

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I²C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	1К х 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3665lti-044

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Architectural Overview

Introducing the CY8C36 family of ultra low-power, flash Programmable System-on-Chip (PSoC[®]) devices, part of a scalable 8-bit PSoC 3 and 32-bit PSoC 5 platform. The CY8C36 family provides configurable blocks of analog, digital, and interconnect circuitry around a CPU subsystem. The combination of a CPU with a flexible analog subsystem, digital subsystem, routing, and I/O enables a high level of integration in a wide variety of consumer, industrial, and medical applications.

Figure 1-1 illustrates the major components of the CY8C36 family. They are:

- 8051 CPU subsystem
- Nonvolatile subsystem
- Programming, debug, and test subsystem
- Inputs and outputs
- Clocking
- Power
- Digital subsystem
- Analog subsystem

PSoC's digital subsystem provides half of its unique configurability. It connects a digital signal from any peripheral to any pin through the digital system interconnect (DSI). It also provides functional flexibility through an array of small, fast, low-power UDBs. PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. You can also easily create a digital circuit using boolean primitives by means of graphical design entry. Each UDB contains programmable array logic (PAL)/programmable logic device (PLD) functionality, together with a small state machine engine to support a wide variety of peripherals.

4.2 Addressing Modes

The following addressing modes are supported by the 8051:

- Direct addressing: The operand is specified by a direct 8-bit address field. Only the internal RAM and the SFRs can be accessed using this mode.
- Indirect addressing: The instruction specifies the register which contains the address of the operand. The registers R0 or R1 are used to specify the 8-bit address, while the data pointer (DPTR) register is used to specify the 16-bit address.
- Register addressing: Certain instructions access one of the registers (R0 to R7) in the specified register bank. These instructions are more efficient because there is no need for an address field.
- Register specific instructions: Some instructions are specific to certain registers. For example, some instructions always act on the accumulator. In this case, there is no need to specify the operand.
- Immediate constants: Some instructions carry the value of the constants directly instead of an address.
- Indexed addressing: This type of addressing can be used only for a read of the program memory. This mode uses the Data Pointer as the base and the accumulator value as an offset to read a program memory.
- Bit addressing: In this mode, the operand is one of 256 bits.

4.3 Instruction Set

The 8051 instruction set is highly optimized for 8-bit handling and Boolean operations. The types of instructions supported include:

- Arithmetic instructions
- Logical instructions
- Data transfer instructions
- Boolean instructions
- Program branching instructions
- 4.3.1 Instruction Set Summary
- 4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, immediate constant, and register-specific instructions. Arithmetic modes are used for addition, subtraction, multiplication, division, increment, and decrement operations. Table 4-1 on page 15 lists the different arithmetic instructions.

	Mnemonic	Description	Bytes	Cycles
ORL	A,#data	OR immediate data to accumulator	2	2
ORL	Direct, A	OR accumulator to direct byte	2	3
ORL	Direct, #data	OR immediate data to direct byte	3	3
XRL	A,Rn	XOR register to accumulator	1	1
XRL	A,Direct	XOR direct byte to accumulator	2	2
XRL	A,@Ri	XOR indirect RAM to accumulator	1	2
XRL	A,#data	XOR immediate data to accumulator	2	2
XRL	Direct, A	XOR accumulator to direct byte	2	3
XRL	Direct, #data	XOR immediate data to direct byte	3	3
CLR	A	Clear accumulator	1	1
CPL	А	Complement accumulator	1	1
RL	A	Rotate accumulator left	1	1
RLC	A	Rotate accumulator left through carry	1	1
RR	A	Rotate accumulator right	1	1
RRC	А	Rotate accumulator right though carry	1	1
SWAF	PA	Swap nibbles within accumulator	1	1

Table 4-2. Logical Instructions (continued)

4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed addressing mode. Table 4-3 lists the various data transfer instructions available.

4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 on page 17 lists the available Boolean instructions.

Table 4-3. Data Transfer Instructions

	Mnemonic	Description	Bytes	Cycles
MOV	A,Rn	Move register to accumulator	1	1
MOV	A,Direct	Move direct byte to accumulator	2	2
MOV	A,@Ri	Move indirect RAM to accumulator	1	2
MOV	A,#data	Move immediate data to accumulator	2	2
MOV	Rn,A	Move accumulator to register	1	1
MOV	Rn,Direct	Move direct byte to register	2	3
MOV	Rn, #data	Move immediate data to register	2	2
MOV	Direct, A	Move accumulator to direct byte	2	2
MOV	Direct, Rn	Move register to direct byte	2	2
MOV	Direct, Direct	Move direct byte to direct byte	3	3
MOV	Direct, @Ri	Move indirect RAM to direct byte	2	3
MOV	Direct, #data	Move immediate data to direct byte	3	3
MOV	@Ri, A	Move accumulator to indirect RAM	1	2

6. System Integration

6.1 Clocking System

The clocking system generates, divides, and distributes clocks throughout the PSoC system. For the majority of systems, no external crystal is required. The IMO and PLL together can generate up to a 66 MHz clock, accurate to $\pm 1\%$ over voltage and temperature. Additional internal and external clock sources allow each design to optimize accuracy, power, and cost. Any of the clock sources can be used to generate other clock frequencies in the 16-bit clock dividers and UDBs for anything the user wants, for example a UART baud rate generator.

Clock generation and distribution is automatically configured through the PSoC Creator IDE graphical interface. This is based on the complete system's requirements. It greatly speeds the design process. PSoC Creator allows you to build clocking systems with minimal input. You can specify desired clock frequencies and accuracies, and the software locates or builds a clock that meets the required specifications. This is possible because of the programmability inherent in PSoC. Key features of the clocking system include:

- Seven general purpose clock sources
 - □ 3- to 62-MHz IMO, ±1% at 3 MHz
 - 4- to 25-MHz external crystal oscillator (MHzECO)
 - Clock doubler provides a doubled clock frequency output for the USB block, see USB Clock Domain on page 30.
 - DSI signal from an external I/O pin or other logic
 - 24- to 67-MHz fractional PLL sourced from IMO, MHzECO, or DSI
 - 1-kHz, 33-kHz, 100-kHz ILO for WDT and sleep timer
 32.768-kHz external crystal oscillator (kHzECO) for RTC
- IMO has a USB mode that auto locks to the USB bus clock requiring no external crystal for USB. (USB equipped parts only)
- Independently sourced clock in all clock dividers
- Eight 16-bit clock dividers for the digital system
- Four 16-bit clock dividers for the analog system
- Dedicated 16-bit divider for the bus clock
- Dedicated 4-bit divider for the CPU clock
- Automatic clock configuration in PSoC Creator

Figure 6-1. Clocking Subsystem

6.4 I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and digital I/O capability. All I/Os have a large number of drive modes, which are set at POR. PSoC also provides up to four individual I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB provide a third type. Both General Purpose I/O (GPIO) and Special I/O (SIO) provide similar digital functionality. The primary differences are their analog capability and drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as limited GPIO capability.

All I/O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all I/O pins can generate an interrupt. The flexible and advanced capabilities of the PSoC I/O, combined with any signal to any pin routability, greatly simplify circuit design and board layout. All GPIO pins can be used for analog input, CapSense^[17], and LCD segment drive, while SIO pins are used for voltages in excess of VDDA and for programmable output voltages.

- Features supported by both GPIO and SIO:
 - □ User programmable port reset state
 - □ Separate I/O supplies and voltages for up to four groups of I/O
 - Digital peripherals use DSI to connect the pins
 - Input or output or both for CPU and DMA
 - Eight drive modes
 - Every pin can be an interrupt source configured as rising edge, falling edge or both edges. If required, level sensitive interrupts are supported through the DSI

- Dedicated port interrupt vector for each port
- □ Slew rate controlled digital output drive mode
- Access port control and configuration registers on either port basis or pin basis
- Separate port read (PS) and write (DR) data registers to avoid read modify write errors
- Special functionality on a pin by pin basis
- Additional features only provided on the GPIO pins:
- □ LCD segment drive on LCD equipped devices □ CapSense^[17]
- Analog input and output capability
- □ Continuous 100 µA clamp current capability
- □ Standard drive strength down to 1.7 V
- Additional features only provided on SIO pins:
 - B Higher drive strength than GPIO
 - Hot swap capability (5 V tolerance at any operating V_{DD})
 - Programmable and regulated high input and output drive levels down to 1.2 V
 - No analog input, CapSense, or LCD capability
 - □ Over voltage tolerance up to 5.5 V
 - □ SIO can act as a general purpose analog comparator
- USBIO features:
 - □ Full speed USB 2.0 compliant I/O
 - Highest drive strength for general purpose use
 - Input, output, or both for CPU and DMA
 - Input, output, or both for digital peripherals
 - Digital output (CMOS) drive mode
 - Each pin can be an interrupt source configured as rising edge, falling edge, or both edges

Figure 6-10. SIO Input/Output Block Diagram

Figure 6-11. USBIO Block Diagram

Analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. There are eight abus routes in CY8C36, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in Figure 8-2. Using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. A multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. In Figure 8-2, multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals.

8.2 Delta-sigma ADC

The CY8C36 device contains one delta-sigma ADC. This ADC offers differential input, high resolution and excellent linearity, making it a good ADC choice for measurement applications. The converter can be configured to output 12-bit resolution at data rates of up to 192 ksps. At a fixed clock rate, resolution can be traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Table 8-1.	Delta-sigma	ADC	Performance
------------	-------------	-----	-------------

Bits	Maximum Sample Rate (sps)	SINAD (dB)
12	192 k	66
8	384 k	43

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ± 1.024 V

8.2.1 Functional Description

The ADC connects and configures three basic components, input buffer, delta-sigma modulator, and decimator. The basic block diagram is shown in Figure 8-4. The signal from the input muxes is delivered to the delta-sigma modulator either directly or through the input buffer. The delta-sigma modulator performs the actual analog to digital conversion. The modulator over-samples the input and generates a serial data stream output. This high speed data stream is not useful for most applications without some type of post processing, and so is passed to the decimator through the Analog Interface block. The decimator converts the high speed serial data stream into parallel ADC results. The modulator/decimator frequency response is $[(\sin x)/x]^4$.

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator. Data is pipelined in the decimator; the output is a function of the last four samples. When the input multiplexer is switched, the output data is not valid until after the fourth sample after the switch.

8.2.2 Operational Modes

The ADC can be configured by the user to operate in one of four modes: Single Sample, Multi Sample, Continuous, or Multi Sample (Turbo). All four modes are started by either a write to the start bit in a control register or an assertion of the Start of Conversion (SoC) signal. When the conversion is complete, a status bit is set and the output signal End of Conversion (EoC) asserts high and remains high until the value is read by either the DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample conversion on a trigger. In this mode, the ADC stays in standby state waiting for the SoC signal to be asserted. When SoC is signaled the ADC performs four successive conversions. The first three conversions prime the decimator. The ADC result is valid and available after the fourth conversion, at which time the EoC signal is generated. To detect the end of conversion, the system may poll a control register for status or configure the external EoC signal to generate an interrupt or invoke a DMA request. When the transfer is done the ADC reenters the standby state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive samples of a single input signal. Multiplexing multiple inputs should not be done with this mode. There is a latency of three conversion times before the first conversion result is available. This is the time required to prime the decimator. After the first result, successive conversions are available at the selected sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the ADC is reset between samples. This mode is useful when the input is switched between multiple signals. The decimator is re-primed between each sample so that previous samples do not affect the current conversion. Upon completion of a sample, the next sample is automatically initiated. The results can be transferred using either firmware polling, interrupt, or DMA.

More information on output formats is provided in the Technical Reference Manual.

8.2.3 Start of Conversion Input

The SoC signal is used to start an ADC conversion. A digital clock or UDB output can be used to drive this input. It can be used when the sampling period must be longer than the ADC conversion time or when the ADC must be synchronized to other hardware. This signal is optional and does not need to be connected if ADC is running in a continuous mode.

8.2.4 End of Conversion Output

The EoC signal goes high at the end of each ADC conversion. This signal may be used to trigger either an interrupt or DMA request.

8.3 Comparators

The CY8C36 family of devices contains four comparators in a device. Comparators have these features:

Input offset factory trimmed to less than 5 mV

- Rail-to-rail common mode input range (VSSA to VDDA)
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low-power
- Comparator outputs can be routed to lookup tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO, DAC outputs and SC block outputs

8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB Digital System Interface.

Figure 11-17. SIO Output High Voltage and Current, Unregulated Mode

Figure 11-19. SIO Output High Voltage and Current, Regulated Mode

Table 11-12. SIO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in Fast Strong Mode (90/10%) ^[48]	Cload = 25 pF, V _{DDIO} = 3.3 V	-	_	12	ns
TfallF	Fall time in Fast Strong Mode (90/10%) ^[48]	Cload = 25 pF, V_{DDIO} = 3.3 V	-	_	12	ns
TriseS	Rise time in Slow Strong Mode (90/10%) ^[48]	Cload = 25 pF, V_{DDIO} = 3.0 V	-	_	75	ns
TfallS	Fall time in Slow Strong Mode (90/10%) ^[48]	Cload = 25 pF, V_{DDIO} = 3.0 V	_	-	60	ns

Note 48. Based on device characterization (Not production tested).

11.5.3 Voltage Reference

Table 11-24. Voltage Reference Specifications

See also ADC external reference specifications in Section 11.5.2.

Parameter	Description	Conditions		Min	Тур	Max	Units
V _{REF} ^[56]	Precision reference voltage	Initial trimming, 25 °C		1.023 (–0.1%)	1.024	1.025 (+0.1%)	V
	After typical PCB assembly,	Typical (non-optimized) board	–40 °C	-	±0.5	_	%
	post reflow	Device may be calibrated after assembly to improve performance	25 °C	-	±0.2	_	%
			85 °C	-	±0.2	-	%
	Temperature drift ^[57]	Box method		-	-	30	ppm/°C
	Long term drift			-	100	_	ppm/khr
	Thermal cycling drift (stability) ^[57, 58]			-	100	_	ppm

Figure 11-34. Voltage Reference vs. Temperature and $\mathrm{V}_{\mathrm{CCA}}$

Figure 11-35. Voltage Reference Long-Term Drift

11.5.4 Analog Globals

Table 11-25. Analog Globals Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rppag	Resistance pin-to-pin through P2[4], AGL0, DSM INP, AGL1, P2[5] ^[59]	V _{DDA} = 3 V	-	1472	2200	Ω
Rppmuxbus	Resistance pin-to-pin through P2[3], amuxbusL, P2[4] ^[59]	V _{DDA} = 3 V	-	706	1100	Ω

Notes

56. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses.

57. Based on device characterization (Not production tested). 58. After eight full cycles between –40 °C and 100 °C.

- 59. The resistance of the analog global and analog mux bus is high if V_{DDA} ≤ 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog mux bus under these conditions is not recommended.

11.5.5 Comparator

Table 11-26. Comparator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Input offset voltage in fast mode	Factory trim, V_{DDA} > 2.7 V, Vin ≥ 0.5 V	-		10	mV
	Input offset voltage in slow mode	Factory trim, Vin $\ge 0.5 V$	-		9	mV
V _{OS}	Input offset voltage in fast mode ^[60]	Custom trim	-	-	4	mV
	Input offset voltage in slow mode ^[60]	Custom trim	-	-	4	mV
	Input offset voltage in ultra low-power mode	V _{DDA} ≤ 4.6 V	-	±12	-	mV
V _{HYST}	Hysteresis	Hysteresis enable mode	-	10	32	mV
V _{ICM}	Input common mode voltage	High current / fast mode	V _{SSA}	-	V _{DDA}	V
		Low current / slow mode	V _{SSA}	-	V _{DDA}	V
		Ultra low power mode V _{DDA} ≤ 4.6 V	V_{SSA}	-	V _{DDA} – 1.15	V
CMRR	Common mode rejection ratio		-	50	-	dB
I _{CMP}	High current mode/fast mode ^[61]		-	-	400	μA
	Low current mode/slow mode ^[61]		_	_	100	μA
	Ultra low-power mode ^[61]	V _{DDA} ≤ 4.6 V	-	6	-	μA

Table 11-27. Comparator AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{RESP}	Response time, high current mode ^[61]	50 mV overdrive, measured pin-to-pin	-	75	110	ns
	Response time, low current mode ^[61]	50 mV overdrive, measured pin-to-pin	-	155	200	ns
	Response time, ultra low-power mode ^[61]	50 mV overdrive, measured pin-to-pin, V _{DDA} ≤ 4.6 V	_	55	_	μs

11.5.6 Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 12 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-28. IDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		-	-	8	bits
I _{OUT}	Output current at code = 255	Range = 2.04 mA, code = 255, $V_{DDA} \ge 2.7$ V, Rload = 600 Ω	-	2.04	-	mA
		Range = 2.04 mA, high speed mode, code = 255, V _{DDA} \leq 2.7 V, Rload = 300 Ω	-	2.04	-	mA
		Range = 255 μ A, code = 255, Rload = 600 Ω	_	255	_	μA
		Range = 31.875 μ A, code = 255, Rload = 600 Ω	_	31.875	_	μA
	Monotonicity		-	-	Yes	

Notes

60. The recommended procedure for using a custom trim value for the on-chip comparators can be found in the TRM.61. Based on device characterization (Not production tested).

Table 11-28. IDAC DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units
Ezs	Zero scale error		_	0	±1	LSB
Eg	Gain error	Range = 2.04 mA, 25 °C	-	_	±2.5	%
		Range = 255 µA, 25 ° C	-	_	±2.5	%
		Range = 31.875 µA, 25 ° C	-	_	±3.5	%
TC_Eg	Temperature coefficient of gain	Range = 2.04 mA	-	_	0.04	% / °C
	error	Range = 255 µA	_	_	0.04	% / °C
		Range = 31.875 µA	_	_	0.05	% / °C
INL	Integral nonlinearity	Sink mode, range = 255 μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.9	±1	LSB
		Source mode, range = 255 μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	-	±1.2	±1.6	LSB
DNL	Differential nonlinearity	Sink mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
		Source mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to V_{DDA} or Rload to V_{SSA} , V_{DIFF} from V_{DDA}	1	-	-	V
I _{DD}	Operating current, code = 0	Low speed mode, source mode, range = 31.875 µA	-	44	100	μA
		Low speed mode, source mode, range = 255 μ A,	-	33	100	μA
		Low speed mode, source mode, range = 2.04 mA	-	33	100	μA
		Low speed mode, sink mode, range = 31.875 µA	-	36	100	μA
		Low speed mode, sink mode, range = 255 μA	-	33	100	μA
		Low speed mode, sink mode, range = 2.04 mA	-	33	100	μA
		High speed mode, source mode, range = 31.875 μA	-	310	500	μA
		High speed mode, source mode, range = 255 μ A	-	305	500	μA
		High speed mode, source mode, range = 2.04 mA	-	305	500	μA
		High speed mode, sink mode, range = $31.875 \mu A$	-	310	500	μA
		High speed mode, sink mode, range = 255 μ A	_	300	500	μA
		High speed mode, sink mode, range = 2.04 mA	_	300	500	μA

Figure 11-52. VDAC INL vs Temperature, 1 V Mode

Figure 11-54. VDAC Full Scale Error vs Temperature, 1 V Mode

Figure 11-56. VDAC Operating Current vs Temperature, 1V Mode, Low speed mode

Figure 11-53. VDAC DNL vs Temperature, 1 V Mode

Figure 11-55. VDAC Full Scale Error vs Temperature, 4 V Mode

Figure 11-57. VDAC Operating Current vs Temperature, 1 V Mode, High speed mode

11.6.8 Universal Digital Blocks (UDBs)

PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, APIs, and example code.

Table 11-54. UDB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units				
Datapath Performance										
F _{MAX_TIMER}	Maximum frequency of 16-bit timer in a UDB pair		-	-	67.01	MHz				
F _{MAX_ADDER}	Maximum frequency of 16-bit adder in a UDB pair		_	-	67.01	MHz				
F _{MAX_CRC}	Maximum frequency of 16-bit CRC/PRS in a UDB pair		_	-	67.01	MHz				
PLD Performan	ce									
F _{MAX_PLD}	Maximum frequency of a two-pass PLD function in a UDB pair		_	_	67.01	MHz				
Clock to Output	Performance									
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-65.	25 °C, V _{DDD} ≥ 2.7 V	_	20	25	ns				
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-65.	Worst-case placement, routing, and pin selection	_	_	55	ns				

Figure 11-65. Clock to Output Performance

11.8.5 SWD Interface

Table 11-71. SWD Interface AC Specifications^[77]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_SWDCK	SWDCLK frequency	$3.3~V \leq V_{DDD} \leq 5~V$	-	-	14 ^[78]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	_	-	7 ^[78]	MHz
		1.71 V \leq V _{DDD} < 3.3 V, SWD over USBIO pins	_	-	5.5 ^[78]	MHz
T_SWDI_setup	SWDIO input setup before SWDCK high	T = 1/f_SWDCK max	T/4	-	-	_
T_SWDI_hold	SWDIO input hold after SWDCK high	T = 1/f_SWDCK max	T/4	-	-	-
T_SWDO_valid	SWDCK high to SWDIO output	T = 1/f_SWDCK max	-	-	2T/5	-

11.8.6 SWV Interface

Table 11-72. SWV Interface AC Specifications^[77]

Parameter	Description	Conditions	Min	Тур	Max	Units
	SWV mode SWV bit rate		-	-	33	Mbit

77. Based on device characterization (Not production tested).

78. f_SWDCK must also be no more than 1/3 CPU clock frequency.

11.9.3 MHz External Crystal Oscillator

For more information on crystal or ceramic resonator selection for the MHzECO, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators.

Table 11-77. MHzECO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	Operating current ^[83]	13.56 MHz crystal	-	3.8	-	mA

Table 11-78. MHzECO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F	Crystal frequency range		4	-	25	MHz

11.9.4 kHz External Crystal Oscillator

Table 11-79. kHzECO DC Specifications^[83]

Parameter	Description	Description Conditions					
I _{CC}	Operating current	Low-power mode; CL= 6 pF	-	0.25	1.0	μA	
DL	Drive level		_	_	1	μW	

Table 11-80. kHzECO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F	Frequency		_	32.768	-	kHz
T _{ON}	Startup time	High power mode	-	1	_	S

11.9.5 External Clock Reference

Table 11-81. External Clock Reference AC Specifications^[83]

Parameter	Description	Conditions	Min	Тур	Max	Units
	External frequency range		0	-	33	MHz
	Input duty cycle range	Measured at V _{DDIO} /2	30	50	70	%
	Input edge rate	V_{IL} to V_{IH}	0.5	-	_	V/ns

11.9.6 Phase-Locked Loop

Table 11-82. PLL DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	PLL operating current	In = 3 MHz, Out = 67 MHz	-	400	-	μA
		In = 3 MHz, Out = 24 MHz	-	200	_	μA

Table 11-83. PLL AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Fpllin	PLL input frequency ^[84]		1	_	48	MHz
	PLL intermediate frequency ^[85]	Output of prescaler	1	-	3	MHz
Fpllout	PLL output frequency ^[84]		24	-	67	MHz
	Lock time at startup		-	-	250	μs
Jperiod-rms	Jitter (rms) ^[83]		-	-	250	ps

Notes

^{83.} Based on device characterization (Not production tested).

^{84.} This specification is guaranteed by testing the PLL across the specified range using the IMO as the source for the PLL.

^{85.} PLL input divider, Q, must be set so that the input frequency is divided down to the intermediate frequency range. Value for Q ranges from 1 to 16.

12. Ordering Information

In addition to the features listed in Table 12-1, every CY8C36 device includes: a precision on-chip voltage reference, precision oscillators, flash, ECC, DMA, a fixed function I²C, 4 KB trace RAM, JTAG/SWD programming and debug, external memory interface, and more. In addition to these features, the flexible UDBs and analog subsection support a wide range of peripherals. To assist you in selecting the ideal part, PSoC Creator makes a part recommendation after you choose the components required by your application. All CY8C36 derivatives incorporate device and flash security in user-selectable security levels; see the TRM for details.

	N	NCU	Co	re			Ana	alog	l					Dig	jital			I/O ^L	ooj			
Part Number	CPU Speed (MHz)	Flash (KB)	SRAM (KB)	EEPROM (KB)	LCD Segment Drive	ADC	DAC	Comparator	SC/CT Analog Blocks ^[86]	Opamps	DFB	CapSense	UDBs ^[87]	16-bit Timer/PWM	FS USB	CAN 2.0b	Total I/O	GPIO	SIO	USBIO	Package	JTAG ID ^[89]
32 KB Flash																						
CY8C3665PVI-008	67	32	4	1	V	12-bit Del-Sig	4	4	4	2	~	r	20	4	-	-	29	25	4	0	48-pin SSOP	0×1E008069
CY8C3665AXI-198	67	32	8	1	۲	12-bit Del-Sig	2	0	0	0	Ι	~	16	0	Ι	Ι	70	62	8	0	100-pin TQFP	0x1E0C6069
CY8C3665LTI-044	67	32	4	1	۲	12-bit Del-Sig	4	4	4	0	<	~	20	4	2	Ι	48	38	8	2	68-pin QFN	0x1E02C069
CY8C3665LTI-199	67	32	8	1	٢	12-bit Del-Sig	2	0	0	0	Ι	~	16	0	Ι	Ι	46	38	8	0	68-pin QFN	0x1E0C7069
CY8C3665FNI-211	67	32	4	1	5	12-bit Del-Sig	4	4	4	4	~	2	20	4	~	-	48	38	8	2	72 WLCSP	0x1E0D3069
64 KB Flash																						
CY8C3666AXI-052	67	64	8	2	5	12-bit Del-Sig	4	4	4	4	~	5	24	4	-	-	70	62	8	0	100-pin TQFP	0×1E034069
CY8C3666AXI-036	67	64	8	2	5	12-bit Del-Sig	4	4	4	4	۲	٢	24	4	~	Ι	72	62	8	2	100-pin TQFP	0×1E024069
CY8C3666LTI-027	67	64	8	2	5	12-bit Del-Sig	4	4	4	4	۲	5	24	4	~		48	38	8	2	68-pin QFN	0×1E01B069
CY8C3666LTI-050	67	64	8	2	٢	12-bit Del-Sig	4	4	4	2	٨	1	24	4	~	-	31	25	4	2	48-pin QFN	0×1E032069
CY8C3666AXI-037	67	64	8	2	۲	12-bit Del-Sig	4	4	4	4	<	~	24	4	Ι	2	70	62	8	0	100-pin TQFP	0×1E025069
CY8C3666AXI-200	67	64	8	2	٢	12-bit Del-Sig	2	2	0	2	Ι	~	20	2	Ι	Ι	70	62	8	0	100-pin TQFP	0x1E0C8069
CY8C3666LTI-201	67	64	8	2	5	12-bit Del-Sig	2	2	0	2	-	2	20	2	-	-	46	38	8	0	68-pin QFN	0x1E0C9069
CY8C3666AXI-202	67	64	8	2	~	12-bit Del-Sig	4	2	2	2	-	~	24	4	-	-	70	62	8	0	100-pin TQFP	0x1E0CA069
CY8C3666LTI-203	67	64	8	2	~	12-bit Del-Sig	4	2	2	2	-	~	24	4	-	-	46	38	8	0	68-pin QFN	0x1E0CB069

Table 12-1. CY8C36 Family with Single Cycle 8051

Notes

86. Analog blocks support a wide variety of functionality including TIA, PGA, and mixers. See the Example Peripherals on page 44 for more information on how analog blocks can be used.

87. UDBs support a wide variety of functionality including SPI, LIN, UART, timer, counter, PWM, PRS, and others. Individual functions may use a fraction of a UDB or multiple UDBs. Multiple functions can share a single UDB. See the Example Peripherals on page 44 for more information on how UDBs can be used.
 88. The I/O Count includes all types of digital I/O: GPIO, SIO, and the two USB I/O. See the I/O System and Routing on page 37 for details on the functionality of each of these types of I/O.

89. The JTAG ID has three major fields. The most significant nibble (left digit) is the version, followed by a 2 byte part number and a 3 nibble manufacturer ID.

Figure 13-5. WLCSP Package (4.25 × 4.98 × 0.60 mm)

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibels
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohours
kHz	kilohertz
kΩ	kilohms
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	megaohms
Msps	megasamples per second
μA	microamperes
μF	microfarads
μH	microhenrys

Symbol	Unit of Measure			
μs	microseconds			
μV	microvolts			
μW	microwatts			
mA	milliamperes			
ms	milliseconds			
mV	millivolts			
nA	nanoamperes			
ns	nanoseconds			
nV	nanovolts			
Ω	ohms			
pF	picofarads			
ppm	parts per million			
ps	picoseconds			
S	seconds			
sps	samples per second			
sqrtHz	square root of hertz			
V	volts			

Table 16-1. Units of Measure (continued)

Description Title: PSoC [®] 3: CY8C36 Family Datasheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-53413					
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
*T	4188568	11/14/2013	MKEA	Added SIO Comparator Specifications. Corrected typo in the V_{REF} parameter in the Voltage Reference Specifications. Added CSP information in Packaging and Ordering Information sections. Updated delta-sigma V_{OS} spec conditions.	
*U	4385782	05/21/2014	MKEA	Updated General Description and Features. Added More Information and PSoC Creator sections. Updated 100-pin TQFP package diagram.	
*V	4708125	03/31/2015	MKEA	Added INL4 and DNL4 specs in VDAC DC Specifications. Updated Figure 6-11. Added second note after Figure 6-4. Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2. Updated Section 6.2.2. Added Section 7.8.1. Updated Boost specifications.	
*W	4807497	06/23/2015	MKEA	Added reference to code examples in More Information. Updated typ value of TWRITE from 2 to 10 in EEPROM AC specs table. Changed "Device supply for USB operation" to "Device supply (VDDD) for USB operation" in USB DC Specifications. Clarified power supply sequencing and margin for VDDA and VDDD. Updated Serial Wire Debug Interface with limitations of debugging on Port 15. Updated Section 11.7.5. Updated Delta-sigma ADC DC Specifications	
*X	4932879	09/24/2015	MKEA	Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1, respectively. Added reference to AN54439 in Section 11.9.3. Added MHz ECO DC specs table. Removed references to IPOR rearm issues in Section 6.3.1.1. Table 6-1: Changed DSI Fmax to 33 MHz. Figure 6-1: Changed External I/O or DSI to 0-33 MHz. Table 11-10: Changed Fgpioin Max to 33 MHz. Table 11-12: Changed Fsioin Max to 33 MHz.	
*Y	5322536	06/27/2016	MKEA	Updated More Information. Corrected typos in External Electrical Connections. Added links to CAD Libraries in Section 2.	