

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	62
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3665axi-198

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. 48-pin SSOP Part Pinout

Notes

- 5. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
- The center pad on the QFN package should be connected to digital ground (VSSD) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal. For more information, see AN72845, Design Guidelines for QFN Devices.

	Mnemonic	Description	Bytes	Cycles
ORL	A,#data	OR immediate data to accumulator	2	2
ORL	Direct, A	OR accumulator to direct byte	2	3
ORL	Direct, #data	OR immediate data to direct byte	3	3
XRL	A,Rn	XOR register to accumulator	1	1
XRL	A,Direct	XOR direct byte to accumulator	2	2
XRL	A,@Ri	XOR indirect RAM to accumulator	1	2
XRL	A,#data	XOR immediate data to accumulator	2	2
XRL	Direct, A	XOR accumulator to direct byte	2	3
XRL	Direct, #data	XOR immediate data to direct byte	3	3
CLR	A	Clear accumulator	1	1
CPL	А	Complement accumulator	1	1
RL	A	Rotate accumulator left	1	1
RLC	A	Rotate accumulator left through carry	1	1
RR	A	otate accumulator right 1		1
RRC	А	Rotate accumulator right though carry	Rotate accumulator right though carry 1	
SWAF	PA	Swap nibbles within accumulator	1	1

Table 4-2. Logical Instructions (continued)

4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed addressing mode. Table 4-3 lists the various data transfer instructions available.

4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 on page 17 lists the available Boolean instructions.

Table 4-3. Data Transfer Instructions

	Mnemonic	Description	Bytes	Cycles			
MOV	A,Rn	Move register to accumulator	1	1			
MOV	A,Direct	Move direct byte to accumulator 2					
MOV	A,@Ri	Move indirect RAM to accumulator	1	2			
MOV	A,#data	Move immediate data to accumulator	2	2			
MOV	Rn,A	Move accumulator to register	1	1			
MOV	Rn,Direct	Move direct byte to register 2		3			
MOV	Rn, #data	Move immediate data to register	2	2			
MOV	Direct, A	Move accumulator to direct byte 2		2			
MOV	Direct, Rn	Move register to direct byte	2	2			
MOV	Direct, Direct	Move direct byte to direct byte 3		3			
MOV	Direct, @Ri	Move indirect RAM to direct byte 2		3			
MOV	Direct, #data	Move immediate data to direct byte 3		3			
MOV	@Ri, A	Move accumulator to indirect RAM	1	2			

	Mnemonic	Description	Bytes	Cycles
MOV	@Ri, Direct	Move direct byte to indirect RAM	2	3
MOV	@Ri, #data	Move immediate data to indirect RAM	2	2
MOV	DPTR, #data16	Load data pointer with 16 bit constant	3	3
MOVC	A, @A+DPTR	Move code byte relative to DPTR to accumulator	1	5
MOVC	A, @A + PC	Move code byte relative to PC to accumulator	1	4
MOVX	A,@Ri	Move external RAM (8-bit) to accumulator	1	4
MOVX	A, @DPTR	Move external RAM (16-bit) to accumulator	1	3
MOVX	@Ri, A	Move accumulator to external RAM (8-bit)	1	5
MOVX	@DPTR, A	Move accumulator to external RAM (16-bit)	1	4
PUSH	Direct	Push direct byte onto stack	2	3
POP	POP Direct Pop direct byte from stack		2	2
XCH	A, Rn	Exchange register with accumulator	1	2
XCH	A, Direct	Exchange direct byte with accumulator	2	3
XCH	A, @Ri	Exchange indirect RAM with accumulator	1	3
XCHD	A, @Ri	Exchange low order indirect digit RAM with accumulator	1	3

Table 4-3. Data Transfer Instructions (continued)

Table 4-4. Boolean Instructions

Mnemonic	Description	Bytes	Cycles	
CLR C	Clear carry	1		
CLR bit	Clear direct bit	2	3	
SETB C	Set carry	1	1	
SETB bit	Set direct bit	3		
CPL C	Complement carry	1	1	
CPL bit	Complement direct bit	2	3	
ANL C, bit	Dit AND direct bit to carry 2			
ANL C, /bit	AND complement of direct bit to carry 2		2	
ORL C, bit	OR direct bit to carry 2		2	
ORL C, /bit	OR complement of direct bit to carry 2		2	
MOV C, bit	Move direct bit to carry 2			
MOV bit, C	Move carry to direct bit 2			
JC rel	Jump if carry is set 2		3	
JNC rel	Jump if no carry is set 2		3	
JB bit, rel	Jump if direct bit is set	3	5	
JNB bit, rel	Jump if direct bit is not set	3	5	
JBC bit, rel	Jump if direct bit is set and clear bit	3	5	

5.7.3.1 XData Space Access SFRs

The 8051 core features dual DPTR registers for faster data transfer operations. The data pointer select SFR, DPS, selects which data pointer register, DPTR0 or DPTR1, is used for the following instructions:

- MOVX @DPTR, A
- MOVX A, @DPTR
- MOVC A, @A+DPTR
- JMP @A+DPTR
- INC DPTR
- MOV DPTR, #data16

The extended data pointer SFRs, DPX0, DPX1, MXAX, and P2AX, hold the most significant parts of memory addresses during access to the xdata space. These SFRs are used only with the MOVX instructions.

During a MOVX instruction using the DPTR0/DPTR1 register, the most significant byte of the address is always equal to the contents of DPX0/DPX1.

During a MOVX instruction using the R0 or R1 register, the most significant byte of the address is always equal to the contents of MXAX, and the next most significant byte is always equal to the contents of P2AX.

5.7.3.2 I/O Port SFRs

The I/O ports provide digital input sensing, output drive, pin interrupts, connectivity for analog inputs and outputs, LCD, and access to peripherals through the DSI. Full information on I/O ports is found in I/O System and Routing on page 37.

I/O ports are linked to the CPU through the PHUB and are also available in the SFRs. Using the SFRs allows faster access to a limited set of I/O port registers, while using the PHUB allows boot configuration and access to all I/O port registers.

Each SFR supported I/O port provides three SFRs:

- SFRPRTxDR sets the output data state of the port (where × is port number and includes ports 0–6, 12 and 15).
- The SFRPRTxSEL selects whether the PHUB PRTxDR register or the SFRPRTxDR controls each pin's output buffer within the port. If a SFRPRTxSEL[y] bit is high, the corresponding SFRPRTxDR[y] bit sets the output state for that pin. If a SFRPRTxSEL[y] bit is low, the corresponding PRTxDR[y] bit sets the output state of the pin (where y varies from 0 to 7).
- The SFRPRTxPS is a read only register that contains pin state values of the port pins.

5.7.4 xdata Space

The 8051 xdata space is 24-bit, or 16 MB in size. The majority of this space is not "external"—it is used by on-chip components. See Table 5-5. External, that is, off-chip, memory can be accessed using the EMIF. See External Memory Interface on page 25.

Table 5-5. XDATA Data Address Map

Address Range	Purpose
0×00 0000 – 0×00 1FFF	SRAM
0×00 4000 – 0×00 42FF	Clocking, PLLs, and oscillators
0×00 4300 – 0×00 43FF	Power management
0×00 4400 – 0×00 44FF	Interrupt controller
0×00 4500 – 0×00 45FF	Ports interrupt control
0×00 4700 – 0×00 47FF	Flash programming interface
0×00 4800 - 0×00 48FF	Cache controller
0×00 4900 – 0×00 49FF	I ² C controller
0×00 4E00 – 0×00 4EFF	Decimator
0×00 4F00 – 0×00 4FFF	Fixed timer/counter/PWMs
0×00 5000 – 0×00 51FF	I/O ports control
0×00 5400 – 0×00 54FF	External Memory Interface (EMIF) control registers
0×00 5800 – 0×00 5FFF	Analog Subsystem interface
0×00 6000 – 0×00 60FF	USB controller
0×00 6400 – 0×00 6FFF	UDB Working Registers
0×00 7000 – 0×00 7FFF	PHUB configuration
0×00 8000 – 0×00 8FFF	EEPROM
0×00 A000 – 0×00 A400	CAN
0×00 C000 – 0×00 C800	Digital Filter Block
0×01 0000 – 0×01 FFFF	Digital Interconnect configuration
0×05 0220 – 0×05 02F0	Debug controller
0×08 0000 – 0×08 1FFF	flash ECC bytes
0×80 0000 – 0×FF FFFF	External Memory Interface

Figure 6-2. MHzECO Block Diagram

6.1.2.2 32.768-kHz ECO

The 32.768-kHz external crystal oscillator (32kHzECO) provides precision timing with minimal power consumption using an external 32.768-kHz watch crystal (see Figure 6-3). The 32kHzECO also connects directly to the sleep timer and provides the source for the RTC. The RTC uses a 1-second interrupt to implement the RTC functionality in firmware.

The oscillator works in two distinct power modes. This allows users to trade off power consumption with noise immunity from neighboring circuits. The GPIO pins connected to the external crystal and capacitors are fixed.

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and

PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 80.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and UDBs.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

6.1.3 Clock Distribution

All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.

- The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.
- Bus clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the Universal Digital Blocks (UDBs) and fixed function timer/counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC and mixers. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50% duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

6.1.4 USB Clock Domain

The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.

Digital Input Path PRT[x]CTL PRT[x]DBL_SYNC_IN PRT[x]PS Digital System Input	Naming Convention 'x' = Port Number 'y' = Pin Number	
PICU[x]INTTYPE[y] PICU[x]INTSTAT Pin Interrupt Signal PICU[x]INTSTAT	Input Buffer Disable	
Digital Output Path PRT[x]SLW PRT[x]SYNC_OUT PRT[x]DR Digital System Output PRT[x]DM2 PRT[x]DM1 PRT[x]DM0 Bidirectional Control PRT[x]BIE PRT[x]BIE	Unive Slew Cnti	PIN
Analog	Switches	
PRT[x]LCD_COM_SEG PRT[x]LCD_EN LCD Bias Bus	Display Data Logic & MUX	

Figure 6-9. GPIO Block Diagram

6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to "1" and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt.

While level sensitive interrupts are not directly supported; universal digital blocks (UDB) provide this functionality to the system when needed.

6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin.

The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, select pins provide direct connections to specific analog features such as the high current DACs or uncommitted opamps.

6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders^[19]. See the "CapSense" section on page 63 for more information.

6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 62 for details.

6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically a voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins. Resistive pull-up and pull-down drive modes are not available with SIO in regulated output mode.

6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- 0.5 × V_{RFF}
- V_{REF}

Typically a voltage DAC (VDAC) generates the V_{REF} reference. "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins.

7.6 USB

PSoC includes a dedicated Full-Speed (12 Mbps) USB 2.0 transceiver supporting all four USB transfer types: control, interrupt, bulk, and isochronous. PSoC Creator provides full configuration support. USB interfaces to hosts through two dedicated USBIO pins, which are detailed in the "I/O System and Routing" section on page 37.

USB includes the following features:

- Eight unidirectional data endpoints
- One bidirectional control endpoint 0 (EP0)
- Shared 512-byte buffer for the eight data endpoints
- Dedicated 8-byte buffer for EP0
- Three memory modes
 - Manual Memory Management with No DMA Access
- □ Manual Memory Management with Manual DMA Access
- Automatic Memory Management with Automatic DMA Access
- Internal 3.3-V regulator for transceiver
- Internal 48-MHz main oscillator mode that auto locks to USB bus clock, requiring no external crystal for USB (USB equipped parts only)
- Interrupts on bus and each endpoint event, with device wakeup
- USB reset, suspend, and resume operations
- Bus-powered and self-powered modes

Figure 7-16. USB

7.7 Timers, Counters, and PWMs

The Timer/Counter/PWM peripheral is a 16-bit dedicated peripheral providing three of the most common embedded peripheral features. As almost all embedded systems use some combination of timers, counters, and PWMs. Four of them have been included on this PSoC device family. Additional and more advanced functionality timers, counters, and PWMs can also be instantiated in Universal Digital Blocks (UDBs) as required. PSoC Creator allows you to choose the timer, counter, and PWM features that they require. The tool set utilizes the most optimal resources available.

The Timer/Counter/PWM peripheral can select from multiple clock sources, with input and output signals connected through the DSI routing. DSI routing allows input and output connections to any device pin and any internal digital signal accessible through the DSI. Each of the four instances has a compare output, terminal count output (optional complementary compare output), and programmable interrupt request line. The Timer/Counter/PWMs are configurable as free running, one shot, or Enable input controlled. The peripheral has timer reset and capture inputs, and a kill input for control of the comparator outputs. The peripheral supports full 16-bit capture.

Timer/Counter/PWM features include:

- 16-bit Timer/Counter/PWM (down count only)
- Selectable clock source
- PWM comparator (configurable for LT, LTE, EQ, GTE, GT)
- Period reload on start, reset, and terminal count
- Interrupt on terminal count, compare true, or capture
- Dynamic counter reads
- Timer capture mode
- Count while enable signal is asserted mode
- Free run mode
- One Shot mode (stop at end of period)
- Complementary PWM outputs with deadband
- PWM output kill

Figure 7-17. Timer/Counter/PWM

Analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. There are eight abus routes in CY8C36, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in Figure 8-2. Using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. A multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. In Figure 8-2, multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals.

8.2 Delta-sigma ADC

The CY8C36 device contains one delta-sigma ADC. This ADC offers differential input, high resolution and excellent linearity, making it a good ADC choice for measurement applications. The converter can be configured to output 12-bit resolution at data rates of up to 192 ksps. At a fixed clock rate, resolution can be traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Table 8-1.	Delta-sigma	ADC	Performance
------------	-------------	-----	-------------

Bits	Maximum Sample Rate (sps)	SINAD (dB)
12	192 k	66
8	384 k	43

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ± 1.024 V

8.2.1 Functional Description

The ADC connects and configures three basic components, input buffer, delta-sigma modulator, and decimator. The basic block diagram is shown in Figure 8-4. The signal from the input muxes is delivered to the delta-sigma modulator either directly or through the input buffer. The delta-sigma modulator performs the actual analog to digital conversion. The modulator over-samples the input and generates a serial data stream output. This high speed data stream is not useful for most applications without some type of post processing, and so is passed to the decimator through the Analog Interface block. The decimator converts the high speed serial data stream into parallel ADC results. The modulator/decimator frequency response is $[(\sin x)/x]^4$.

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator. Data is pipelined in the decimator; the output is a function of the last four samples. When the input multiplexer is switched, the output data is not valid until after the fourth sample after the switch.

8.2.2 Operational Modes

The ADC can be configured by the user to operate in one of four modes: Single Sample, Multi Sample, Continuous, or Multi Sample (Turbo). All four modes are started by either a write to the start bit in a control register or an assertion of the Start of Conversion (SoC) signal. When the conversion is complete, a status bit is set and the output signal End of Conversion (EoC) asserts high and remains high until the value is read by either the DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample conversion on a trigger. In this mode, the ADC stays in standby state waiting for the SoC signal to be asserted. When SoC is signaled the ADC performs four successive conversions. The first three conversions prime the decimator. The ADC result is valid and available after the fourth conversion, at which time the EoC signal is generated. To detect the end of conversion, the system may poll a control register for status or configure the external EoC signal to generate an interrupt or invoke a DMA request. When the transfer is done the ADC reenters the standby state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive samples of a single input signal. Multiplexing multiple inputs should not be done with this mode. There is a latency of three conversion times before the first conversion result is available. This is the time required to prime the decimator. After the first result, successive conversions are available at the selected sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the ADC is reset between samples. This mode is useful when the input is switched between multiple signals. The decimator is re-primed between each sample so that previous samples do not affect the current conversion. Upon completion of a sample, the next sample is automatically initiated. The results can be transferred using either firmware polling, interrupt, or DMA.

More information on output formats is provided in the Technical Reference Manual.

8.2.3 Start of Conversion Input

The SoC signal is used to start an ADC conversion. A digital clock or UDB output can be used to drive this input. It can be used when the sampling period must be longer than the ADC conversion time or when the ADC must be synchronized to other hardware. This signal is optional and does not need to be connected if ADC is running in a continuous mode.

8.2.4 End of Conversion Output

The EoC signal goes high at the end of each ADC conversion. This signal may be used to trigger either an interrupt or DMA request.

8.3 Comparators

The CY8C36 family of devices contains four comparators in a device. Comparators have these features:

Input offset factory trimmed to less than 5 mV

- Rail-to-rail common mode input range (VSSA to VDDA)
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low-power
- Comparator outputs can be routed to lookup tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO, DAC outputs and SC block outputs

8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB Digital System Interface.

10. Development Support

The CY8C36 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit psoc.cypress.com/getting-started to find out more.

10.1 Documentation

A suite of documentation, supports the CY8C36 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component data sheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

10.2 Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

10.3 Tools

With industry standard cores, programming, and debugging interfaces, the CY8C36 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

11.2 Device Level Specifications

Specifications are valid for –40 $^{\circ}C \le T_A \le 85 ~^{\circ}C$ and $T_J \le 100 ~^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.2.1 Device Level Specifications

Table 11-2. DC Specifications

Parameter	Description	Conditions		Min	Typ ^[29]	Max	Units
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulato	or enabled	1.8	-	5.5	V
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulator disabled		1.71	1.8	1.89	V
V _{DDD}	Digital supply voltage relative to V_{SSD}	Digital core regulator enabled		1.8 _	-	V _{DDA} ^[25] V _{DDA} + 0.1 ^[31]	V
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator	disabled	1.71	1.8	1.89	V
V _{DDIO} ^[26]	I/O supply voltage relative to V _{SSIO}			1.71 -	-	V _{DDA} ^[25] V _{DDA} + 0.1 ^[31]	V
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulato	or disabled	1.71	1.8	1.89	V
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator	disabled	1.71	1.8	1.89	V
I _{DD} ^[27, 28]	Active Mode						
	Only IMO and CPU clock enabled. CPU	$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	-	1.2	2.9	mA
	executing simple loop from instruction	$F_{CPU} = 6 \text{ MHz}^{130}$	T = 25 °C	-	1.2	3.1	
			T = 85 °C	I	4.9	7.7	
	IMO enabled, bus clock and CPU clock	$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	I	1.3	2.9	
	lenabled. CPU executing program from	$F_{CPU} = 3 \text{ MHz}^{(30)}$	T = 25 °C	_	1.6	3.2	
			T = 85 °C	1	4.8	7.5	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	1	2.1	3.7	
		F _{CPU} = 6 MHz	T = 25 °C	_	2.3	3.9	
			T = 85 °C	1	5.6	8.5	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	Ι	3.5	5.2	
		$F_{CPU} = 12 \text{ MHz}^{130}$	T = 25 °C	I	3.8	5.5	
			T = 85 °C	1	7.1	9.8	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	Ι	6.3	8.1	
		F _{CPU} = 24 MHz ^[30]	T = 25 °C	I	6.6	8.3	
			T = 85 °C	Ι	10	13	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	_	11.5	13.5	
		$F_{CPU} = 48 \text{ MHz}^{130}$	T = 25 °C	-	12	14	
			T = 85 °C	_	15.5	18.5	
		$V_{DDX} = 2.7 V - 5.5 V;$	T = -40 °C	_	16	18	
		F _{CPU} = 62 MHz	T = 25 °C	_	16	18	
			T = 85 °C	-	19.5	23	

Notes

Notes
25. The power supplies can be brought up in any sequence however once stable V_{DDA} must be greater than or equal to all other supplies.
26. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin ≤ V_{DDIO} ≤ V_{DDA}.
27. Total current for all power domains: digital (l_{DDD}), analog (l_{DDA}), and I/Os (l_{DDIO0, 1, 2, 3}). Boost not included. All I/Os floating.
28. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

29. V_{DDX} = 3.3 V.

30. Based on device characterization (Not production tested).

31. Guaranteed by design, not production tested.

11.3 Power Regulators

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.3.1 Digital Core Regulator

Table 11-4. Digital Core Regulator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{DDD}	Input voltage		1.8	-	5.5	V
V _{CCD}	Output voltage		-	1.80	-	V
	Regulator output capacitor	\pm 10%, ×5R ceramic or better. The two V _{CCD} pins must be shorted together, with as short a trace as possible, see Power System on page 31	0.9	1	1.1	μF

Figure 11-6. Digital Regulator PSRR vs Frequency and V_{DD}

11.3.2 Analog Core Regulator

Table 11-5. Analog Core Regulator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{DDA}	Input voltage		1.8	-	5.5	V
V _{CCA}	Output voltage		-	1.80	-	V
	Regulator output capacitor	±10%, ×5R ceramic or better	0.9	1	1.1	μF

11.5.3 Voltage Reference

Table 11-24. Voltage Reference Specifications

See also ADC external reference specifications in Section 11.5.2.

Parameter	Description	Conditions		Min	Тур	Max	Units
V _{REF} ^[56]	Precision reference voltage	Initial trimming, 25 °C		1.023 (–0.1%)	1.024	1.025 (+0.1%)	V
	After typical PCB assembly, post reflow Typical (non-optimized) board 40 and 250 °C solder reflow.	–40 °C	_	±0.5	_	%	
	post reflow	layout and 250 °C solder reflow. 25 °C Device may be calibrated after	25 °C	_	±0.2	_	%
		assembly to improve performance	85 °C	-	±0.2	-	%
	Temperature drift ^[57]	Box method		-	_	30	ppm/°C
	Long term drift			-	100	_	ppm/khr
	Thermal cycling drift (stability) ^[57, 58]			-	100	_	ppm

Figure 11-34. Voltage Reference vs. Temperature and $\mathrm{V}_{\mathrm{CCA}}$

Figure 11-35. Voltage Reference Long-Term Drift

11.5.4 Analog Globals

Table 11-25. Analog Globals Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rppag	Resistance pin-to-pin through P2[4], AGL0, DSM INP, AGL1, P2[5] ^[59]	V _{DDA} = 3 V	-	1472	2200	Ω
Rppmuxbus	Resistance pin-to-pin through P2[3], amuxbusL, P2[4] ^[59]	V _{DDA} = 3 V	_	706	1100	Ω

Notes

56. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses.

57. Based on device characterization (Not production tested). 58. After eight full cycles between –40 °C and 100 °C.

- 59. The resistance of the analog global and analog mux bus is high if V_{DDA} ≤ 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog mux bus under these conditions is not recommended.

11.5.10 Programmable Gain Amplifier

The PGA is created using a SC/CT analog block; see the PGA component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, operating conditions are:

- Operating temperature = 25 °C for typical values
- Unless otherwise specified, all charts and graphs show typical values

Table 11-36. PGA DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vin	Input voltage range	Power mode = minimum	V _{SSA}	-	V _{DDA}	V
Vos	Input offset voltage	Power mode = high, gain = 1	-	-	10	mV
TCVos	Input offset voltage drift with temperature	Power mode = high, gain = 1	-	-	±30	µV/°C
Ge1	Gain error, gain = 1		_	_	±0.15	%
Ge16	Gain error, gain = 16		_	_	±2.5	%
Ge50	Gain error, gain = 50		_	_	±5	%
Vonl	DC output nonlinearity	Gain = 1	-	-	±0.01	% of FSR
Cin	Input capacitance		_	_	7	pF
Voh	Output voltage swing	Power mode = high, gain = 1, Rload = 100 k Ω to V _{DDA} / 2	V _{DDA} -0.15	-	-	V
Vol	Output voltage swing	Power mode = high, gain = 1, Rload = 100 k Ω to V _{DDA} / 2	_	-	V _{SSA} + 0.15	V
Vsrc	Output voltage under load	lload = 250 μ A, V _{DDA} \geq 2.7 V, power mode = high	-	-	300	mV
ldd	Operating current	Power mode = high	-	1.5	1.65	mA
PSRR	Power supply rejection ratio		48	-	_	dB

Figure 11-62. PGA Voffset Histogram, 4096 samples/ 1024 parts

11.6.6 Digital Filter Block

Table 11-51. DFB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at F _{DFB}				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		48 MHz (644 ksps)	-	15.7	25.5	mA
		67 MHz (900 ksps)	-	21.8	35.6	mA

Table 11-52. DFB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DFB}	DFB operating frequency		DC	-	67.01	MHz

11.6.7 USB

Table 11-53. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply (V _{DDD}) for USB operation	USB configured, USB regulator enabled	4.35	-	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	_	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[66]	2.85	-	3.6	V
IUSB_Configured	Device supply current in device active mode, bus clock and IMO = 24 MHz	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	I	10	-	mA
		V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	Ι	8	—	mA
IUSB_Suspended	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	-	0.3	-	mA
		V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V_{DDD} = 3.3 V, disconnected from USB host	_	0.3	_	mA

11.7 Memory

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.7.1 Flash

Table 11-55. Flash DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage	V _{DDD} pin	1.71	-	5.5	V

Table 11-56. Flash AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{WRITE}	Row write time (erase + program)		-	15	20	ms
T _{ERASE}	Row erase time		-	10	13	ms
	Row program time		-	5	7	ms
T _{BULK}	Bulk erase time (16 KB to 64 KB)		-	-	35	ms
	Sector erase time (8 KB to 16 KB)		-	-	15	ms
T _{PROG}	Total device programming time	No overhead ^[67]	_	1.5	2	seconds
	Flash data retention time, retention period measured from last erase cycle	Average ambient temp. $T_A \le 55$ °C, 100 K erase/program cycles	20	-	_	years
		Average ambient temp. $T_A \le 85$ °C, 10 K erase/program cycles	10	_	-	

11.7.2 EEPROM

Table 11-57. EEPROM DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage		1.71	-	5.5	V

Table 11-58. EEPROM AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{WRITE}	Single row erase/write cycle time		-	10	20	ms
	EEPROM data retention time, retention period measured from last erase cycle	Average ambient temp, $T_A \le 25$ °C, 1M erase/program cycles	20	-	-	years
		Average ambient temp, $T_A \le 55$ °C, 100 K erase/program cycles	20	-	-	
		Average ambient temp. $T_A \le 85$ °C, 10 K erase/program cycles	10	-	-	

Figure 11-67. Synchronous Write and Read Cycle Timing, No Wait States

Table 11-64. Synchronous Write and Read Timing Specifications^[71]

Parameter	Description	Conditions	Min	Тур	Max	Units
Fbus_clock	Bus clock frequency ^[72]		-	-	33	MHz
Tbus_clock	Bus clock period ^[73]		30.3	_	-	ns
Twr_Setup	Time from EM_data valid to rising edge of EM_Clock		Tbus_clock – 10	_	-	ns
Trd_setup	Time that EM_data must be valid before rising edge of EM_OE		5	_	_	ns
Trd_hold	Time that EM_data must be valid after rising edge of EM_OE		5	_	_	ns

Notes

- 71. Based on device characterization (Not production tested).
 72. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 80.
 73. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

Table 11-74. IMO AC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units
Jp–p	Jitter (peak to peak) ^[81]					
	F = 24 MHz		-	0.9	-	ns
	F = 3 MHz		-	1.6	-	ns
Jperiod	Jitter (long term) ^[81]					•
	F = 24 MHz		-	0.9	-	ns
	F = 3 MHz		-	12	-	ns

Figure 11-71. IMO Frequency Variation vs. Temperature

Figure 11-72. IMO Frequency Variation vs. V_{CC}

Note 81. Based on device characterization (Not production tested).

12. Ordering Information

In addition to the features listed in Table 12-1, every CY8C36 device includes: a precision on-chip voltage reference, precision oscillators, flash, ECC, DMA, a fixed function I²C, 4 KB trace RAM, JTAG/SWD programming and debug, external memory interface, and more. In addition to these features, the flexible UDBs and analog subsection support a wide range of peripherals. To assist you in selecting the ideal part, PSoC Creator makes a part recommendation after you choose the components required by your application. All CY8C36 derivatives incorporate device and flash security in user-selectable security levels; see the TRM for details.

	MCU Core				Analog								Digital				I/O ^[00]					
Part Number	CPU Speed (MHz)	Flash (KB)	SRAM (KB)	EEPROM (KB)	LCD Segment Drive	ADC	DAC	Comparator	SC/CT Analog Blocks ^[86]	Opamps	DFB	CapSense	UDBs ^[87]	16-bit Timer/PWM	FS USB	CAN 2.0b	Total I/O	GPIO	SIO	USBIO	Package	JTAG ID ^[89]
32 KB Flash																						
CY8C3665PVI-008	67	32	4	1	V	12-bit Del-Sig	4	4	4	2	~	r	20	4	-	-	29	25	4	0	48-pin SSOP	0×1E008069
CY8C3665AXI-198	67	32	8	1	۲	12-bit Del-Sig	2	0	0	0	Ι	~	16	0	-	Ι	70	62	8	0	100-pin TQFP	0x1E0C6069
CY8C3665LTI-044	67	32	4	1	۲	12-bit Del-Sig	4	4	4	0	<	~	20	4	~	Ι	48	38	8	2	68-pin QFN	0x1E02C069
CY8C3665LTI-199	67	32	8	1	٢	12-bit Del-Sig	2	0	0	0	Ι	~	16	0	-	Ι	46	38	8	0	68-pin QFN	0x1E0C7069
CY8C3665FNI-211	67	32	4	1	5	12-bit Del-Sig	4	4	4	4	~	2	20	4	~	-	48	38	8	2	72 WLCSP	0x1E0D3069
64 KB Flash																						
CY8C3666AXI-052	67	64	8	2	5	12-bit Del-Sig	4	4	4	4	~	5	24	4	-	-	70	62	8	0	100-pin TQFP	0×1E034069
CY8C3666AXI-036	67	64	8	2	5	12-bit Del-Sig	4	4	4	4	۲	۲	24	4	~	Ι	72	62	8	2	100-pin TQFP	0×1E024069
CY8C3666LTI-027	67	64	8	2	5	12-bit Del-Sig	4	4	4	4	۲	5	24	4	2		48	38	8	2	68-pin QFN	0×1E01B069
CY8C3666LTI-050	67	64	8	2	٢	12-bit Del-Sig	4	4	4	2	٨	1	24	4	<	-	31	25	4	2	48-pin QFN	0×1E032069
CY8C3666AXI-037	67	64	8	2	۲	12-bit Del-Sig	4	4	4	4	<	~	24	4	-	2	70	62	8	0	100-pin TQFP	0×1E025069
CY8C3666AXI-200	67	64	8	2	٢	12-bit Del-Sig	2	2	0	2	Ι	~	20	2	-	Ι	70	62	8	0	100-pin TQFP	0x1E0C8069
CY8C3666LTI-201	67	64	8	2	5	12-bit Del-Sig	2	2	0	2	-	2	20	2	-	-	46	38	8	0	68-pin QFN	0x1E0C9069
CY8C3666AXI-202	67	64	8	2	~	12-bit Del-Sig	4	2	2	2	-	~	24	4	-	-	70	62	8	0	100-pin TQFP	0x1E0CA069
CY8C3666LTI-203	67	64	8	2	~	12-bit Del-Sig	4	2	2	2	-	~	24	4	-	-	46	38	8	0	68-pin QFN	0x1E0CB069

Table 12-1. CY8C36 Family with Single Cycle 8051

Notes

86. Analog blocks support a wide variety of functionality including TIA, PGA, and mixers. See the Example Peripherals on page 44 for more information on how analog blocks can be used.

87. UDBs support a wide variety of functionality including SPI, LIN, UART, timer, counter, PWM, PRS, and others. Individual functions may use a fraction of a UDB or multiple UDBs. Multiple functions can share a single UDB. See the Example Peripherals on page 44 for more information on how UDBs can be used.
 88. The I/O Count includes all types of digital I/O: GPIO, SIO, and the two USB I/O. See the I/O System and Routing on page 37 for details on the functionality of each of these types of I/O.

89. The JTAG ID has three major fields. The most significant nibble (left digit) is the version, followed by a 2 byte part number and a 3 nibble manufacturer ID.