
Infineon Technologies - CY8C3665LTI-199T Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Table 2-2 shows the pinout for the 72-pin CSP package. Since there are four VDDIO pins, the set of I/O pins associated with any VDDIO 
may sink up to 100 mA total, same as for the 100-pin and 68-pin devices.

Figure 2-7 and Figure 2-8 on page 12 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal 
analog performance on a two-layer board. 

 The two pins labeled VDDD must be connected together.

 The two pins labeled Vccd must be connected together, with capacitance added, as shown in Figure 2-7 and Power System on 
page 31. The trace between the two Vccd pins should be as short as possible.

 The two pins labeled VSSD must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note AN57821 - Mixed Signal Circuit Board 
Layout Considerations for PSoC® 3 and PSoC 5.

Table 2-2.  CSP Pinout

Ball Name Ball Name Ball Name

G6 P2[5] F1 VDDD A5 VDDA

E5 P2[6] E1 VSSD A6 VSSD

F5 P2[7] E2 VCCD B6 P12[2]

J7 P12[4] C1 P15[0] C6 P12[3]

H6 P12[5] C2 P15[1] A7 P0[0]

J6 VSSB D2 P3[0] B7 P0[1]

J5 Ind D3 P3[1] B5 P0[2]

H5 VBOOST D4 P3[2] C5 P0[3]

J4 VBAT D5 P3[3] A8 VIO0

H4 VSSD B4 P3[4] D6 P0[4]

J3 XRES_N B3 P3[5] D7 P0[5]

H3 P1[0] A1 VIO3 C7 P0[6]

G3 P1[1] B2 P3[6] C8 P0[7]

H2 P1[2] A2 P3[7] E8 VCCD

J2 P1[3] C3 P12[0] F8 VSSD

G4 P1[4] C4 P12[1] G8 VDDD

G5 P1[5] E3 P15[2] E7 P15[4]

J1 VIO1 E4 P15[3] F7 P15[5]

F4 P1[6] B1[12] NC G7 P2[0]

F3 P1[7] B8[12] NC H7 P2[1]

H1 P12[6] D1[12] NC H8 P2[2]

G1 P12[7] D8[12] NC F6 P2[3]

G2 P15[6] A3 VCCA E6 P2[4]

F2 P15[7] A4 VSSA J8 VIO2

Notes
12. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
13. This feature on select devices only. See Ordering Information on page 120 for details.

http://www.cypress.com/?rID=39677
http://www.cypress.com/?rID=39677
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6.  System Integration

6.1  Clocking System

The clocking system generates, divides, and distributes clocks 
throughout the PSoC system. For the majority of systems, no 
external crystal is required. The IMO and PLL together can 
generate up to a 66 MHz clock, accurate to ±1% over voltage and 
temperature. Additional internal and external clock sources allow 
each design to optimize accuracy, power, and cost. Any of the 
clock sources can be used to generate other clock frequencies 
in the 16-bit clock dividers and UDBs for anything the user wants, 
for example a UART baud rate generator. 

Clock generation and distribution is automatically configured 
through the PSoC Creator IDE graphical interface. This is based 
on the complete system’s requirements. It greatly speeds the 
design process. PSoC Creator allows you to build clocking 
systems with minimal input. You can specify desired clock 
frequencies and accuracies, and the software locates or builds a 
clock that meets the required specifications. This is possible 
because of the programmability inherent in PSoC. 

Key features of the clocking system include:

 Seven general purpose clock sources
 3- to 62-MHz IMO, ±1% at 3 MHz
 4- to 25-MHz external crystal oscillator (MHzECO)
 Clock doubler provides a doubled clock frequency output for 

the USB block, see USB Clock Domain on page 30.
 DSI signal from an external I/O pin or other logic
 24- to 67-MHz fractional PLL sourced from IMO, MHzECO, 

or DSI
 1-kHz, 33-kHz, 100-kHz ILO for WDT and sleep timer
 32.768-kHz external crystal oscillator (kHzECO) for RTC

 IMO has a USB mode that auto locks to the USB bus clock 
requiring no external crystal for USB. (USB equipped parts only)

 Independently sourced clock in all clock dividers

 Eight 16-bit clock dividers for the digital system

 Four 16-bit clock dividers for the analog system

 Dedicated 16-bit divider for the bus clock

 Dedicated 4-bit divider for the CPU clock

 Automatic clock configuration in PSoC Creator 

Figure 6-1. Clocking Subsystem
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6.2  Power System

The power system consists of separate analog, digital, and I/O 
supply pins, labeled VDDA, VDDD, and VDDIO×, respectively. It 
also includes two internal 1.8 V regulators that provide the digital 
(VCCD) and analog (VCCA) supplies for the internal core logic. 
The output pins of the regulators (VCCD and VCCA) and the 

VDDIO pins must have capacitors connected as shown in 
Figure 6-4. The two VCCD pins must be shorted together, with 
as short a trace as possible, and connected to a 1-µF ±10% ×5R 
capacitor. The power system also contains a sleep regulator, an 
I2C regulator, and a hibernate regulator. 

Figure 6-4. PSoC Power System

Notes

 The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as 
shown in Figure 2-8 on page 12.

 It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. 
With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a 
significant percentage of the rated working voltage.

 You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the 
internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins 
to the VCCx pins.

 You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this 
configuration, the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The 
allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by 
default, and should be disabled to reduce power consumption.
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6.2.1  Power Modes

PSoC 3 devices have four different power modes, as shown in 
Table 6-2 and Table 6-3. The power modes allow a design to 
easily provide required functionality and processing power while 
simultaneously minimizing power consumption and maximizing 
battery life in low-power and portable devices. 

PSoC 3 power modes, in order of decreasing power 
consumption are: 

 Active

 Alternate Active

 Sleep 

 Hibernate

Active is the main processing mode. Its functionality is 
configurable. Each power controllable subsystem is enabled or 
disabled by using separate power configuration template 
registers. In alternate active mode, fewer subsystems are 
enabled, reducing power. In sleep mode most resources are 
disabled regardless of the template settings. Sleep mode is 
optimized to provide timed sleep intervals and RTC functionality. 
The lowest power mode is hibernate, which retains register and 
SRAM state, but no clocks, and allows wakeup only from I/O 
pins. Figure 6-5 illustrates the allowable transitions between 
power modes. Sleep and hibernate modes should not be entered 
until all VDDIO supplies are at valid voltage levels.

. 

Table 6-2.  Power Modes

Power 
Modes Description Entry Condition Wakeup 

Source Active Clocks  Regulator

Active Primary mode of operation, all periph-
erals available (programmable)

Wakeup, reset, 
manual register 
entry 

Any interrupt Any 
(programmable)

All regulators available. Digital 
and analog regulators can be 
disabled if external regulation 
used.

Alternate 
Active

Similar to Active mode, and is typically 
configured to have fewer peripherals 
active to reduce power. One possible 
configuration is to use the UDBs for 
processing, with the CPU turned off

Manual register 
entry

Any interrupt Any 
(programmable)

All regulators available. Digital 
and analog regulators can be 
disabled if external regulation 
used.

Sleep All subsystems automatically disabled Manual register 
entry

Comparator, 
PICU, I2C, 
RTC, CTW, 
LVD

ILO/kHzECO Both digital and analog 
regulators buzzed. 
Digital and analog regulators 
can be disabled if external 
regulation used.

Hibernate All subsystems automatically disabled 
Lowest power consuming mode with 
all peripherals and internal regulators 
disabled, except hibernate regulator is 
enabled
Configuration and memory contents 
retained

Manual register 
entry 

PICU – Only hibernate regulator active.

Table 6-3.  Power Modes Wakeup Time and Power Consumption

Sleep 
Modes

Wakeup 
Time

Current 
(Typ)

Code 
Execution

Digital 
Resources

Analog 
Resources

Clock Sources 
Available Wakeup Sources Reset 

Sources

Active  – 1.2 mA[16] Yes All All All – All

Alternate 
Active 

 – – User 
defined

All All All – All

Sleep
<15 µs 1 µA No I2C Comparator ILO/kHzECO Comparator, 

PICU, I2C, RTC, 
CTW, LVD

XRES, LVD, 
WDR

Hibernate <100 µs 200 nA No None None None PICU XRES

Note
16. Bus clock off. Execute from cache at 6 MHz. See Table 11-2 on page 72.
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6.4.5  Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the 
system. All eight pins in each port interface to their own Port 
Interrupt Control Unit (PICU) and associated interrupt vector. 
Each pin of the port is independently configurable to detect rising 
edge, falling edge, both edge interrupts, or to not generate an 
interrupt. 

Depending on the configured mode for each pin, each time an 
interrupt event occurs on a pin, its corresponding status bit of the 
interrupt status register is set to “1” and an interrupt request is 
sent to the interrupt controller. Each PICU has its own interrupt 
vector in the interrupt controller and the pin status register 
providing easy determination of the interrupt source down to the 
pin level.

Port pin interrupts remain active in all sleep modes allowing the 
PSoC device to wake from an externally generated interrupt.

While level sensitive interrupts are not directly supported; 
universal digital blocks (UDB) provide this functionality to the 
system when needed.

6.4.6  Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level 
for the default CMOS input thresholds or the optional LVTTL 
input thresholds. All input buffers incorporate Schmitt triggers for 
input hysteresis. Additionally, individual pin input buffers can be 
disabled in any drive mode.

6.4.7  I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the 
device and package. Each I/O supply must be less than or equal 
to the voltage on the chip’s analog (VDDA) pin. This feature 
allows users to provide different I/O voltage levels for different 
pins on the device. Refer to the specific device package pinout 
to determine VDDIO capability for a given port and pin.

The SIO port pins support an additional regulated high output 
capability, as described in Adjustable Output Level.

6.4.8  Analog Connections

These connections apply only to GPIO pins. All GPIO pins may 
be used as analog inputs or outputs. The analog voltage present 
on the pin must not exceed the VDDIO supply voltage to which 
the GPIO belongs. Each GPIO may connect to one of the analog 
global busses or to one of the analog mux buses to connect any 
pin to any internal analog resource such as ADC or comparators. 
In addition, select pins provide direct connections to specific 
analog features such as the high current DACs or uncommitted 
opamps. 

6.4.9  CapSense

This section applies only to GPIO pins. All GPIO pins may be 
used to create CapSense buttons and sliders[19]. See the 
“CapSense” section on page 63 for more information. 

6.4.10  LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be 
used to generate Segment and Common drive signals for direct 
glass drive of LCD glass. See the “LCD Direct Drive” section on 
page 62 for details.

6.4.11  Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the 
ability to provide a regulated high output level for interface to 
external signals that are lower in voltage than the SIO’s 
respective VDDIO. SIO pins are individually configurable to 
output either the standard VDDIO level or the regulated output, 
which is based on an internally generated reference. Typically a 
voltage DAC (VDAC) is used to generate the reference (see 
Figure 6-13). The “DAC” section on page 64 has more details on 
VDAC use and reference routing to the SIO pins. Resistive 
pull-up and pull-down drive modes are not available with SIO in 
regulated output mode.

6.4.12  Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support 
the standard CMOS and LVTTL input levels but also support a 
differential mode with programmable levels. SIO pins are 
grouped into pairs. Each pair shares a reference generator block 
which, is used to set the digital input buffer reference level for 
interface to external signals that differ in voltage from VDDIO. 
The reference sets the pins voltage threshold for a high logic 
level (see Figure 6-13). Available input thresholds are:

 0.5 VDDIO

 0.4 VDDIO

 0.5 VREF

 VREF

Typically a voltage DAC (VDAC) generates the VREF reference. 
“DAC” section on page 64 has more details on VDAC use and 
reference routing to the SIO pins.

Note
19. GPIOs with opamp outputs are not recommended for use with CapSense
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6.4.19  JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all 
I/O pins for board level test.

7.  Digital Subsystem

The digital programmable system creates application specific 
combinations of both standard and advanced digital peripherals 
and custom logic functions. These peripherals and logic are then 
interconnected to each other and to any pin on the device, 
providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined 
here to provide an overview of capabilities and architecture. You 
do not need to interact directly with the programmable digital 
system at the hardware and register level. PSoC Creator 
provides a high level schematic capture graphical interface to 
automatically place and route resources similar to PLDs. 

The main components of the digital programmable system are:

 Universal Digital Blocks (UDB) – These form the core 
functionality of the digital programmable system. UDBs are a 
collection of uncommitted logic (PLD) and structural logic 
(Datapath) optimized to create all common embedded 
peripherals and customized functionality that are application or 
design specific.

 Universal Digital Block Array – UDB blocks are arrayed within 
a matrix of programmable interconnect. The UDB array 
structure is homogeneous and allows for flexible mapping of 
digital functions onto the array. The array supports extensive 
and flexible routing interconnects between UDBs and the 
Digital System Interconnect.

 Digital System Interconnect (DSI) – Digital signals from 
Universal Digital Blocks (UDBs), fixed function peripherals, I/O 
pins, interrupts, DMA, and other system core signals are 
attached to the Digital System Interconnect to implement full 
featured device connectivity. The DSI allows any digital function 
to any pin or other feature routability when used with the 
Universal Digital Block Array.

Figure 7-1. CY8C36 Digital Programmable Architecture

7.1  Example Peripherals

The flexibility of the CY8C36 family’s Universal Digital Blocks 
(UDBs) and Analog Blocks allow the user to create a wide range 
of components (peripherals). The most common peripherals 
were built and characterized by Cypress and are shown in the 
PSoC Creator component catalog, however, users may also 
create their own custom components using PSoC Creator. Using 
PSoC Creator, users may also create their own components for 
reuse within their organization, for example sensor interfaces, 
proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is 
too numerous to list in the data sheet, and the list is always 
growing. An example of a component available for use in 
CY8C36 family, but, not explicitly called out in this data sheet is 
the UART component.

7.1.1  Example Digital Components

The following is a sample of the digital components available in 
PSoC Creator for the CY8C36 family. The exact amount of 
hardware resources (UDBs, routing, RAM, flash) used by a 
component varies with the features selected in PSoC Creator for 
the component. 

 Communications
 I2C
 UART 
 SPI

 Functions
 EMIF
 PWMs
 Timers
 Counters

 Logic
 NOT
 OR
 XOR
 AND

7.1.2  Example Analog Components

The following is a sample of the analog components available in 
PSoC Creator for the CY8C36 family. The exact amount of 
hardware resources (SC/CT blocks, routing, RAM, flash) used 
by a component varies with the features selected in PSoC 
Creator for the component. 
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7.3  UDB Array Description

Figure 7-7 shows an example of a 16-UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure 

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 
utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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Figure 7-9. Digital System Interconnect

Interrupt and DMA routing is very flexible in the CY8C36 
programmable architecture. In addition to the numerous fixed 
function peripherals that can generate interrupt requests, any 
data signal in the UDB array routing can also be used to generate 
a request. A single peripheral may generate multiple 
independent interrupt requests simplifying system and firmware 
design. Figure 7-10 shows the structure of the IDMUX 
(Interrupt/DMA Multiplexer).

Figure 7-10. Interrupt and DMA Processing in the IDMUX 

7.4.1  I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 
for data and four for drive strength control.

When an I/O pin is connected to the routing, there are two 
primary connections available, an input and an output. In 
conjunction with drive strength control, this can implement a 
bidirectional I/O pin. A data output signal has the option to be 
single synchronized (pipelined) and a data input signal has the 
option to be double synchronized. The synchronization clock is 
the master clock (see Figure 6-1 on page 28). Normally all inputs 
from pins are synchronized as this is required if the CPU 
interacts with the signal or any signal derived from it. 
Asynchronous inputs have rare uses. An example of this is a 
feed through of combinational PLD logic from input pins to output 
pins.

Figure 7-11. I/O Pin Synchronization Routing

Figure 7-12. I/O Pin Output Connectivity 

There are four more DSI connections to a given I/O port to 
implement dynamic output enable control of pins. This 
connectivity gives a range of options, from fully ganged 8-bits 
controlled by one signal, to up to four individually controlled pins. 
The output enable signal is useful for creating tri-state 
bidirectional pins and buses.
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Analog local buses (abus) are routing resources located within 
the analog subsystem and are used to route signals between 
different analog blocks. There are eight abus routes in CY8C36, 
four in the left half (abusl [0:3]) and four in the right half (abusr 
[0:3]) as shown in Figure 8-2. Using the abus saves the analog 
globals and analog mux buses from being used for 
interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct 
signals into and out of the analog blocks. A multiplexer can have 
only one connection on at a time, whereas a switch can have 
multiple connections on simultaneously. In Figure 8-2, 
multiplexers are indicated by grayed ovals and switches are 
indicated by transparent ovals. 

8.2  Delta-sigma ADC

The CY8C36 device contains one delta-sigma ADC. This ADC 
offers differential input, high resolution and excellent linearity, 
making it a good ADC choice for measurement applications. The 
converter can be configured to output 12-bit resolution at data 
rates of up to 192 ksps. At a fixed clock rate, resolution can be 
traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1  Functional Description

The ADC connects and configures three basic components,
input buffer, delta-sigma modulator, and decimator. The basic
block diagram is shown in Figure 8-4. The signal from the input
muxes is delivered to the delta-sigma modulator either directly or
through the input buffer. The delta-sigma modulator performs the
actual analog to digital conversion. The modulator over-samples
the input and generates a serial data stream output. This high
speed data stream is not useful for most applications without
some type of post processing, and so is passed to the decimator
through the Analog Interface block. The decimator converts the

high speed serial data stream into parallel ADC results. The
modulator/decimator frequency response is [(sin x)/x]4. 

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator.
Data is pipelined in the decimator; the output is a function of the
last four samples. When the input multiplexer is switched, the
output data is not valid until after the fourth sample after the
switch.

8.2.2  Operational Modes

The ADC can be configured by the user to operate in one of four
modes: Single Sample, Multi Sample, Continuous, or Multi
Sample (Turbo). All four modes are started by either a write to
the start bit in a control register or an assertion of the Start of
Conversion (SoC) signal. When the conversion is complete, a
status bit is set and the output signal End of Conversion (EoC)
asserts high and remains high until the value is read by either the
DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample
conversion on a trigger. In this mode, the ADC stays in standby
state waiting for the SoC signal to be asserted. When SoC is
signaled the ADC performs four successive conversions. The
first three conversions prime the decimator. The ADC result is
valid and available after the fourth conversion, at which time the
EoC signal is generated. To detect the end of conversion, the
system may poll a control register for status or configure the
external EoC signal to generate an interrupt or invoke a DMA
request. When the transfer is done the ADC reenters the standby
state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive
samples of a single input signal. Multiplexing multiple inputs
should not be done with this mode. There is a latency of three
conversion times before the first conversion result is available.
This is the time required to prime the decimator. After the first
result, successive conversions are available at the selected
sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the
ADC is reset between samples. This mode is useful when the
input is switched between multiple signals. The decimator is
re-primed between each sample so that previous samples do not
affect the current conversion. Upon completion of a sample, the
next sample is automatically initiated. The results can be
transferred using either firmware polling, interrupt, or DMA. 

More information on output formats is provided in the Technical
Reference Manual.

Table 8-1.  Delta-sigma ADC Performance
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8.9  DAC

The CY8C36 parts contain up to four Digital to Analog 
Convertors (DACs). Each DAC is 8-bit and can be configured for 
either voltage or current output. The DACs support CapSense, 
power supply regulation, and waveform generation. Each DAC 
has the following features:

 Adjustable voltage or current output in 255 steps
 Programmable step size (range selection)
 Eight bits of calibration to correct ± 25% of gain error

 Source and sink option for current output 
 High and low speed / power modes
 8 Msps conversion rate for current output
 1 Msps conversion rate for voltage output
Monotonic in nature
 Data and strobe inputs can be provided by the CPU or DMA, 

or routed directly from the DSI
 Dedicated low-resistance output pin for high-current mode

Figure 8-11. DAC Block Diagram

8.9.1  Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 
31.875 µA, 0 to 255 µA, and 0 to 2.04 mA. The IDAC can be 
configured to source or sink current.

8.9.2  Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed 
through resistors. The two ranges available for the VDAC are 0 
to 1.02 V and 0 to 4.08 V. In voltage mode any load connected 
to the output of a DAC should be purely capacitive (the output of 
the VDAC is not buffered).

8.10  Up/Down Mixer

In continuous time mode, the SC/CT block components are used 
to build an up or down mixer. Any mixing application contains an 
input signal frequency and a local oscillator frequency. The 
polarity of the clock, Fclk, switches the amplifier between 
inverting or noninverting gain. The output is the product of the 
input and the switching function from the local oscillator, with 
frequency components at the local oscillator plus and minus the 
signal frequency (Fclk + Fin and Fclk – Fin) and reduced-level 
frequency components at odd integer multiples of the local 

oscillator frequency. The local oscillator frequency is provided by 
the selected clock source for the mixer. 

Continuous time up and down mixing works for applications with 
input signals and local oscillator frequencies up to 1 MHz.

Figure 8-12. Mixer Configuration
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9.8  CSP Package Bootloader

A factory-installed bootloader program is included in all devices 
with CSP packages. The bootloader is compatible with PSoC 
Creator 3.0 bootloadable project files and has the following 
features:

 I2C-based

 SCLK and SDAT available at P1[6] and P1[7], respectively

 External pull-up resistors required

 I2C slave, address 4, data rate = 100 kbps

 Single application

Wait two seconds for bootload command

Other bootloader options are as set by the PSoC Creator 3.0 
Bootloader Component default

Occupies the bottom 9K of flash

For more information on this bootloader, see the following 
Cypress application notes:

 AN89611 – PSoC® 3 AND PSoC 5LP - Getting Started With 
Chip Scale Packages (CSP)

 AN73854 – PSoC 3 and PSoC 5 LP Introduction to Bootloaders

 AN60317 – PSoC 3 and PSoC 5 LP I2C Bootloader

Note that a PSOC Creator bootloadable project must be 
associated with .hex and .elf files for a bootloader project that is 
configured for the target device. Bootloader .hex  and .elf files 
can be found at www.cypress.com/go/PSoC3datasheet.

The factory-installed bootloader can be overwritten using JTAG 
or SWD programming.

http://www.cypress.com/go/PSoC3datasheet
http://www.cypress.com/?rID=56014
http://www.cypress.com/?rID=41002
http://www.cypress.com/?rID=90919
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Figure 11-8. TA range over VBAT and VOUT Figure 11-9. IOUT range over VBAT and VOUT

Figure 11-10. LBOOST values over VBAT and VOUT

Note
41. Based on device characterization (Not production tested).

Table 11-7.  Recommended External Components for Boost Circuit

Parameter Description Conditions Min Typ Max Units

LBOOST Boost inductor 4.7 µH nominal 3.7 4.7 5.7 µH

10 µH nominal 8.0 10.0 12.0 µH

22 µH nominal 17.0 22.0 27.0 µH

CBOOST Total capacitance sum of 
VDDD, VDDA, VDDIO

[41]
17.0 26.0 31.0 µF

CBAT Battery filter capacitor 17.0 22.0 27.0 µF

IF Schottky diode average 
forward current

1.0 – – A

VR Schottky reverse voltage 20.0 – – V
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11.4  Inputs and Outputs

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted. Unless otherwise specified, all charts and graphs show typical values.
When the power supplies ramp up, there are low-impedance connections between each GPIO pin and its VDDIO supply. This causes 
the pin voltages to track VDDIO until both VDDIO and VDDA reach the IPOR voltage, which can be as high as 1.45 V. At that point, the 
low-impedance connections no longer exist and the pins change to their normal NVL settings.

11.4.1  GPIO 

Notes
43. Based on device characterization (Not production tested).
44. For information on designing with PSoC oscillators, refer to the application note, AN54439 - PSoC® 3 and PSoC 5 External Oscillator.

Table 11-9.  GPIO DC Specifications

Parameter Description Conditions Min Typ Max Units

VIH Input voltage high threshold CMOS Input, PRT[×]CTL = 0 0.7  VDDIO – – V

VIL Input voltage low threshold CMOS Input, PRT[×]CTL = 0 – – 0.3 VDDIO V

VIH Input voltage high threshold LVTTL Input, PRT[×]CTL = 
1,VDDIO < 2.7 V

0.7 × VDDIO – – V

VIH Input voltage high threshold LVTTL Input, PRT[×]CTL = 1, 
VDDIO  2.7 V

2.0 – – V

VIL Input voltage low threshold LVTTL Input, PRT[×]CTL = 
1,VDDIO < 2.7 V

– – 0.3 × VDDIO V

VIL Input voltage low threshold LVTTL Input, PRT[×]CTL = 1, 
VDDIO  2.7 V

– – 0.8 V

VOH Output voltage high IOH = 4 mA at 3.3 VDDIO VDDIO – 0.6 – – V

IOH = 1 mA at 1.8 VDDIO VDDIO – 0.5 – – V

VOL Output voltage low IOL = 8 mA at 3.3 VDDIO – – 0.6 V

IOL = 4 mA at 1.8 VDDIO – – 0.6 V

IOL = 3 mA at 3.3 VDDIO – – 0.4 V

Rpullup Pull-up resistor 3.5 5.6 8.5 k 

Rpulldown Pull-down resistor 3.5 5.6 8.5 k

IIL Input leakage current (absolute value)[43] 25 °C, VDDIO = 3.0 V – – 2 nA

CIN Input capacitance[43] GPIOs not shared with opamp 
outputs, MHz ECO or kHzECO

– 4 7 pF

GPIOs shared with MHz ECO 
or kHzECO[44]

– 5 7 pF

GPIOs shared with opamp 
outputs

– – 18 pF

VH Input voltage hysteresis 
(Schmitt-Trigger)[43]

– 40 – mV

Idiode Current through protection diode to 
VDDIO and VSSIO

– – 100 µA

Rglobal Resistance pin to analog global bus 25 °C, VDDIO = 3.0 V – 320 – 

Rmux Resistance pin to analog mux bus 25 °C, VDDIO = 3.0 V – 220 – 

http://www.cypress.com/?rID=37884
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Figure 11-36. IDAC INL vs Input Code, Range = 255 µA, 
Source Mode

Figure 11-37. IDAC INL vs Input Code, Range = 255 µA, Sink 
Mode

Figure 11-38. IDAC DNL vs Input Code, Range = 255 µA, 
Source Mode

Figure 11-39. IDAC DNL vs Input Code, Range = 255 µA, Sink 
Mode

Figure 11-40. IDAC INL vs Temperature, Range = 255 µA, High 
speed mode

Figure 11-41. IDAC DNL vs Temperature, Range = 255 µA, 
High speed mode
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Figure 11-52. VDAC INL vs Temperature, 1 V Mode Figure 11-53. VDAC DNL vs Temperature, 1 V Mode

Figure 11-54. VDAC Full Scale Error vs Temperature, 1 V 
Mode

Figure 11-55. VDAC Full Scale Error vs Temperature, 4 V 
Mode

Figure 11-56. VDAC Operating Current vs Temperature, 1V 
Mode, Low speed mode

Figure 11-57. VDAC Operating Current vs Temperature, 1 V 
Mode, High speed mode
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Figure 11-63. Bandwidth vs. Temperature, at Different Gain 
Settings, Power Mode = High

Figure 11-64. Noise vs. Frequency, VDDA = 5 V, 
Power Mode = High

11.5.11  Temperature Sensor

11.5.12  LCD Direct Drive 

 

Table 11-37.  PGA AC Specifications

Parameter Description Conditions Min Typ Max Units

BW1 –3 dB bandwidth Power mode = high, 
gain = 1, input = 100 mV 
peak-to-peak

6.7 8 –  MHz

SR1 Slew rate Power mode = high, 
gain = 1, 20% to 80%

3 – – V/µs

en Input noise density Power mode = high, 
VDDA = 5 V, at 100 kHz

– 43 – nV/sqrtHz

1

10

, M
H

z

0.1

-40 -20 0 20 40 60 80

B
W

Temperature, °C

Gain = 1 Gain = 24 Gain = 48

Table 11-38.  Temperature Sensor Specifications

Parameter Description Conditions Min Typ Max Units

Temp sensor accuracy Range: –40 °C to +85 °C – ±5 – °C

Table 11-39.  LCD Direct Drive DC Specifications

Parameter Description Conditions Min Typ Max Units
ICC LCD system operating current Device sleep mode with wakeup at 

400-Hz rate to refresh LCDs, bus 
clock = 3 MHz, VDDIO = VDDA = 3 V,
4 commons, 16 segments, 1/4 duty 
cycle, 50 Hz frame rate, no glass 
connected

– 38 – A

ICC_SEG Current per segment driver Strong drive mode – 260 – µA
VBIAS LCD bias range (VBIAS refers to the main 

output voltage(V0) of LCD DAC)
VDDA  3 V and VDDA  VBIAS 2 – 5 V

LCD bias step size VDDA  3 V and VDDA  VBIAS – 9.1 × VDDA – mV
LCD capacitance per 
segment/common driver 

Drivers may be combined – 500 5000 pF

Long term segment offset – – 20 mV
IOUT Output drive current per segment driver) VDDIO = 5.5V, strong drive mode 355 – 710 µA

Table 11-40.  LCD Direct Drive AC Specifications

Parameter Description Conditions Min Typ Max Units
fLCD LCD frame rate 10 50 150 Hz
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11.6.8  Universal Digital Blocks (UDBs)

PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, 
AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, 
APIs, and example code.

Figure 11-65. Clock to Output Performance

Table 11-54.  UDB AC Specifications

Parameter Description Conditions Min Typ Max Units

Datapath Performance

FMAX_TIMER Maximum frequency of 16-bit timer in 
a UDB pair

– – 67.01 MHz

FMAX_ADDER Maximum frequency of 16-bit adder 
in a UDB pair

– – 67.01 MHz

FMAX_CRC Maximum frequency of 16-bit 
CRC/PRS in a UDB pair

– – 67.01 MHz

PLD Performance

FMAX_PLD Maximum frequency of a two-pass 
PLD function in a UDB pair

– – 67.01 MHz

Clock to Output Performance

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-65.

25 °C, VDDD  2.7 V – 20 25 ns

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-65.

Worst-case placement, routing, 
and pin selection

– – 55 ns
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11.7.3  Nonvolatile Latches (NVL))

11.7.4  SRAM  

Table 11-59.  NVL DC Specifications

Parameter Description Conditions Min Typ Max Units

Erase and program voltage VDDD pin 1.71 – 5.5 V

Table 11-60.  NVL AC Specifications

Parameter Description Conditions Min Typ Max Units
NVL endurance Programmed at 25 °C 1K – – program/

erase 
cycles

Programmed at 0 °C to 70 °C 100 – – program/
erase 
cycles

NVL data retention time Average ambient temp. TA ≤ 55 °C 20 – – years
Average ambient temp. TA ≤ 85 °C 10 – – years

Table 11-61.   SRAM DC Specifications

Parameter Description Conditions Min Typ Max Units
VSRAM SRAM retention voltage 1.2 – – V

Table 11-62.   SRAM AC Specifications

Parameter Description Conditions Min Typ Max Units
FSRAM SRAM operating frequency DC – 67.01 MHz
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11.7.5  External Memory Interface 

Figure 11-66. Asynchronous Write and Read Cycle Timing, No Wait States

Tbus_clock

Bus Clock

EM_Addr

EM_CE

EM_WE

EM_OE

EM_Data

Write Cycle Read Cycle

Minimum of 4 bus clock cycles between successive EMIF accesses

Trd_setup Trd_hold

Twr_setup

Notes
68. Based on device characterization (Not production tested).
69. EMIF signal timings are limited by GPIO frequency limitations. See “GPIO” section on page 80.
70. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

Table 11-63.  Asynchronous Write and Read Timing Specifications[68]

Parameter Description Conditions Min Typ Max Units

Fbus_clock Bus clock frequency[69] – – 33 MHz

Tbus_clock Bus clock period[70] 30.3 – – ns

Twr_Setup Time from EM_data valid to rising 
edge of EM_WE and EM_CE

Tbus_clock – 10 – – ns

Trd_setup Time that EM_data must be valid 
before rising edge of EM_OE

5 – – ns

Trd_hold Time that EM_data must be valid 
after rising edge of EM_OE

5 – – ns
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*T 4188568 11/14/2013 MKEA Added SIO Comparator Specifications.
Corrected typo in the VREF parameter in the Voltage Reference Specifications.
Added CSP information in Packaging and Ordering Information sections.
Updated delta-sigma VOS spec conditions.

*U 4385782 05/21/2014 MKEA Updated General Description and Features.
Added More Information and PSoC Creator sections.
Updated 100-pin TQFP package diagram.

*V 4708125 03/31/2015 MKEA Added INL4 and DNL4 specs in VDAC DC Specifications.
Updated Figure 6-11.
Added second note after Figure 6-4.
Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2.
Updated Section 6.2.2.
Added Section 7.8.1.
Updated Boost specifications.

*W 4807497 06/23/2015 MKEA Added reference to code examples in More Information.
Updated typ value of TWRITE from 2 to 10 in EEPROM AC specs table.
Changed “Device supply for USB operation" to "Device supply (VDDD) for USB 
operation" in USB DC Specifications.
Clarified power supply sequencing and margin for VDDA and VDDD.
Updated Serial Wire Debug Interface with limitations of debugging on Port 15.
Updated Section 11.7.5.
Updated Delta-sigma ADC DC Specifications

*X 4932879 09/24/2015 MKEA Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1,
respectively.
Added reference to AN54439 in Section 11.9.3.
Added MHz ECO DC specs table.
Removed references to IPOR rearm issues in Section 6.3.1.1.
Table 6-1: Changed DSI Fmax to 33 MHz.
Figure 6-1: Changed External I/O or DSI to 0-33 MHz.
Table 11-10: Changed Fgpioin Max to 33 MHz.
Table 11-12: Changed Fsioin Max to 33 MHz.

*Y 5322536 06/27/2016 MKEA Updated More Information.
Corrected typos in External Electrical Connections.
Added links to CAD Libraries in Section 2.
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