Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | 8051 | | Core Size | 8-Bit | | Speed | 67MHz | | Connectivity | EBI/EMI, I ² C, LINbus, SPI, UART/USART | | Peripherals | CapSense, DMA, POR, PWM, WDT | | Number of I/O | 62 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 1K x 8 | | RAM Size | 8K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V | | Data Converters | A/D 16x12b; D/A 2x8b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3665axi-198t | Table 4-1. Arithmetic Instructions | Mnemonic | Description | Bytes | Cycles | |---------------|--|-------|--------| | ADD A,Rn | Add register to accumulator | 1 | 1 | | ADD A,Direct | Add direct byte to accumulator | 2 | 2 | | ADD A,@Ri | Add indirect RAM to accumulator | 1 | 2 | | ADD A,#data | Add immediate data to accumulator | 2 | 2 | | ADDC A,Rn | Add register to accumulator with carry | 1 | 1 | | ADDC A,Direct | Add direct byte to accumulator with carry | 2 | 2 | | ADDC A,@Ri | Add indirect RAM to accumulator with carry | 1 | 2 | | ADDC A,#data | Add immediate data to accumulator with carry | 2 | 2 | | SUBB A,Rn | Subtract register from accumulator with borrow | 1 | 1 | | SUBB A,Direct | Subtract direct byte from accumulator with borrow | 2 | 2 | | SUBB A,@Ri | Subtract indirect RAM from accumulator with borrow | 1 | 2 | | SUBB A,#data | Subtract immediate data from accumulator with borrow | 2 | 2 | | INC A | Increment accumulator | 1 | 1 | | INC Rn | Increment register | 1 | 2 | | INC Direct | Increment direct byte | 2 | 3 | | INC @Ri | Increment indirect RAM | 1 | 3 | | DEC A | Decrement accumulator | 1 | 1 | | DEC Rn | Decrement register | 1 | 2 | | DEC Direct | Decrement direct byte | 2 | 3 | | DEC @Ri | Decrement indirect RAM | 1 | 3 | | INC DPTR | Increment data pointer | 1 | 1 | | MUL | Multiply accumulator and B | 1 | 2 | | DIV | Divide accumulator by B | 1 | 6 | | DAA | Decimal adjust accumulator | 1 | 3 | # 4.3.1.2 Logical Instructions The logical instructions perform Boolean operations such as AND, OR, XOR on bytes, rotate of accumulator contents, and swap of nibbles in an accumulator. The Boolean operations on the bytes are performed on the bit-by-bit basis. Table 4-2 on page 15 shows the list of logical instructions and their description. **Table 4-2. Logical Instructions** | | Mnemonic | Description | Bytes | Cycles | |-----|---------------|-----------------------------------|-------|--------| | ANL | A,Rn | AND register to accumulator | 1 | 1 | | ANL | A,Direct | AND direct byte to accumulator | 2 | 2 | | ANL | A,@Ri | AND indirect RAM to accumulator | 1 | 2 | | ANL | A,#data | AND immediate data to accumulator | 2 | 2 | | ANL | Direct, A | AND accumulator to direct byte | 2 | 3 | | ANL | Direct, #data | AND immediate data to direct byte | 3 | 3 | | ORL | A,Rn | OR register to accumulator | 1 | 1 | | ORL | A,Direct | OR direct byte to accumulator | 2 | 2 | | ORL | A,@Ri | OR indirect RAM to accumulator | 1 | 2 | Document Number: 001-53413 Rev. *Y Page 15 of 137 Table 4-3. Data Transfer Instructions (continued) | Mnemonic | Description | Bytes | Cycles | |-------------------|--|-------|--------| | MOV @Ri, Direct | Move direct byte to indirect RAM | 2 | 3 | | MOV @Ri, #data | Move immediate data to indirect RAM | 2 | 2 | | MOV DPTR, #data16 | Load data pointer with 16 bit constant | 3 | 3 | | MOVC A, @A+DPTR | Move code byte relative to DPTR to accumulator | 1 | 5 | | MOVC A, @A + PC | Move code byte relative to PC to accumulator | 1 | 4 | | MOVX A,@Ri | Move external RAM (8-bit) to accumulator | 1 | 4 | | MOVX A, @DPTR | Move external RAM (16-bit) to accumulator | 1 | 3 | | MOVX @Ri, A | Move accumulator to external RAM (8-bit) | 1 | 5 | | MOVX @DPTR, A | Move accumulator to external RAM (16-bit) | 1 | 4 | | PUSH Direct | Push direct byte onto stack | 2 | 3 | | POP Direct | Pop direct byte from stack | 2 | 2 | | XCH A, Rn | Exchange register with accumulator | 1 | 2 | | XCH A, Direct | Exchange direct byte with accumulator | 2 | 3 | | XCH A, @Ri | Exchange indirect RAM with accumulator | 1 | 3 | | XCHD A, @Ri | Exchange low order indirect digit RAM with accumulator | 1 | 3 | Table 4-4. Boolean Instructions | Mnemonic | Description | Bytes | Cycles | |--------------|---|-------|--------| | CLR C | Clear carry | 1 | 1 | | CLR bit | Clear direct bit | 2 | 3 | | SETB C | Set carry | 1 | 1 | | SETB bit | Set direct bit | 2 | 3 | | CPL C | Complement carry | 1 | 1 | | CPL bit | Complement direct bit | 2 | 3 | | ANL C, bit | AND direct bit to carry | 2 | 2 | | ANL C, /bit | AND complement of direct bit to carry | 2 | 2 | | ORL C, bit | OR direct bit to carry | 2 | 2 | | ORL C, /bit | OR complement of direct bit to carry | 2 | 2 | | MOV C, bit | Move direct bit to carry | 2 | 2 | | MOV bit, C | Move carry to direct bit | 2 | 3 | | JC rel | Jump if carry is set | 2 | 3 | | JNC rel | Jump if no carry is set | 2 | 3 | | JB bit, rel | Jump if direct bit is set | 3 | 5 | | JNB bit, rel | Jump if direct bit is not set | 3 | 5 | | JBC bit, rel | Jump if direct bit is set and clear bit | 3 | 5 | Document Number: 001-53413 Rev. *Y Page 17 of 137 Figure 4-3. Interrupt Structure Table 4-8. Interrupt Vector Table | # | Fixed Function | DMA | UDB | |----|------------------------|-------------------|--------------| | 0 | LVD | phub_termout0[0] | udb_intr[0] | | 1 | Cache/ECC | phub_termout0[1] | udb_intr[1] | | 2 | Reserved | phub_termout0[2] | udb_intr[2] | | 3 | Sleep (Pwr Mgr) | phub_termout0[3] | udb_intr[3] | | 4 | PICU[0] | phub_termout0[4] | udb_intr[4] | | 5 | PICU[1] | phub_termout0[5] | udb_intr[5] | | 6 | PICU[2] | phub_termout0[6] | udb_intr[6] | | 7 | PICU[3] | phub_termout0[7] | udb_intr[7] | | 8 | PICU[4] | phub_termout0[8] | udb_intr[8] | | 9 | PICU[5] | phub_termout0[9] | udb_intr[9] | | 10 | PICU[6] | phub_termout0[10] | udb_intr[10] | | 11 | PICU[12] | phub_termout0[11] | udb_intr[11] | | 12 | PICU[15] | phub_termout0[12] | udb_intr[12] | | 13 | Comparators Combined | phub_termout0[13] | udb_intr[13] | | 14 | Switched Caps Combined | phub_termout0[14] | udb_intr[14] | | 15 | I ² C | phub_termout0[15] | udb_intr[15] | | 16 | CAN | phub_termout1[0] | udb_intr[16] | | 17 | Timer/Counter0 | phub_termout1[1] | udb_intr[17] | | 18 | Timer/Counter1 | phub_termout1[2] | udb_intr[18] | | 19 | Timer/Counter2 | phub_termout1[3] | udb_intr[19] | | 20 | Timer/Counter3 | phub_termout1[4] | udb_intr[20] | | 21 | USB SOF Int | phub_termout1[5] | udb_intr[21] | | 22 | USB Arb Int | phub_termout1[6] | udb_intr[22] | Document Number: 001-53413 Rev. *Y Page 22 of 137 ### 5.4 EEPROM PSoC EEPROM memory is a byte-addressable nonvolatile memory. The CY8C36 has up to 2 KB of EEPROM memory to store user data. Reads from EEPROM are random access at the byte level. Reads are done directly; writes are done by sending write commands to an EEPROM programming interface. CPU code execution can continue from flash during EEPROM writes. EEPROM is erasable and writeable at the row level. The EEPROM is divided into 128 rows of 16 bytes each. The factory default values of all EEPROM bytes are 0. Because the EEPROM is mapped to the 8051 xdata space, the CPU cannot execute out of EEPROM. There is no ECC hardware associated with EEPROM. If ECC is required it must be handled in firmware. It can take as much as 20 milliseconds to write to EEPROM or flash. During this time the device should not be reset, or unexpected changes may be made to portions of EEPROM or flash. Reset sources (see Section 6.3.1) include XRES pin, software reset, and watchdog; care should be taken to make sure that these are not inadvertently activated. In addition, the low voltage detect circuits should be configured to generate an interrupt instead of a reset. ## 5.5 Nonvolatile Latches (NVLs) PSoC has a 4-byte array of nonvolatile latches (NVLs) that are used to configure the device at reset. The NVL register map is shown in Table 5-2. Table 5-2. Device Configuration NVL Register Map | Register Address | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------------------|---------------|-----------|---------------------------|---------|--------------|----------|--------------|----------| | 0x00 | PRT3RD | DM[1:0] | PRT2RDM[1:0] PRT1RDM[1:0] | | DM[1:0] | PRT0 | RDM[1:0] | | | 0x01 | PRT12RDM[1:0] | | PRT6R | DM[1:0] | PRT5RDM[1:0] | | PRT4RDM[1:0] | | | 0x02 | XRESMEN | DBGEN | | | | PRT15 | SRDM[1:0] | | | 0x03 | | DIG_PHS_I | _DLY[3:0] | | ECCEN | DPS[1:0] | | CFGSPEED | The details for individual fields and their factory default settings are shown in Table 5-3. Table 5-3. Fields and Factory Default Settings | Field | Description | Settings | |------------------|--
---| | PRTxRDM[1:0] | Controls reset drive mode of the corresponding IO port. See "Reset Configuration" on page 43. All pins of the port are set to the same mode. | 00b (default) - high impedance analog
01b - high impedance digital
10b - resistive pull up
11b - resistive pull down | | XRESMEN | Controls whether pin P1[2] is used as a GPIO or as an external reset. See "Pin Descriptions" on page 12, XRES description. | 0 (default for 68-pin 72-pin, and 100-pin parts) - GPIO 1 (default for 48-pin parts) - external reset | | DBGEN | Debug Enable allows access to the debug system, for third-party programmers. | 0 - access disabled
1 (default) - access enabled | | CFGSPEED | Controls the speed of the IMO-based clock during the device boot process, for faster boot or low-power operation | 0 (default) - 12 MHz IMO
1 - 48 MHz IMO | | DPS[1:0] | Controls the usage of various P1 pins as a debug port. See "Programming, Debug Interfaces, Resources" on page 65. | 00b - 5-wire JTAG
01b (default) - 4-wire JTAG
10b - SWD
11b - debug ports disabled | | ECCEN | Controls whether ECC flash is used for ECC or for general configuration and data storage. See "Flash Program Memory" on page 23. | 0 - ECC disabled
1 (default) - ECC enabled | | DIG_PHS_DLY[3:0] | Selects the digital clock phase delay. | See the TRM for details. | Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase / write cycles is limited – see "Nonvolatile Latches (NVL))" on page 110. Document Number: 001-53413 Rev. *Y Page 24 of 137 # 6. System Integration ## 6.1 Clocking System The clocking system generates, divides, and distributes clocks throughout the PSoC system. For the majority of systems, no external crystal is required. The IMO and PLL together can generate up to a 66 MHz clock, accurate to ±1% over voltage and temperature. Additional internal and external clock sources allow each design to optimize accuracy, power, and cost. Any of the clock sources can be used to generate other clock frequencies in the 16-bit clock dividers and UDBs for anything the user wants, for example a UART baud rate generator. Clock generation and distribution is automatically configured through the PSoC Creator IDE graphical interface. This is based on the complete system's requirements. It greatly speeds the design process. PSoC Creator allows you to build clocking systems with minimal input. You can specify desired clock frequencies and accuracies, and the software locates or builds a clock that meets the required specifications. This is possible because of the programmability inherent in PSoC. Key features of the clocking system include: - Seven general purpose clock sources - □ 3- to 62-MHz IMO, ±1% at 3 MHz - 4- to 25-MHz external crystal oscillator (MHzECO) - □ Clock doubler provides a doubled clock frequency output for the USB block, see USB Clock Domain on page 30. - DSI signal from an external I/O pin or other logic - □ 24- to 67-MHz fractional PLL sourced from IMO, MHzECO, or DSI - □ 1-kHz, 33-kHz, 100-kHz ILO for WDT and sleep timer □ 32.768-kHz external crystal oscillator (kHzECO) for RTC - IMO has a USB mode that auto locks to the USB bus clock requiring no external crystal for USB. (USB equipped parts only) - Independently sourced clock in all clock dividers - Eight 16-bit clock dividers for the digital system - Four 16-bit clock dividers for the analog system - Dedicated 16-bit divider for the bus clock - Dedicated 4-bit divider for the CPU clock - Automatic clock configuration in PSoC Creator Figure 6-1. Clocking Subsystem Figure 6-10. SIO Input/Output Block Diagram Figure 6-11. USBIO Block Diagram # 9.2 Serial Wire Debug Interface The SWD interface is the preferred alternative to the JTAG interface. It requires only two pins instead of the four or five needed by JTAG. SWD provides all of the programming and debugging features of JTAG at the same speed. SWD does not provide access to scan chains or device chaining. The SWD clock frequency can be up to 1/3 of the CPU clock frequency. SWD uses two pins, either two of the JTAG pins (TMS and TCK) or the USBIO D+ and D- pins. The USBIO pins are useful for in system programming of USB solutions that would otherwise require a separate programming connector. One pin is used for the data clock and the other is used for data input and output. SWD can be enabled on only one of the pin pairs at a time. This only happens if, within 8 µs (key window) after reset, that pin pair (JTAG or USB) receives a predetermined acquire sequence of 1s and 0s. If the NVL latches are set for SWD (see *Section 5.5*), this sequence need not be applied to the JTAG pin pair. The acquire sequence must always be applied to the USB pin pair. SWD is used for debugging or for programming the flash memory. The SWD interface can be enabled from the JTAG interface or disabled, allowing its pins to be used as GPIO. Unlike JTAG, the SWD interface can always be reacquired on any device during the key window. It can then be used to reenable the JTAG interface, if desired. When using SWD or JTAG pins as standard GPIO, make sure that the GPIO functionality and PCB circuits do not interfere with SWD or JTAG use. Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer - The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming should be the same. XRES pin (XRES_N or P1[2]) is powered by V_{DDIO1}. The USB SWD pins are powered by V_{DDD}. So for Programming using the USB SWD pins with XRES pin, the V_{DDD}, V_{DDIO1} of PSoC 3 should be at the same voltage level as Host V_{DD}. Rest of PSoC 3 voltage domains (V_{DDA}, V_{DDIO2}, V_{DDIO3}) need not be at the same voltage level as host Programmer. The Port 1 SWD pins are powered by V_{DDIO1}. So V_{DDIO1} of PSoC 3 should be at same voltage level as host V_{DD} for Port 1 SWD programming. Rest of PSoC 3 voltage domains (V_{DDD}, V_{DDIO2}, V_{DDIO2}, V_{DDIO3}) need not be at the same voltage level as host Programmer. - ² Vdda must be greater than or equal to all other power supplies (Vddd, Vddio's) in PSoC 3. - For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have the capability to toggle power (Vddd, Vdda, All Vddio's) to PSoC 3. This may typically require external interface circuitry to toggle power which will depend on the programming setup. The power supplies can be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other supplies. - P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48-pin devices, but use dedicated XRES pin for rest of devices. Document Number: 001-53413 Rev. *Y Page 67 of 137 ### 9.3 Debug Features Using the JTAG or SWD interface, the CY8C36 supports the following debug features: - Halt and single-step the CPU - View and change CPU and peripheral registers, and RAM addresses - Eight program address breakpoints - One memory access breakpoint—break on reading or writing any memory address and data value - Break on a sequence of breakpoints (non recursive) - Debugging at the full speed of the CPU - Compatible with PSoC Creator and MiniProg3 programmer and debugger - Standard JTAG programming and debugging interfaces make CY8C36 compatible with other popular third-party tools (for example, ARM / Keil) ### 9.4 Trace Features The CY8C36 supports the following trace features when using JTAG or SWD: - Trace the 8051 program counter (PC), accumulator register (ACC), and one SFR / 8051 core RAM register - Trace depth up to 1000 instructions if all registers are traced, or 2000 instructions if only the PC is traced (on devices that include trace memory) - Program address trigger to start tracing - Trace windowing, that is, only trace when the PC is within a given range - Two modes for handling trace buffer full: continuous (overwriting the oldest trace data) or break when trace buffer is full ### 9.5 Single Wire Viewer Interface The SWV interface is closely associated with SWD but can also be used independently. SWV data is output on the JTAG interface's TDO pin. If using SWV, you must configure the device for SWD, not JTAG. SWV is not supported with the JTAG interface. SWV is ideal for application debug where it is helpful for the firmware to output data similar to 'printf' debugging on PCs. The SWV is ideal for data monitoring, because it requires only a single pin and can output data in standard UART format or Manchester encoded format. For example, it can be used to tune a PID control loop in which the output and graphing of the three error terms greatly simplifies coefficient tuning. The following features are supported in SWV: - 32 virtual channels, each 32 bits long - Simple, efficient packing and serializing protocol - Supports standard UART format (N81) ### 9.6 Programming Features The JTAG and SWD interfaces provide full programming support. The entire device can be erased, programmed, and verified. You can increase flash protection levels to protect firmware IP. Flash protection can only be reset after a full device erase. Individual flash blocks can be erased, programmed, and verified, if block security settings permit. ### 9.7 Device Security PSoC 3 offers an advanced security feature called device security, which permanently disables all test, programming, and debug ports, protecting your application from external access. The device security is activated by programming a 32-bit key (0×50536F43) to a Write Once Latch (WOL). The WOL is a type of nonvolatile latch (NVL). The cell itself is an NVL with additional logic wrapped around it. Each WOL device contains four bytes (32 bits) of data. The wrapper outputs a
'1' if a super-majority (28 of 32) of its bits match a pre-determined pattern (0×50536F43); it outputs a '0' if this majority is not reached. When the output is 1, the Write Once NV latch locks the part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. Matching all bits is intentionally not required, so that single (or few) bit failures do not deassert the WOL output. The state of the NVL bits after wafer processing is truly random with no tendency toward 1 or 0. The WOL only locks the part after the correct 32-bit key (0×50536F43) is loaded into the NVL's volatile memory, programmed into the NVL's nonvolatile cells, and the part is reset. The output of the WOL is only sampled on reset and used to disable the access. This precaution prevents anyone from reading, erasing, or altering the contents of the internal memory. The user can write the key into the WOL to lock out external access only if no flash protection is set (see "Flash Security" on page 23). However, after setting the values in the WOL, a user still has access to the part until it is reset. Therefore, a user can write the key into the WOL, program the flash protection data, and then reset the part to lock it. If the device is protected with a WOL setting, Cypress cannot perform failure analysis and, therefore, cannot accept RMAs from customers. The WOL can be read out through the SWD port to electrically identify protected parts. The user can write the key in WOL to lock out external access only if no flash protection is set. For more information on how to take full advantage of the security features in PSoC see the PSoC 3 TRM. ### Disclaimer Note the following details of the flash code protection features on Cypress devices. Cypress products meet the specifications contained in their particular Cypress data sheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products. Figure 11-11. Efficiency vs V_{BAT} , L_{BOOST} = 4.7 $\mu H^{[42]}$ Figure 11-13. Efficiency vs V_{BAT} , L_{BOOST} = 22 $\mu H^{[42]}$ Figure 11-12. Efficiency vs V_{BAT} , L_{BOOST} = 10 $\mu H^{[42]}$ Figure 11-14. V_{RIPPLE} vs V_{BAT} [42] ### Note ^{42.} Typical example. Actual values may vary depending on external component selection, PCB layout, and other design parameters. ## 11.4 Inputs and Outputs Specifications are valid for $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$ and $T_{J} \le 100~^{\circ}\text{C}$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. Unless otherwise specified, all charts and graphs show typical values. When the power supplies ramp up, there are low-impedance connections between each GPIO pin and its V_{DDIO} supply. This causes the pin voltages to track V_{DDIO} until both V_{DDIO} and V_{DDA} reach the IPOR voltage, which can be as high as 1.45 V. At that point, the low-impedance connections no longer exist and the pins change to their normal NVL settings. 11.4.1 GPIO Table 11-9. GPIO DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------------|---|---|-------------------------|-----|-------------------------|-------| | V_{IH} | Input voltage high threshold | CMOS Input, PRT[×]CTL = 0 | $0.7 \times V_{DDIO}$ | _ | - | V | | V_{IL} | Input voltage low threshold | CMOS Input, PRT[×]CTL = 0 | _ | - | $0.3 \times V_{DDIO}$ | V | | V _{IH} | Input voltage high threshold | LVTTL Input, PRT[×]CTL = 1,V _{DDIO} < 2.7 V | 0.7 × V _{DDIO} | - | _ | V | | V _{IH} | Input voltage high threshold | LVTTL Input, PRT[\times]CTL = 1, $V_{DDIO} \ge 2.7 \text{ V}$ | 2.0 | - | _ | V | | V _{IL} | Input voltage low threshold | LVTTL Input, PRT[×]CTL = 1,V _{DDIO} < 2.7 V | _ | - | 0.3 × V _{DDIO} | V | | V _{IL} | Input voltage low threshold | LVTTL Input, PRT[\times]CTL = 1, $V_{DDIO} \ge 2.7 \text{ V}$ | _ | - | 0.8 | V | | V _{OH} | Output voltage high | I _{OH} = 4 mA at 3.3 V _{DDIO} | V _{DDIO} – 0.6 | _ | _ | V | | | | I _{OH} = 1 mA at 1.8 V _{DDIO} | V _{DDIO} – 0.5 | _ | _ | V | | V_{OL} | Output voltage low | I _{OL} = 8 mA at 3.3 V _{DDIO} | _ | _ | 0.6 | V | | | | I _{OL} = 4 mA at 1.8 V _{DDIO} | _ | _ | 0.6 | V | | | | I _{OL} = 3 mA at 3.3 V _{DDIO} | _ | _ | 0.4 | V | | Rpullup | Pull-up resistor | | 3.5 | 5.6 | 8.5 | kΩ | | Rpulldown | Pull-down resistor | | 3.5 | 5.6 | 8.5 | kΩ | | I _{IL} | Input leakage current (absolute value)[43] | 25 °C, V _{DDIO} = 3.0 V | _ | _ | 2 | nA | | C _{IN} | Input capacitance ^[43] | GPIOs not shared with opamp outputs, MHz ECO or kHzECO | _ | 4 | 7 | pF | | | | GPIOs shared with MHz ECO or kHzECO ^[44] | _ | 5 | 7 | pF | | | | GPIOs shared with opamp outputs | _ | - | 18 | pF | | V _H | Input voltage hysteresis (Schmitt-Trigger) ^[43] | | _ | 40 | _ | mV | | Idiode | Current through protection diode to V _{DDIO} and V _{SSIO} | | - | - | 100 | μA | | Rglobal | Resistance pin to analog global bus | 25 °C, V _{DDIO} = 3.0 V | - | 320 | _ | Ω | | Rmux | Resistance pin to analog mux bus | 25 °C, V _{DDIO} = 3.0 V | _ | 220 | _ | Ω | ### Notes ^{43.} Based on device characterization (Not production tested). ^{44.} For information on designing with PSoC oscillators, refer to the application note, AN54439 - PSoC® 3 and PSoC 5 External Oscillator. # 11.4.2 SIO # Table 11-11. SIO DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | | | |-----------------|--|--|-------------------------|-----|-------------------------|-------|--|--| | Vinmax | Maximum input voltage | All allowed values of V _{DDIO} and V _{DDD} , see <i>Section 11.1</i> | - | _ | 5.5 | V | | | | Vinref | Input voltage reference (Differential input mode) | | 0.5 | - | $0.52 \times V_{DDIO}$ | V | | | | | Output voltage reference (Regulated output mode) | | | | | | | | | Voutref | | V _{DDIO} > 3.7 | 1 | _ | V _{DDIO} – 1 | V | | | | | | V _{DDIO} < 3.7 | 1 | _ | V _{DDIO} – 0.5 | V | | | | | Input voltage high threshold | | | | | | | | | V_{IH} | GPIO mode | CMOS input | $0.7 \times V_{DDIO}$ | _ | _ | V | | | | | Differential input mode ^[46] | Hysteresis disabled | SIO_ref + 0.2 | _ | _ | V | | | | | Input voltage low threshold | | | | | | | | | V_{IL} | GPIO mode | CMOS input | _ | _ | $0.3 \times V_{DDIO}$ | V | | | | | Differential input mode ^[46] | Hysteresis disabled | _ | _ | SIO_ref - 0.2 | V | | | | | Output voltage high | | | | | | | | | \ <u></u> | Unregulated mode | I _{OH} = 4 mA, V _{DDIO} = 3.3 V | V _{DDIO} – 0.4 | _ | _ | V | | | | V _{OH} | Regulated mode ^[46] | I _{OH} = 1 mA | SIO_ref-0.65 | _ | SIO_ref + 0.2 | V | | | | | Regulated mode ^[46] | I _{OH} = 0.1 mA | SIO_ref - 0.3 | _ | SIO_ref + 0.2 | V | | | | | Output voltage low | $V_{DDIO} = 3.30 \text{ V}, I_{OL} = 25 \text{ mA}$ | _ | _ | 0.8 | V | | | | V_{OL} | | $V_{\rm DDIO}$ = 3.30 V, $I_{\rm OL}$ = 20 mA | _ | _ | 0.4 | V | | | | | | $V_{DDIO} = 1.80 \text{ V}, I_{OL} = 4 \text{ mA}$ | _ | _ | 0.4 | V | | | | Rpullup | Pull-up resistor | | 3.5 | 5.6 | 8.5 | kΩ | | | | Rpulldown | Pull-down resistor | | 3.5 | 5.6 | 8.5 | kΩ | | | | I _{IL} | Input leakage current (absolute value) ^[47] | | _ | - | _ | _ | | | | | V _{IH} ≤ Vddsio | 25 °C, Vddsio = 3.0 V, V _{IH} = 3.0 V | _ | _ | 14 | nA | | | | | V _{IH} > Vddsio | 25 °C, Vddsio = 0 V, V _{IH} = 3.0 V | _ | _ | 10 | μA | | | | C _{IN} | Input Capacitance ^[47] | | _ | _ | 7 | pF | | | | | Input voltage hysteresis (Schmitt-Trigger) ^[47] | Single ended mode (GPIO mode) | _ | 40 | _ | mV | | | | V_{H} | (Schmitt-Trigger) ^[47] | Differential mode | _ | 35 | _ | mV | | | | Idiode | Current through protection diode to V _{SSIO} | | - | _ | 100 | μΑ | | | Notes 46. See Figure 6-10 on page 39 and Figure 6-13 on page 43 for more information on SIO reference. 47. Based on device characterization (Not production tested) Table 11-12. SIO AC Specifications (continued) | Parameter | Description | Conditions | Min | Тур | Max | Units | | |-----------|--|--|-----|-----|-----|-------|--| | | SIO output operating frequency | | | | | • | | | | 2.7 V < V _{DDIO} < 5.5 V, Unregulated output (GPIO) mode, fast strong drive mode | 90/10% V _{DDIO} into 25 pF | _ | - | 33 | MHz | | | | 1.71 V < V _{DDIO} < 2.7 V, Unregulated output (GPIO) mode, fast strong drive mode | 90/10% V _{DDIO} into 25 pF | _ | _ | 16 | MHz | | | | 3.3 V < V _{DDIO} < 5.5 V, Unregulated output (GPIO) mode, slow strong drive mode | 90/10% V _{DDIO} into 25 pF | _ | _ | 5 | MHz | | | Fsioout | 1.71 V < V _{DDIO} < 3.3 V, Unregulated output (GPIO) mode, slow strong drive mode | 90/10% V _{DDIO} into 25 pF | _ | - | 4 | MHz | | | | 2.7 V < V _{DDIO} < 5.5 V, Regulated output mode, fast strong drive mode | Output continuously switching into 25 pF | _ | _ | 20 | MHz | | | | 1.71 V < V _{DDIO} < 2.7 V, Regulated output mode, fast strong drive mode | Output continuously
switching into 25 pF | _ | _ | 10 | MHz | | | | 1.71 V < V _{DDIO} < 5.5 V, Regulated output mode, slow strong drive mode | Output continuously switching into 25 pF | _ | _ | 2.5 | MHz | | | Fsioin | SIO input operating frequency | | | | | | | | 1-210111 | 1.71 V ≤ V _{DDIO} ≤ 5.5 V | 90/10% V _{DDIO} | _ | _ | 33 | MHz | | Figure 11-20. SIO Output Rise and Fall Times, Fast Strong Mode, $\rm V_{DDIO}$ = 3.3 V, 25 pF Load Figure 11-21. SIO Output Rise and Fall Times, Slow Strong Mode, $V_{\rm DDIO}$ = 3.3 V, 25 pF Load Table 11-13. SIO Comparator Specifications^[49] | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|--------------------------------|---------------------------|-----|-----|-----|-------| | Vos | Offset voltage | V _{DDIO} = 2 V | _ | _ | 68 | mV | | | | V _{DDIO} = 2.7 V | _ | _ | 72 | | | | | V _{DDIO} = 5.5 V | _ | _ | 82 | | | TCVos | Offset voltage drift with temp | | - | _ | 250 | μV/°C | | CMRR | Common mode rejection ratio | V _{DDIO} = 2 V | 30 | _ | - | dB | | | | V _{DDIO} = 2.7 V | 35 | _ | - | | | | | V _{DDIO} = 5.5 V | 40 | _ | - | | | Tresp | Response time | | _ | - | 30 | ns | ## 11.4.3 USBIO For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 72. Table 11-14. USBIO DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |---------------------------------|--|--|----------------|-----|----------------|-------| | Rusbi | USB D+ pull-up resistance | With idle bus | 0.900 | _ | 1.575 | kΩ | | Rusba | USB D+ pull-up resistance | While receiving traffic | 1.425 | _ | 3.090 | kΩ | | Vohusb | Static output high | 15 k Ω ±5% to Vss, internal pull-up enabled | 2.8 | _ | 3.6 | V | | Volusb | Static output low | 15 k Ω ±5% to Vss, internal pull-up enabled | _ | - | 0.3 | V | | Vihgpio | Input voltage high, GPIO mode | V _{DDD} ≥ 3 V | 2 | _ | - | V | | Vilgpio | Input voltage low, GPIO mode | $V_{DDD} \ge 3 \text{ V}$ | _ | _ | 0.8 | V | | Vohgpio | Output voltage high, GPIO mode | I_{OH} = 4 mA, $V_{DDD} \ge 3 \text{ V}$ | 2.4 | _ | - | V | | Volgpio | Output voltage low, GPIO mode | I_{OL} = 4 mA, $V_{DDD} \ge 3 \text{ V}$ | _ | _ | 0.3 | V | | Vdi | Differential input sensitivity | (D+)-(D-) | _ | _ | 0.2 | V | | Vcm | Differential input common mode range | - | 0.8 | - | 2.5 | V | | Vse | Single ended receiver threshold | _ | 0.8 | _ | 2 | V | | Rps2 | PS/2 pull-up resistance | In PS/2 mode, with PS/2 pull-up enabled | 3 | - | 7 | kΩ | | Rext | External USB series resistor | In series with each USB pin | 21.78
(–1%) | 22 | 22.22
(+1%) | Ω | | Zo | USB driver output impedance | Including Rext | 28 | _ | 44 | Ω | | C _{IN} | USB transceiver input capacitance | | - | _ | 20 | pF | | I _{IL} ^[49] | Input leakage current (absolute value) | 25 °C, V _{DDD} = 3.0 V | _ | _ | 2 | nA | ### Note Document Number: 001-53413 Rev. *Y Page 85 of 137 ^{49.} Based on device characterization (Not production tested). ### 11.4.4 XRES # Table 11-17. XRES DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------------|---|------------|-----------------------|-----|-----------------------|-------| | V _{IH} | Input voltage high threshold | | $0.7 \times V_{DDIO}$ | _ | _ | V | | V _{IL} | Input voltage low threshold | | _ | _ | $0.3 \times V_{DDIO}$ | V | | Rpullup | Pull-up resistor | | 3.5 | 5.6 | 8.5 | kΩ | | C _{IN} | Input capacitance ^[50] | | - | 3 | _ | pF | | V _H | Input voltage hysteresis (Schmitt–Trigger) ^[50] | | _ | 100 | _ | mV | | Idiode | Current through protection diode to $V_{\rm DDIO}$ and $V_{\rm SSIO}$ | | _ | - | 100 | μA | # Table 11-18. XRES AC Specifications | | Parameter | Description | Conditions | Min | Тур | Max | Units | |---|--------------------|-------------------|------------|-----|-----|-----|-------| | Γ | T _{RESET} | Reset pulse width | | 1 | _ | _ | μs | # 11.5 Analog Peripherals Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. # 11.5.1 Opamp Table 11-19. Opamp DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-------------------|---|--|-------------------------|------|-------------------------|---------| | V _{IOFF} | Input offset voltage | | _ | - | 2 | mV | | V _{OS} | Input offset voltage | | _ | _ | 2.5 | mV | | | | Operating temperature –40 °C to 70 °C | _ | _ | 2 | mV | | TCV _{OS} | Input offset voltage drift with temperature | Power mode = high | _ | _ | ±30 | μV / °C | | Ge1 | Gain error, unity gain buffer mode | Rload = 1 k Ω | _ | _ | ±0.1 | % | | C _{IN} | Input capacitance | Routing from pin | _ | _ | 18 | pF | | V _O | Output voltage range | 1 mA, source or sink, power mode = high | V _{SSA} + 0.05 | _ | V _{DDA} – 0.05 | V | | I _{OUT} | Output current capability, source or sink | V_{SSA} + 500 mV \leq Vout \leq V _{DDA}
-500 mV, V _{DDA} > 2.7 V | 25 | - | - | mA | | | | V_{SSA} + 500 mV \leq Vout \leq V _{DDA}
-500 mV, 1.7 V = V _{DDA} \leq 2.7 V | 16 | _ | - | mA | | I_{DD} | Quiescent current | Power mode = min | _ | 250 | 400 | uA | | | | Power mode = low | _ | 250 | 400 | uA | | | | Power mode = med | _ | 330 | 950 | uA | | | | Power mode = high | _ | 1000 | 2500 | uA | | CMRR | Common mode rejection ratio | | 80 | - | _ | dB | | PSRR | Power supply rejection ratio | $V_{DDA} \ge 2.7 \text{ V}$ | 85 | - | _ | dB | | | | V _{DDA} < 2.7 V | 70 | - | - | dB | | I _{IB} | Input bias current ^[50] | 25 °C | - | 10 | _ | pА | ### Note 50. Based on device characterization (Not production tested). Document Number: 001-53413 Rev. *Y Page 88 of 137 Table 11-28. IDAC DC Specifications (continued) | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------------|--------------------------------------|---|-----|------|------|--------| | Ezs | Zero scale error | | _ | 0 | ±1 | LSB | | Eg | Gain error | Range = 2.04 mA, 25 °C | _ | _ | ±2.5 | % | | | | Range = 255 μA, 25 ° C | _ | _ | ±2.5 | % | | | | Range = 31.875 μA, 25 ° C | _ | _ | ±3.5 | % | | TC_Eg | Temperature coefficient of gain | Range = 2.04 mA | _ | _ | 0.04 | % / °C | | | error | Range = 255 μA | _ | _ | 0.04 | % / °C | | | | Range = 31.875 μA | _ | _ | 0.05 | % / °C | | INL | Integral nonlinearity | Sink mode, range = $255 \mu\text{A}$, Codes $8-255$, Rload = $2.4 \mathrm{k}\Omega$, Cload = $15 \mathrm{pF}$ | - | ±0.9 | ±1 | LSB | | | | Source mode, range = 255 μ A,
Codes 8 – 255, Rload = 2.4 $k\Omega$,
Cload = 15 pF | - | ±1.2 | ±1.6 | LSB | | DNL | Differential nonlinearity | Sink mode, range = 255 μA, Rload
= 2.4 kΩ, Cload = 15 pF | _ | ±0.3 | ±1 | LSB | | | | Source mode, range = 255 μ A,
Rload = 2.4 $k\Omega$, Cload = 15 pF | _ | ±0.3 | ±1 | LSB | | Vcompliance | Dropout voltage, source or sink mode | Voltage headroom at max current,
Rload to V _{DDA} or Rload to V _{SSA} ,
V _{DIFF} from V _{DDA} | 1 | _ | - | V | | I _{DD} | Operating current, code = 0 | Low speed mode, source mode, range = 31.875 µA | _ | 44 | 100 | μA | | | | Low speed mode, source mode, range = 255 μA, | _ | 33 | 100 | μA | | | | Low speed mode, source mode, range = 2.04 mA | _ | 33 | 100 | μA | | | | Low speed mode, sink mode, range = 31.875 µA | _ | 36 | 100 | μA | | | | Low speed mode, sink mode, range = 255 μA | _ | 33 | 100 | μA | | | | Low speed mode, sink mode, range = 2.04 mA | _ | 33 | 100 | μA | | | | High speed mode, source mode, range = 31.875 µA | _ | 310 | 500 | μA | | | | High speed mode, source mode, range = 255 μA | _ | 305 | 500 | μA | | | | High speed mode, source mode, range = 2.04 mA | _ | 305 | 500 | μA | | | | High speed mode, sink mode, range = 31.875 μA | _ | 310 | 500 | μA | | | | High speed mode, sink mode, range = 255 μA | _ | 300 | 500 | μA | | | | High speed mode, sink mode, range = 2.04 mA | _ | 300 | 500 | μΑ | # 11.6.8 Universal Digital Blocks (UDBs) PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, APIs, and example code. Table 11-54. UDB AC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | | |------------------------|---|--|-----|-----|-------|-------|--| | Datapath Perfor | mance | | • | • | | | | | F _{MAX_TIMER} | Maximum frequency of 16-bit timer in a UDB pair | | _ | _ | 67.01 | MHz | | | F _{MAX_ADDER} | Maximum frequency of 16-bit adder in a UDB pair | | - | - | 67.01 | MHz | | | F _{MAX_CRC} | Maximum frequency of 16-bit CRC/PRS in a UDB pair | | - | - | 67.01 | MHz | | | PLD Performan | ce | | | | | | | | F _{MAX_PLD} | Maximum frequency of a two-pass PLD function in a UDB pair | | _ | _ | 67.01 | MHz | | | Clock to Output | Clock to Output Performance | | | | | | | | t _{CLK_OUT} | Propagation delay for clock in to data out, see Figure 11-65. | 25 °C, V _{DDD} ≥ 2.7 V | _ | 20 | 25 | ns | | | t _{CLK_OUT} | Propagation delay for clock in to data out, see Figure 11-65. | Worst-case placement, routing, and pin selection | _ | _ | 55 | ns | | Figure 11-65. Clock to Output Performance Document Number: 001-53413 Rev. *Y Page 108 of 137 0.395 0.420 0.299 DIMENSIONS IN INCHES MIN. MAX. PKG. WEIGHT:
REFER TO PMDD SPEC. Figure 13-1. 48-pin (300 mil) SSOP Package Outline Figure 13-2. 48-pin QFN Package Outline ### NOTES: - 1. MATCH AREA IS SOLDERABLE EXPOSED METAL. - 2. REFERENCE JEDEC#: MO-220 - 3. PACKAGE WEIGHT: REFER TO PMDD SPEC. - 4. ALL DIMENSIONS ARE IN MM [MIN/MAX] - 5. PACKAGE CODE | PART # | DESCRIPTION | |--------|-------------| | LT48D | LEAD FREE | 001-45616 *E # 14. Acronyms Table 14-1. Acronyms Used in this Document | | cronyms Used in this Document | |------------------|---| | Acronym | Description | | abus | analog local bus | | ADC | analog-to-digital converter | | AG | analog global | | АНВ | AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus | | ALU | arithmetic logic unit | | AMUXBUS | analog multiplexer bus | | API | application programming interface | | APSR | application program status register | | ARM [®] | advanced RISC machine, a CPU architecture | | ATM | automatic thump mode | | BW | bandwidth | | CAN | Controller Area Network, a communications protocol | | CMRR | common-mode rejection ratio | | CPU | central processing unit | | CRC | cyclic redundancy check, an error-checking protocol | | DAC | digital-to-analog converter, see also IDAC, VDAC | | DFB | digital filter block | | DIO | digital input/output, GPIO with only digital capabilities, no analog. See GPIO. | | DMA | direct memory access, see also TD | | DNL | differential nonlinearity, see also INL | | DNU | do not use | | DR | port write data registers | | DSI | digital system interconnect | | DWT | data watchpoint and trace | | ECC | error correcting code | | ECO | external crystal oscillator | | EEPROM | electrically erasable programmable read-only memory | | EMI | electromagnetic interference | | EMIF | external memory interface | | EOC | end of conversion | | EOF | end of frame | | EPSR | execution program status register | | ESD | electrostatic discharge | | ETM | embedded trace macrocell | Table 14-1. Acronyms Used in this Document (continued) | FIR finite impulse response, see also IIR FPB flash patch and breakpoint FS full-speed GPIO general-purpose input/output, applies to a PSoC pin HVI high-voltage interrupt, see also LVI, LVD IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I²C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable gain amplifier | Acronym | Pagarintian | |--|--------------------------|---| | FPB flash patch and breakpoint FS full-speed GPIO general-purpose input/output, applies to a PSoC pin HVI high-voltage interrupt, see also LVI, LVD IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I²C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter | | Description (Control of the Control | | FS full-speed GPIO general-purpose input/output, applies to a PSoC pin HVI high-voltage interrupt, see also LVI, LVD IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I²C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter | | · · · · · · · · · · · · · · · · · · · | | GPIO general-purpose input/output, applies to a PSoC pin HVI high-voltage interrupt, see also LVI, LVD IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I²C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also IRC ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage
transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter | | <u> </u> | | pin HVI high-voltage interrupt, see also LVI, LVD IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I ² C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | | ' | | IC integrated circuit IDAC current DAC, see also DAC, VDAC IDE integrated development environment I²C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | GPIO | | | IDAC current DAC, see also DAC, VDAC IDE integrated development environment I²C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL Opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | HVI | high-voltage interrupt, see also LVI, LVD | | IDE integrated development environment I ² C, or IIC Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IC | integrated circuit | | Irac Inter-Integrated Circuit, a communications protocol IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IDAC | current DAC, see also DAC, VDAC | | IIR infinite impulse response, see also FIR ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IDE | integrated development environment | | ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | I ² C, or IIC | | | IMO internal main oscillator, see also ILO INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter | IIR | infinite impulse response, see also FIR | | INL integral nonlinearity, see also DNL I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | ILO | internal low-speed oscillator, see also IMO | | I/O input/output, see also GPIO, DIO, SIO, USBIO IPOR initial power-on reset interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell IcD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL
program poperational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IMO | internal main oscillator, see also ILO | | IPOR initial power-on reset IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | INL | integral nonlinearity, see also DNL | | IPSR interrupt program status register IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | I/O | input/output, see also GPIO, DIO, SIO, USBIO | | IRQ interrupt request ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IPOR | initial power-on reset | | ITM instrumentation trace macrocell LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IPSR | interrupt program status register | | LCD liquid crystal display LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | IRQ | interrupt request | | LIN Local Interconnect Network, a communications protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | ITM | instrumentation trace macrocell | | protocol. LR link register LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LCD | liquid crystal display | | LUT lookup table LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LIN | | | LVD low-voltage detect, see also LVI LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LR | link register | | LVI low-voltage interrupt, see also HVI LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LUT | lookup table | | LVTTL low-voltage transistor-transistor logic MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LVD | low-voltage detect, see also LVI | | MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LVI | low-voltage interrupt, see also HVI | | MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | LVTTL | low-voltage transistor-transistor logic | | MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | MAC | multiply-accumulate | | NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | MCU | microcontroller unit | | NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | MISO | master-in slave-out | | NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | NC | no connect | | NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | NMI | nonmaskable interrupt | | NVL nonvolatile latch, see also WOL opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | NRZ | non-return-to-zero | | opamp operational amplifier PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | NVIC | nested vectored interrupt controller | | PAL programmable array logic, see also PLD PC program counter PCB printed circuit board | NVL | nonvolatile latch, see also WOL | | PC program counter PCB printed circuit board | opamp | operational amplifier | | PCB printed circuit board | PAL | programmable array logic, see also PLD | | | PC | program counter | | PGA programmable gain amplifier | PCB | printed circuit board | | | PGA | programmable gain amplifier | Document Number: 001-53413 Rev. *Y Page 126 of 137 # PSoC® 3: CY8C36 Family Datasheet | Revision | ECN | Submission
Date | Orig. of
Change | Description of Change | |----------|---------|--------------------|--------------------|--| | *D | 2903576 | 04/01/10 | MKEA | Updated Vb pin in PCB Schematic | | | 20000.0 | 0 1/0 1/10 | WII (E) (| Updated Tstartup parameter in AC Specifications table | | | | | | Added Load regulation and Line regulation parameters to Inductive Boost | | | | | | Regulator DC
Specifications table | | | | | | Updated I _{CC} parameter in LCD Direct Drive DC Specs table | | | | | | Updated I _{OUT} parameter in LCD Direct Drive DC Specs table | | | | | | Updated Table 6-2 and Table 6-3 | | | | | | Added bullets on CapSense in page 1; added CapSense column in Section 1 | | | | | | Removed some references to footnote [1] | | | | | | Changed INC_Rn cycles from 3 to 2 (Table 4-1) | | | | | | Added footnote in PLL AC Specification table | | | | | | Added PLL intermediate frequency row with footnote in PLL AC Specs table | | | | | | Added UDBs subsection under 11.6 Digital Peripherals | | | | | | Updated Figure 2-6 (PCB Layout) | | | | | | Updated Pin Descriptions section and modified Figures 6-6, 6-8, 6-9 | | | | | | Updated LVD in Tables 6-2 and 6-3; modified Low-power modes bullet in page | | | | | | Added note to Figures 2-5 and 6-2; Updated Figure 6-2 to add capacitors for V _{DI} | | | | | | and V _{DDD} pins. | | | | | | Changed V _{REF} from 0.9 to 0.1% | | | | | | Updated boost converter section (6.2.2) | | | | | | Updated Tstartup values in Table 11-3. | | | | | | Removed IPOR rows from Table 11-68. Updated 6.3.1.1, Power Voltage Leve | | | | | | Monitors. | | | | | | Updated section 5.2 and Table 11-2 to correct suggestion of execution from flas | | | | | | Updated V _{REF} specs in Table 11-21. | | | | | | Updated IDAC uncompensated gain error in Table 11-25. | | | | | | Updated Delay from Interrupt signal input to ISR code execution from ISR code | | | | | | in Table11- 72. Removed other line in table. | | | | | | Added sentence to last paragraph of section 6.1.1.3. | | | | | | Updated T _{RESP} , high and low-power modes, in Table 11-24. | | | | | | Updated f_TCK values in Table 11-73 and f_SWDCK values in Table 11-74. Updated SNR condition in Table 11-20. | | | | | | Corrected unit of measurement in Table 11-21. | | | | | | Updated sleep wakeup time in Table 6-3 and Tsleep in Table 11-3. | | | | | | Added 1.71 V <= V _{DDD} < 3.3 V, SWD over USBIO pins value to Table 11-74. | | | | | | Removed mention of hibernate reset (HRES) from page 1 features, Table 6-3 | | | | | | Section 6.2.1.4, Section 6.3, and Section 6.3.1.1. Change PPOR/PRES to TBL | | | | | | in Section 6.3.1.1, Section 6.4.1.6 (changed PPOR to reset), Table 11-3 (changed | | | | | | PPOR to PRES), Table 11-68 (changed title, values TBD), and Table 11-69 | | | | | | (changed PPOR_TR to PRES_TR). | | | | | | Added sentence saying that LVD | | | | | | circuits can generate a reset to Section 6.3.1.1. | | | | | | Changed I _{DD} values on page 1, page 5, and Table 11-2. | | | | | | Changed resume time value in Section 6.2.1.3. | | | | | | Changed ESD HBM value in Table 11-1. | | | | | | Changed sample rate row in Table 11-20. | | | | | | Removed V _{DDA} = 1.65 V rows and changed BWag value in Table 11-22. | | | | | | Changed V _{IOFF} values and changed CMRR value in Table 11-23. | | | | | | Changed INL max value in Table 11-27. | | | | | | Added max value to the Quiescent current specs in Tables 11-29 and 11-31. | | | | | | Changed occurrences of "Block" to "Row" and deleted the "ECC not included" | | | | | | footnote in Table 11-57. | | | | | | Changed max response time value in Tables 11-69 and 11-71. | | | | | | Changed the Startup time in Table 11-79. | | | | | | Added condition to intermediate frequency row in Table 11-85. | | | | | | Added row to Table 11-69. | | | | i l | | Added brown out note to Section 11.8.1. | # PSoC® 3: CY8C36 Family Datasheet | | Description Title: PSoC [®] 3: CY8C36 Family Datasheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-53413 | | | | | | | |----------|---|--------------------|--------------------|--|--|--|--| | Revision | ECN | Submission
Date | Orig. of
Change | Description of Change | | | | | *T | 4188568 | 11/14/2013 | MKEA | Added SIO Comparator Specifications. Corrected typo in the V_{REF} parameter in the Voltage Reference Specifications. Added CSP information in Packaging and Ordering Information sections. Updated delta-sigma V_{OS} spec conditions. | | | | | *U | 4385782 | 05/21/2014 | MKEA | Updated General Description and Features. Added More Information and PSoC Creator sections. Updated 100-pin TQFP package diagram. | | | | | *V | 4708125 | 03/31/2015 | MKEA | Added INL4 and DNL4 specs in VDAC DC Specifications. Updated Figure 6-11. Added second note after Figure 6-4. Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2. Updated Section 6.2.2. Added Section 7.8.1. Updated Boost specifications. | | | | | *W | 4807497 | 06/23/2015 | MKEA | Added reference to code examples in More Information. Updated typ value of TWRITE from 2 to 10 in EEPROM AC specs table. Changed "Device supply for USB operation" to "Device supply (VDDD) for USB operation" in USB DC Specifications. Clarified power supply sequencing and margin for VDDA and VDDD. Updated Serial Wire Debug Interface with limitations of debugging on Port 15. Updated Section 11.7.5. Updated Delta-sigma ADC DC Specifications | | | | | *X | 4932879 | 09/24/2015 | MKEA | Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1, respectively. Added reference to AN54439 in Section 11.9.3. Added MHz ECO DC specs table. Removed references to IPOR rearm issues in Section 6.3.1.1. Table 6-1: Changed DSI Fmax to 33 MHz. Figure 6-1: Changed External I/O or DSI to 0-33 MHz. Table 11-10: Changed Fgpioin Max to 33 MHz. Table 11-12: Changed Fsioin Max to 33 MHz. | | | | | *Y | 5322536 | 06/27/2016 | MKEA | Updated More Information. Corrected typos in External Electrical Connections. Added links to CAD Libraries in Section 2. | | | |