} = 10 \text{ MHz}$		1.6	_	mA	Reference value*
	I _{SLEEP4}	V _{cc}	Sleep mode 4, $\phi_{sub} = 32 \text{ kHz}$	_	0.9	_	mA	Reference value*
	I _{SLEEP5}	V _{cc}	Sleep mode 5, $\phi_{sub} = 32 \text{ kHz}$	_	0.9	_	mA	Reference value*
	I _{SLEEP6}	V _{cc}	Sleep mode 6, $\phi_{loco} = 125 \text{ kHz}$	_	0.9	—	mA	Reference value*
Standby mode supply current	I _{stby}	V _{cc}	Ta ≤ 50 °C when 32-kHz crystal resonator not used	_	10.0	30.0	μA	*
			Ta > 50 °C when 32-kHz crystal resonator not used		30.0	200.0	μΑ	*
RAM data retaining voltage	V _{RAM}	V _{cc}		2.0	_	_	V	
Main oscillator feedback resistor				_	0.3	—	MΩ	Reference value
Sub oscillator feedback resistor				—	8	_	MΩ	Reference value

Note: * Pin states during supply current measurement are given below (excluding current in the pull-up MOS transistors and output buffers).

Table 31.12 Electrical Characteristics for Low-Voltage Detection Circuit 1

 $V_{cc} = 2.7$ to 5.5 V, $V_{ss} = 0.0$ V, VCC \ge AVCC = AVref, Ta = -20 to +85 °C (N version)/ -40 to +85 °C (D version), unless otherwise indicated.

				Values				
Item	Symbol	Test Condition	IS	Min.	Тур.	Max.	Unit	Notes
Voltage-detection level	V _{det1}	VD1LS[3:0] =	Falling voltage	2.85	3.15	3.45	V	
		0111	Rising voltage	3.05	3.35	3.65		
		VD1LS[3:0] =	Falling voltage	3.00	3.30	3.60	-	
		1000	Rising voltage	3.20	3.50	3.80		
		VD1LS[3:0] =	Falling voltage	3.15	3.45	3.75	-	
		1001	Rising voltage	3.35	3.65	3.95		
		VD1LS[3:0] =	Falling voltage	3.30	3.60	3.90	-	
		1010	Rising voltage	3.50	3.80	4.10		
		VD1LS[3:0] =	Falling voltage	3.45	3.75	4.05	-	
		1011	Rising voltage	3.65	3.95	4.25		
		VD1LS[3:0] =	Falling voltage	3.60	3.90	4.20	-	
		1100	Rising voltage	3.80	4.10	4.40		
		VD1LS[3:0] =	Falling voltage	3.75	4.05	4.35	-	
		1101	Rising voltage	3.95	4.25	4.55		
		VD1LS[3:0] = 1110	Falling voltage	3.90	4.20	4.50	-	
			Rising voltage	4.10	4.40	4.70		
		VD1LS[3:0] =	Falling voltage	4.05	4.35	4.65	-	
		1111	Rising voltage	4.25	4.55	4.85		
Voltage hysteresis between detection for rising and falling cases	$V_{\rm LVD1HYS}$			_	0.22	_	V	Reference value
Low-voltage detection circuit 1 self supply current		Vcc = 5.0 V		_	2.0	—	μA	Reference value
Waiting time until low-voltage detection circuit 1 operation starts	$t_{\rm d(E-A)}$			_	_	50.0	μs	
Detection minimum pulse width of low-voltage detection circuit 1	t _{wlvd1}			20.0			μs	