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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 67MHz

Connectivity CANbus, EBI/EMI, I²C, LINbus, SPI, UART/USART

Peripherals CapSense, DMA, LCD, POR, PWM, WDT

Number of I/O 62

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 5.5V

Data Converters A/D 16x12b; D/A 4x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3666axi-037

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/cy8c3666axi-037-4453143
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PSoC® 3: CY8C36 Family Datasheet

Document Number: 001-53413 Rev. *Y Page 11 of 137

Figure 2-7. Example Schematic for 100-pin TQFP Part With Power Connections

Note The two Vccd pins must be connected together with as short a trace as possible. A trace under the device is recommended, as
shown in Figure 2-8 on page 12.

For more information on pad layout, refer to http://www.cypress.com/cad-resources/psoc-3-cad-libraries.
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4.3.1.5 Program Branching Instructions

The 8051 supports a set of conditional and unconditional jump instructions that help to modify the program execution flow. Table 4-5 
shows the list of jump instructions.

4.4  DMA and PHUB

The PHUB and the DMA controller are responsible for data 
transfer between the CPU and peripherals, and also data 
transfers between peripherals. The PHUB and DMA also control 
device configuration during boot. The PHUB consists of:

 A central hub that includes the DMA controller, arbiter, and 
router

Multiple spokes that radiate outward from the hub to most 
peripherals

There are two PHUB masters: the CPU and the DMA controller. 
Both masters may initiate transactions on the bus. The DMA 
channels can handle peripheral communication without CPU 
intervention. The arbiter in the central hub determines which 
DMA channel is the highest priority if there are multiple requests. 

4.4.1  PHUB Features

 CPU and DMA controller are both bus masters to the PHUB

 Eight Multi-layer AHB Bus parallel access paths (spokes) for 
peripheral access

 Simultaneous CPU and DMA access to peripherals located on 
different spokes

 Simultaneous DMA source and destination burst transactions 
on different spokes

 Supports 8-, 16-, 24-, and 32-bit addressing and data

Table 4-5.  Jump Instructions 

Mnemonic Description Bytes Cycles

ACALL addr11 Absolute subroutine call 2 4

LCALL addr16 Long subroutine call 3 4

RET Return from subroutine 1 4

RETI Return from interrupt 1 4

AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel Short jump (relative address) 2 3

JMP @A + DPTR Jump indirect relative to DPTR 1 5

JZ rel Jump if accumulator is zero 2 4

JNZ rel Jump if accumulator is nonzero 2 4

CJNE A,Direct, rel Compare direct byte to accumulator and jump if not equal 3 5

CJNE A, #data, rel Compare immediate data to accumulator and jump if not equal 3 4

CJNE Rn, #data, rel Compare immediate data to register and jump if not equal 3 4

CJNE @Ri, #data, rel Compare immediate data to indirect RAM and jump if not equal 3 5

DJNZ Rn,rel Decrement register and jump if not zero 2 4

DJNZ Direct, rel Decrement direct byte and jump if not zero 3 5

NOP No operation 1 1

Table 4-6.  PHUB Spokes and Peripherals

PHUB Spokes Peripherals

0 SRAM

1 IOs, PICU, EMIF

2 PHUB local configuration, Power manager, 
Clocks, IC, SWV, EEPROM, Flash 
programming interface

3 Analog interface and trim, Decimator

4 USB, CAN, I2C, Timers, Counters, and PWMs

5 DFB

6 UDBs group 1

7 UDBs group 2
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Figure 6-2. MHzECO Block Diagram

6.1.2.2 32.768-kHz ECO

The 32.768-kHz external crystal oscillator (32kHzECO) provides 
precision timing with minimal power consumption using an 
external 32.768-kHz watch crystal (see Figure 6-3). The 
32kHzECO also connects directly to the sleep timer and provides 
the source for the RTC. The RTC uses a 1-second interrupt to 
implement the RTC functionality in firmware.

The oscillator works in two distinct power modes. This allows 
users to trade off power consumption with noise immunity from 
neighboring circuits. The GPIO pins connected to the external 
crystal and capacitors are fixed. 

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal 
have a load capacitance (CL) of 6 pF or 12.5 pF. Check the 
crystal manufacturer's datasheet. The two external capacitors, 
CL1 and CL2, are typically of the same value, and their total 
capacitance, CL1CL2 / (CL1 + CL2), including pin and trace 
capacitance, should equal the crystal CL value. For more 
information, refer to application note AN54439: PSoC 3 and 

PSoC 5 External Oscillators. See also pin capacitance 
specifications in the “GPIO” section on page 80.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock 
oscillators connected to I/O. The oscillators can also be 
generated within the device in the digital system and UDBs. 

While the primary DSI clock input provides access to all clocking 
resources, up to eight other DSI clocks (internally or externally 
generated) may be routed directly to the eight digital clock 
dividers. This is only possible if there are multiple precision clock 
sources.

6.1.3  Clock Distribution 

All seven clock sources are inputs to the central clock distribution 
system. The distribution system is designed to create multiple 
high precision clocks. These clocks are customized for the 
design’s requirements and eliminate the common problems 
found with limited resolution prescalers attached to peripherals. 
The clock distribution system generates several types of clock 
trees.
 The master clock is used to select and supply the fastest clock 

in the system for general clock requirements and clock 
synchronization of the PSoC device. 

 Bus clock 16-bit divider uses the master clock to generate the 
bus clock used for data transfers. Bus clock is the source clock 
for the CPU clock divider.

 Eight fully programmable 16-bit clock dividers generate digital 
system clocks for general use in the digital system, as 
configured by the design’s requirements. Digital system clocks 
can generate custom clocks derived from any of the seven 
clock sources for any purpose. Examples include baud rate 
generators, accurate PWM periods, and timer clocks, and 
many others. If more than eight digital clock dividers are 
required, the Universal Digital Blocks (UDBs) and fixed function 
timer/counter/PWMs can also generate clocks. 

 Four 16-bit clock dividers generate clocks for the analog system 
components that require clocking, such as ADC and mixers. 
The analog clock dividers include skew control to ensure that 
critical analog events do not occur simultaneously with digital 
switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit 
clock divider (divide by 2 and higher) that generates ~50% duty 
cycle clocks, master clock resynchronization logic, and deglitch 
logic. The outputs from each digital clock tree can be routed into 
the digital system interconnect and then brought back into the 
clock system as an input, allowing clock chaining of up to 32 bits. 

6.1.4  USB Clock Domain 

The USB clock domain is unique in that it operates largely 
asynchronously from the main clock network. The USB logic 
contains a synchronous bus interface to the chip, while running 
on an asynchronous clock to process USB data. The USB logic 
requires a 48 MHz frequency. This frequency can be generated 
from different sources, including DSI clock at 48 MHz or doubled 
value of 24 MHz from internal oscillator, DSI signal, or crystal 
oscillator.
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6.4  I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and 
digital I/O capability. All I/Os have a large number of drive modes, 
which are set at POR. PSoC also provides up to four individual 
I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB 
provide a third type. Both General Purpose I/O (GPIO) and 
Special I/O (SIO) provide similar digital functionality. The primary 
differences are their analog capability and drive strength. 
Devices that include USB also provide two USBIO pins that 
support specific USB functionality as well as limited GPIO 
capability. 

All I/O pins are available for use as digital inputs and outputs for 
both the CPU and digital peripherals. In addition, all I/O pins can 
generate an interrupt. The flexible and advanced capabilities of 
the PSoC I/O, combined with any signal to any pin routability, 
greatly simplify circuit design and board layout. All GPIO pins can 
be used for analog input, CapSense[17], and LCD segment drive, 
while SIO pins are used for voltages in excess of VDDA and for 
programmable output voltages.

 Features supported by both GPIO and SIO:
 User programmable port reset state
 Separate I/O supplies and voltages for up to four groups of I/O
 Digital peripherals use DSI to connect the pins
 Input or output or both for CPU and DMA
 Eight drive modes
 Every pin can be an interrupt source configured as rising 

edge, falling edge or both edges. If required, level sensitive 
interrupts are supported through the DSI

 Dedicated port interrupt vector for each port
 Slew rate controlled digital output drive mode
 Access port control and configuration registers on either port 

basis or pin basis
 Separate port read (PS) and write (DR) data registers to avoid 

read modify write errors
 Special functionality on a pin by pin basis

 Additional features only provided on the GPIO pins:
 LCD segment drive on LCD equipped devices
 CapSense[17]

 Analog input and output capability
 Continuous 100 µA clamp current capability
 Standard drive strength down to 1.7 V

 Additional features only provided on SIO pins:
 Higher drive strength than GPIO
 Hot swap capability (5 V tolerance at any operating VDD)
 Programmable and regulated high input and output drive 

levels down to 1.2 V
 No analog input, CapSense, or LCD capability
 Over voltage tolerance up to 5.5 V
 SIO can act as a general purpose analog comparator

 USBIO features: 
 Full speed USB 2.0 compliant I/O
 Highest drive strength for general purpose use
 Input, output, or both for CPU and DMA
 Input, output, or both for digital peripherals
 Digital output (CMOS) drive mode
 Each pin can be an interrupt source configured as rising 

edge, falling edge, or both edges

Note
17. GPIOs with opamp outputs are not recommended for use with CapSense.
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6.4.1  Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-3. Three configuration bits are 
used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight 
drive modes. Table 6-3 shows the I/O pin’s drive state based on the port data register value or digital array signal if bypass mode is 
selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For 
example, if a GPIO pin is configured for resistive pull-up mode and driven high while the pin is floating, the voltage measured at the 
pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

Table 6-3.  Drive Modes

Diagram Drive Mode PRTxDM2 PRTxDM1 PRTxDM0 PRTxDR = 1 PRTxDR = 0

0 High impedance analog 0 0 0 High Z High Z

1 High impedance digital 0 0 1 High Z High Z

2 Resistive pull-up[18] 0 1 0 Res High (5K) Strong Low

3 Resistive pull-down[18] 0 1 1 Strong High Res Low (5K)

4 Open drain, drives low 1 0 0 High Z Strong Low

5 Open drain, drive high 1 0 1 Strong High High Z

6 Strong drive 1 1 0 Strong High Strong Low

7 Resistive pull-up and pull-down[18] 1 1 1 Res High (5K) Res Low (5K)

Out
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Out
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Pin Out
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Pin

Out
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Out
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Pin Out
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Pin

0. High Impedance
    Analog

1. High Impedance
    Digital

2. Resistive Pull-Up 3. Resistive Pull-Down

4. Open Drain,
    Drives Low

5. Open Drain,
    Drives High

6. Strong Drive 7. Resistive Pull-Up
    and Pull-Down

VDD VDD

VDD VDD VDD

An An An An

AnAnAnAn

The ‘Out’ connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register 
(when HW connection is disabled). 
The ‘In’ connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. 
The ‘An’ connection connects to the Analog System.

Note
18. Resistive pull-up and pull-down are not available with SIO in regulated output mode.
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The USBIO pins (P15[7] and P15[6]), when enabled for I/O mode, have limited drive mode control. The drive mode is set using the 
PRT15.DM0[7, 6] register. A resistive pull option is also available at the USBIO pins, which can be enabled using the PRT15.DM1[7, 
6] register. When enabled for USB mode, the drive mode control has no impact on the configuration of the USB pins. Unlike the GPIO 
and SIO configurations, the port wide configuration registers do not configure the USB drive mode bits. Table 6-4 shows the drive 
mode configuration for the USBIO pins.

 High Impedance Analog

The default reset state with both the output driver and digital
input buffer turned off. This prevents any current from flowing
in the I/O’s digital input buffer due to a floating voltage. This
state is recommended for pins that are floating or that support
an analog voltage. High impedance analog pins do not provide
digital input functionality. 

To achieve the lowest chip current in sleep modes, all I/Os
must either be configured to the high impedance analog mode,
or have their pins driven to a power supply rail by the PSoC
device or by external circuitry.

 High Impedance Digital

The input buffer is enabled for digital signal input. This is the
standard high impedance (HiZ) state recommended for digital
inputs.

 Resistive pull-up or resistive pull-down

Resistive pull-up or pull-down, respectively, provides a series
resistance in one of the data states and strong drive in the
other. Pins can be used for digital input and output in these
modes. Interfacing to mechanical switches is a common
application for these modes. Resistive pull-up and pull-down
are not available with SIO in regulated output mode.

Open Drain, Drives High and Open Drain, Drives Low 

Open drain modes provide high impedance in one of the data
states and strong drive in the other. Pins can be used for digital
input and output in these modes. A common application for
these modes is driving the I2C bus signal lines.

 Strong Drive

Provides a strong CMOS output drive in either high or low
state. This is the standard output mode for pins. Strong Drive
mode pins must not be used as inputs under normal
circumstances. This mode is often used to drive digital output
signals or external FETs.

 Resistive pull-up and pull-down

Similar to the resistive pull-up and resistive pull-down modes
except the pin is always in series with a resistor. The high data
state is pull-up while the low data state is pull-down. This mode
is most often used when other signals that may cause shorts
can drive the bus. Resistive pull-up and pull-down are not
available with SIO in regulated output mode.

6.4.2  Pin Registers

Registers to configure and interact with pins come in two forms 
that may be used interchangeably. 

All I/O registers are available in the standard port form, where 
each bit of the register corresponds to one of the port pins. This 
register form is efficient for quickly reconfiguring multiple port 
pins at the same time.

I/O registers are also available in pin form, which combines the 
eight most commonly used port register bits into a single register 
for each pin. This enables very fast configuration changes to 
individual pins with a single register write.

6.4.3  Bidirectional Mode

High speed bidirectional capability allows pins to provide both 
the high impedance digital drive mode for input signals and a 
second user selected drive mode such as strong drive (set using 
PRT×DM[2:0] registers) for output signals on the same pin, 
based on the state of an auxiliary control bus signal. The 
bidirectional capability is useful for processor busses and 
communications interfaces such as the SPI Slave MISO pin that 
requires dynamic hardware control of the output buffer.

The auxiliary control bus routes up to 16 UDB or digital peripheral 
generated output enable signals to one or more pins. 

6.4.4  Slew Rate Limited Mode

GPIO and SIO pins have fast and slow output slew rate options 
for strong and open drain drive modes, not resistive drive modes. 
Because it results in reduced EMI, the slow edge rate option is 
recommended for signals that are not speed critical, generally 
less than 1 MHz. The fast slew rate is for signals between 1 MHz 
and 33 MHz. The slew rate is individually configurable for each 
pin, and is set by the PRT×SLW registers.

Table 6-4.  USBIO Drive Modes (P15[7] and P15[6])

PRT15.DM1[7,6]
Pull up enable

PRT15.DM0[7,6] 
Drive Mode enable PRT15.DR[7,6] = 1 PRT15.DR[7,6] = 0 Description

0 0 High Z Strong Low Open Drain, Strong Low

0 1 Strong High Strong Low Strong Outputs

1 0 Res High (5k) Strong Low Resistive Pull Up, Strong Low

1 1 Strong High Strong Low Strong Outputs
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7.2.2  Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is 
optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band 
generators and many others.

Figure 7-4. Datapath Top Level

7.2.2.1 Working Registers

The datapath contains six primary working registers, which are 
accessed by CPU firmware or DMA during normal operation.

7.2.2.2 Dynamic Configuration RAM
Dynamic configuration is the ability to change the datapath 
function and internal configuration on a cycle-by-cycle basis, 
under sequencer control. This is implemented using the 
8-word × 16-bit configuration RAM, which stores eight unique 
16-bit wide configurations. The address input to this RAM 
controls the sequence, and can be routed from any block 
connected to the UDB routing matrix, most typically PLD logic, 
I/O pins, or from the outputs of this or other datapath blocks.

ALU

The ALU performs eight general purpose functions. They are:
 Increment
 Decrement
 Add
 Subtract
 Logical AND
 Logical OR
 Logical XOR
 Pass, used to pass a value through the ALU to the shift register, 

mask, or another UDB register
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Table 7-1.  Working Datapath Registers

Name Function Description

A0 and A1 Accumulators These are sources and sinks for 
the ALU and also sources for the 
compares.

D0 and D1 Data Registers These are sources for the ALU 
and sources for the compares.

F0 and F1 FIFOs These are the primary interface 
to the system bus. They can be a 
data source for the data registers 
and accumulators or they can 
capture data from the 
accumulators or ALU. Each FIFO 
is four bytes deep.
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Independent of the ALU operation, these functions are available:

 Shift left

 Shift right

 Nibble swap

 Bitwise OR mask

7.2.2.3 Conditionals

Each datapath has two compares, with bit masking options. 
Compare operands include the two accumulators and the two 
data registers in a variety of configurations. Other conditions 
include zero detect, all ones detect, and overflow. These 
conditions are the primary datapath outputs, a selection of which 
can be driven out to the UDB routing matrix. Conditional 
computation can use the built in chaining to neighboring UDBs 
to operate on wider data widths without the need to use routing 
resources.

7.2.2.4 Variable MSB

The most significant bit of an arithmetic and shift function can be 
programmatically specified. This supports variable width CRC 
and PRS functions, and in conjunction with ALU output masking, 
can implement arbitrary width timers, counters and shift blocks.

7.2.2.5 Built in CRC/PRS

The datapath has built in support for single cycle CRC 
computation and PRS generation of arbitrary width and arbitrary 
polynomial. CRC/PRS functions longer than 8 bits may be 
implemented in conjunction with PLD logic, or built in chaining 
may be use to extend the function into neighboring UDBs.

7.2.2.6 Input/Output FIFOs

Each datapath contains two four-byte deep FIFOs, which can be 
independently configured as an input buffer (system bus writes 
to the FIFO, datapath internal reads the FIFO), or an output 
buffer (datapath internal writes to the FIFO, the system bus reads 
from the FIFO). The FIFOs generate status that are selectable 
as datapath outputs and can therefore be driven to the routing, 
to interact with sequencers, interrupts, or DMA.

Figure 7-5. Example FIFO Configurations

7.2.2.7 Chaining

The datapath can be configured to chain conditions and signals 
such as carries and shift data with neighboring datapaths to 
create higher precision arithmetic, shift, CRC/PRS functions.

7.2.2.8 Time Multiplexing

In applications that are over sampled, or do not need high clock 
rates, the single ALU block in the datapath can be efficiently 
shared with two sets of registers and condition generators. Carry 
and shift out data from the ALU are registered and can be 
selected as inputs in subsequent cycles. This provides support 
for 16-bit functions in one (8-bit) datapath.

7.2.2.9 Datapath I/O

There are six inputs and six outputs that connect the datapath to 
the routing matrix. Inputs from the routing provide the 
configuration for the datapath operation to perform in each cycle, 
and the serial data inputs. Inputs can be routed from other UDB 
blocks, other device peripherals, device I/O pins, and so on. The 
outputs to the routing can be selected from the generated 
conditions, and the serial data outputs. Outputs can be routed to 
other UDB blocks, device peripherals, interrupt and DMA 
controller, I/O pins, and so on.

7.2.3  Status and Control Module

The primary purpose of this circuitry is to coordinate CPU 
firmware interaction with internal UDB operation.

Figure 7-6. Status and Control Registers

The bits of the control register, which may be written to by the 
system bus, are used to drive into the routing matrix, and thus 
provide firmware with the opportunity to control the state of UDB 
processing. The status register is read-only and it allows internal 
UDB state to be read out onto the system bus directly from 
internal routing. This allows firmware to monitor the state of UDB 
processing. Each bit of these registers has programmable 
connections to the routing matrix and routing connections are 
made depending on the requirements of the application.

7.2.3.1 Usage Examples

As an example of control input, a bit in the control register can 
be allocated as a function enable bit. There are multiple ways to 
enable a function. In one method the control bit output would be 
routed to the clock control block in one or more UDBs and serve 
as a clock enable for the selected UDB blocks. A status example 
is a case where a PLD or datapath block generated a condition, 
such as a “compare true” condition that is captured and latched 
by the status register and then read (and cleared) by CPU 
firmware.

7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the 
datapath, and Status and Control, has a clock selection and 
control block. This promotes a fine granularity with respect to 
allocating clocking resources to UDB component blocks and 
allows unused UDB resources to be used by other functions for 
maximum system efficiency.
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7.3  UDB Array Description

Figure 7-7 shows an example of a 16-UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure 

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 
utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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The same opamps and block interfaces are also connectable to 
an array of resistors which allows the construction of a variety of 
continuous time functions.

The opamp and resistor array is programmable to perform 
various analog functions including

 Naked operational amplifier – Continuous mode

 Unity-gain buffer – Continuous mode

 Programmable gain amplifier (PGA) – Continuous mode

 Transimpedance amplifier (TIA) – Continuous mode

 Up/down mixer – Continuous mode

 Sample and hold mixer (NRZ S/H) – Switched cap mode

 First order analog to digital modulator – Switched cap mode

8.5.1  Naked Opamp

The Naked Opamp presents both inputs and the output for 
connection to internal or external signals. The opamp has a unity 
gain bandwidth greater than 6.0 MHz and output drive current up 
to 650 µA. This is sufficient for buffering internal signals (such as 
DAC outputs) and driving external loads greater than 7.5 k.

8.5.2  Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly 
connected to the inverting input for a gain of 1.00. It has a –3 dB 
bandwidth greater than 6.0 MHz.

8.5.3  PGA

The PGA amplifies an external or internal signal. The PGA can 
be configured to operate in inverting mode or noninverting mode. 
The PGA function may be configured for both positive and 
negative gains as high as 50 and 49 respectively. The gain is 
adjusted by changing the values of R1 and R2 as illustrated in 
Figure 8-8 on page 62. The schematic in Figure 8-8 on page 62 
shows the configuration and possible resistor settings for the 
PGA. The gain is switched from inverting and non inverting by 
changing the shared select value of the both the input muxes. 
The bandwidth for each gain case is listed in Table 8-3.

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not 
be large enough to achieve the desired resolution in the ADC, or 
dynamic range of another SC/CT block such as a mixer. The gain 
is adjustable at runtime, including changing the gain of the PGA 
prior to each ADC sample.

8.5.4  TIA

The Transimpedance Amplifier (TIA) converts an internal or 
external current to an output voltage. The TIA uses an internal 
feedback resistor in a continuous time configuration to convert 
input current to output voltage. For an input current Iin, the output 
voltage is VREF - Iin x Rfb, where VREF is the value placed on the 
non inverting input. The feedback resistor Rfb is programmable 
between 20 K and 1 M through a configuration register. 
Table 8-4 shows the possible values of Rfb and associated 
configuration settings.

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external 
sensor's output is current as a function of some type of stimulus 
such as temperature, light, magnetic flux etc. In a common 
application, the voltage DAC output can be connected to the 
VREF TIA input to allow calibration of the external sensor bias 
current by adjusting the voltage DAC output voltage.

8.6  LCD Direct Drive

The PSoC Liquid Crystal Display (LCD) driver system is a highly 
configurable peripheral designed to allow PSoC to directly drive 
a broad range of LCD glass. All voltages are generated on chip, 
eliminating the need for external components. With a high 
multiplex ratio of up to 1/16, the CY8C36 family LCD driver 
system can drive a maximum of 736 segments. The PSoC LCD 
driver module was also designed with the conservative power 
budget of portable devices in mind, enabling different LCD drive 
modes and power down modes to conserve power.

Table 8-3.  Bandwidth

Gain Bandwidth

1 6.0 MHz

24 340 kHz

48 220 kHz

50 215 kHz

R1 R2

20 k to 980 k

S

20 k or 40 k
1

0

1

0

Vin

Vref

Vref

Vin

Table 8-4.  Feedback Resistor Settings

Configuration Word Nominal Rfb (K)

000b 20

001b 30

010b 40

011b 60

100b 120

101b 250

110b 500

111b 1000

Vref
Vout

I in

R fb
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9.8  CSP Package Bootloader

A factory-installed bootloader program is included in all devices 
with CSP packages. The bootloader is compatible with PSoC 
Creator 3.0 bootloadable project files and has the following 
features:

 I2C-based

 SCLK and SDAT available at P1[6] and P1[7], respectively

 External pull-up resistors required

 I2C slave, address 4, data rate = 100 kbps

 Single application

Wait two seconds for bootload command

Other bootloader options are as set by the PSoC Creator 3.0 
Bootloader Component default

Occupies the bottom 9K of flash

For more information on this bootloader, see the following 
Cypress application notes:

 AN89611 – PSoC® 3 AND PSoC 5LP - Getting Started With 
Chip Scale Packages (CSP)

 AN73854 – PSoC 3 and PSoC 5 LP Introduction to Bootloaders

 AN60317 – PSoC 3 and PSoC 5 LP I2C Bootloader

Note that a PSOC Creator bootloadable project must be 
associated with .hex and .elf files for a bootloader project that is 
configured for the target device. Bootloader .hex  and .elf files 
can be found at www.cypress.com/go/PSoC3datasheet.

The factory-installed bootloader can be overwritten using JTAG 
or SWD programming.

http://www.cypress.com/go/PSoC3datasheet
http://www.cypress.com/?rID=56014
http://www.cypress.com/?rID=41002
http://www.cypress.com/?rID=90919
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Sleep Mode[32]

CPU = OFF
RTC = ON (= ECO32K ON, in low-power 
mode)
Sleep timer = ON (= ILO ON at 1 kHz)[33]

WDT = OFF
I2C Wake = OFF
Comparator = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
4.5 V - 5.5 V

T = –40 °C – 1.1 2.3 µA

T = 25 °C – 1.1 2.2

T = 85 °C – 15 30

VDD = VDDIO = 
2.7 V – 3.6 V

T = –40 °C – 1 2.2

T = 25 °C – 1 2.1

T = 85 °C – 12 28

VDD = VDDIO = 
1.71 V – 1.95 V[34]

T = 25 °C – 2.2 4.2

Comparator = ON
CPU = OFF
RTC = OFF
Sleep timer = OFF
WDT = OFF
I2C Wake = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
2.7 V – 3.6 V[35]

T = 25 °C – 2.2 2.7

I2C Wake = ON
CPU = OFF
RTC = OFF
Sleep timer = OFF
WDT = OFF
Comparator = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
2.7 V – 3.6 V[35]

T = 25 °C – 2.2 2.8

Hibernate Mode[32]

Hibernate mode current
All regulators and oscillators off
SRAM retention
GPIO interrupts are active
Boost = OFF
SIO pins in single ended input, unregulated 
output
mode

VDD = VDDIO = 
4.5 V - 5.5 V

T = –40 °C – 0.2 1.5 µA

T = 25 °C – 0.5 1.5

T = 85 °C – 4.1 5.3

VDD = VDDIO = 
2.7 V – 3.6 V

T = –40 °C – 0.2 1.5

T = 25 °C – 0.2 1.5

T = 85 °C – 3.2 4.2

VDD = VDDIO = 
1.71 V – 1.95 V[34]

T = –40 °C – 0.2 1.5

T = 25 °C – 0.3 1.5

T = 85 °C – 3.3 4.3

IDDAR Analog current consumption while device 
is reset[36]

VDDA  3.6 V – 0.3 0.6 mA

VDDA  3.6 V – 1.4 3.3 mA

IDDDR Digital current consumption while device is 
reset[36]

VDDD  3.6 V – 1.1 3.1 mA

VDDD  3.6 V – 0.7 3.1 mA

Table 11-2.  DC Specifications (continued)

Parameter Description Conditions Min Typ[29] Max Units

Notes
32. If VCCD and VCCA are externally regulated, the voltage difference between VCCD and VCCA must be less than 50 mV.
33. Sleep timer generates periodic interrupts to wake up the CPU. This specification applies only to those times that the CPU is off.
34. Externally regulated mode.
35. Based on device characterization (not production tested).
36. Based on device characterization (not production tested). USBIO pins tied to ground (VSSD).
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Figure 11-17. SIO Output High Voltage and Current, 
Unregulated Mode

Figure 11-18. SIO Output Low Voltage and Current, 
Unregulated Mode

Figure 11-19. SIO Output High Voltage and Current, Regulat-
ed Mode

Note
48. Based on device characterization (Not production tested).

Table 11-12.  SIO AC Specifications

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in Fast Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.3 V – – 12 ns

TfallF Fall time in Fast Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.3 V – – 12 ns

TriseS Rise time in Slow Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.0 V – – 75 ns

TfallS Fall time in Slow Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.0 V – – 60 ns
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Figure 11-25. Opamp Voffset Histogram, 3388 samples/847 
parts, 25 °C, VDDA = 5 V

Figure 11-26. Opamp Voffset vs Temperature, VDDA = 5 V

Figure 11-27. Opamp Voffset vs Vcommon and 
VDDA, 25 °C

Figure 11-28. Opamp Output Voltage vs Load Current and 
Temperature, High Power Mode, 25 °C, VDDA = 2.7 V

Figure 11-29. Opamp Operating Current vs VDDA and Power 
Mode
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11.5.2  Delta-Sigma ADC

Unless otherwise specified, operating conditions are:

Operation in continuous sample mode

 fclk = 6.144 MHz 

 Reference = 1.024 V internal reference bypassed on P3.2 or P0.3

 Unless otherwise specified, all charts and graphs show typical values

Table 11-21.  12-bit Delta-sigma ADC DC Specifications

Parameter Description Conditions Min Typ Max Units
Resolution 8 – 12 bits

Number of channels, single ended – – No. of 
GPIO

–

Number of channels, differential
Differential pair is formed using a 
pair of GPIOs. – –

No. of 
GPIO/2 –

Monotonic Yes – – – –

Ge Gain error
Buffered, buffer gain = 1, 
Range = ±1.024 V, 25 °C – – ±0.2 %

Gd Gain drift Buffered, buffer gain = 1, 
Range = ±1.024 V – – 50 ppm/°C

Vos Input offset voltage Buffered, 12-bit mode – – ±0.1 mV

TCVos Temperature coefficient, input offset 
voltage

Buffer gain = 1, 12-bit, 
Range = ±1.024 V – – 1 µV/°C

Input voltage range, single ended[52] VSSA – VDDA V
Input voltage range, differential unbuf-
fered[52] VSSA – VDDA V

Input voltage range, differential, 
buffered[52] VSSA – VDDA – 1 V

INL12 Integral non linearity[52] Range = ±1.024 V, unbuffered – – ±1 LSB
DNL12 Differential non linearity[52] Range = ±1.024 V, unbuffered – – ±1 LSB
INL8 Integral non linearity[52] Range = ±1.024 V, unbuffered – – ±1 LSB
DNL8 Differential non linearity[52] Range = ±1.024 V, unbuffered – – ±1 LSB
Rin_Buff ADC input resistance Input buffer used 10 – – M

Rin_ADC12 ADC input resistance Input buffer bypassed, 12 bit, Range 
= ±1.024 V – 148[53] – k

Rin_ExtRef ADC external reference input resistance – 70[53, 54] – k

Vextref
ADC external reference input voltage, see 
also internal reference in Voltage 
Reference on page 93

Pins P0[3], P3[2] 0.9 – 1.3 V

Current Consumption
IDD_12 IDDA + IDDD current consumption, 12 bit[52] 192 ksps, unbuffered – – 1.95 mA
IBUFF Buffer current consumption[52] – – 2.5 mA

Notes
52. Based on device characterization (not production tested).
53. By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to 

the inverse of the clock frequency. This value is calculated, not measured. For more information see the Technical Reference Manual.
54. Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1-µF capacitor is recommended. For more 

information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.

http://www.cypress.com/?rID=43337
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Ezs Zero scale error – 0 ±1 LSB

Eg Gain error Range = 2.04 mA, 25 °C – – ±2.5 %

Range = 255 µA, 25 ° C – – ±2.5 %

Range = 31.875 µA, 25 ° C – – ±3.5 %

TC_Eg Temperature coefficient of gain 
error

Range = 2.04 mA – – 0.04 % / °C

Range = 255 µA – – 0.04 % / °C

Range = 31.875 µA – – 0.05 % / °C

INL Integral nonlinearity Sink mode, range = 255 µA, Codes 
8 – 255, Rload = 2.4 k, Cload = 
15 pF

– ±0.9 ±1 LSB

Source mode, range = 255 µA, 
Codes 8 – 255, Rload = 2.4 k, 
Cload = 15 pF

– ±1.2 ±1.6 LSB

DNL Differential nonlinearity Sink mode, range = 255 µA, Rload 
= 2.4 k, Cload = 15 pF

– ±0.3 ±1 LSB

Source mode, range = 255 µA, 
Rload = 2.4 k, Cload = 15 pF

– ±0.3 ±1 LSB

Vcompliance Dropout voltage, source or sink 
mode

Voltage headroom at max current, 
Rload to VDDA or Rload to VSSA, 
VDIFF from VDDA

1 – – V

IDD Operating current, code = 0 Low speed mode, source mode, 
range = 31.875 µA

– 44 100 µA

Low speed mode, source mode, 
range = 255 µA,

– 33 100 µA

Low speed mode, source mode, 
range = 2.04 mA

– 33 100 µA

Low speed mode, sink mode, 
range = 31.875 µA

– 36 100 µA

Low speed mode, sink mode, 
range = 255 µA

– 33 100 µA

Low speed mode, sink mode, 
range = 2.04 mA

– 33 100 µA

High speed mode, source mode, 
range = 31.875 µA

– 310 500 µA

High speed mode, source mode, 
range = 255 µA

– 305 500 µA

High speed mode, source mode,
range = 2.04 mA

– 305 500 µA

High speed mode, sink mode, 
range = 31.875 µA

– 310 500 µA

High speed mode, sink mode, 
range = 255 µA

– 300 500 µA

High speed mode, sink mode, 
range = 2.04 mA

– 300 500 µA

Table 11-28.  IDAC DC Specifications (continued)

Parameter Description Conditions Min Typ Max Units
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11.5.7  Voltage Digital to Analog Converter (VDAC)

See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Figure 11-50. VDAC INL vs Input Code, 1 V Mode Figure 11-51. VDAC DNL vs Input Code, 1 V Mode

Table 11-30.  VDAC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution – 8 – bits

INL1 Integral nonlinearity 1 V scale – ±2.1 ±2.5 LSB

INL4 Integral nonlinearity[62] 4 V scale – ±2.1 ±2.5 LSB

DNL1 Differential nonlinearity 1 V scale – ±0.3 ±1 LSB

DNL4 Differential nonlinearity[62] 4 V scale – ±0.3 ±1 LSB

Rout Output resistance 1 V scale – 4 – k

4 V scale – 16 – k

VOUT Output voltage range, code = 255 1 V scale – 1.02 – V

4 V scale, VDDA = 5 V – 4.08 – V

Monotonicity – – Yes –

VOS Zero scale error – 0 ±0.9 LSB

Eg Gain error 1 V scale – – ±2.5 %

4 V scale – – ±2.5 %

TC_Eg Temperature coefficient, gain error 1 V scale – – 0.03 %FSR / °C

4 V scale – – 0.03 %FSR / °C

IDD Operating current Low speed mode – – 100 µA

High speed mode – – 500 µA

Note
62. Based on device characterization (Not production tested).
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Figure 11-63. Bandwidth vs. Temperature, at Different Gain 
Settings, Power Mode = High

Figure 11-64. Noise vs. Frequency, VDDA = 5 V, 
Power Mode = High

11.5.11  Temperature Sensor

11.5.12  LCD Direct Drive 

 

Table 11-37.  PGA AC Specifications

Parameter Description Conditions Min Typ Max Units

BW1 –3 dB bandwidth Power mode = high, 
gain = 1, input = 100 mV 
peak-to-peak

6.7 8 –  MHz

SR1 Slew rate Power mode = high, 
gain = 1, 20% to 80%

3 – – V/µs

en Input noise density Power mode = high, 
VDDA = 5 V, at 100 kHz

– 43 – nV/sqrtHz
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Table 11-38.  Temperature Sensor Specifications

Parameter Description Conditions Min Typ Max Units

Temp sensor accuracy Range: –40 °C to +85 °C – ±5 – °C

Table 11-39.  LCD Direct Drive DC Specifications

Parameter Description Conditions Min Typ Max Units
ICC LCD system operating current Device sleep mode with wakeup at 

400-Hz rate to refresh LCDs, bus 
clock = 3 MHz, VDDIO = VDDA = 3 V,
4 commons, 16 segments, 1/4 duty 
cycle, 50 Hz frame rate, no glass 
connected

– 38 – A

ICC_SEG Current per segment driver Strong drive mode – 260 – µA
VBIAS LCD bias range (VBIAS refers to the main 

output voltage(V0) of LCD DAC)
VDDA  3 V and VDDA  VBIAS 2 – 5 V

LCD bias step size VDDA  3 V and VDDA  VBIAS – 9.1 × VDDA – mV
LCD capacitance per 
segment/common driver 

Drivers may be combined – 500 5000 pF

Long term segment offset – – 20 mV
IOUT Output drive current per segment driver) VDDIO = 5.5V, strong drive mode 355 – 710 µA

Table 11-40.  LCD Direct Drive AC Specifications

Parameter Description Conditions Min Typ Max Units
fLCD LCD frame rate 10 50 150 Hz
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12.  Ordering Information

In addition to the features listed in Table 12-1, every CY8C36 device includes: a precision on-chip voltage reference, precision 
oscillators, flash, ECC, DMA, a fixed function I2C, 4 KB trace RAM, JTAG/SWD programming and debug, external memory interface, 
and more. In addition to these features, the flexible UDBs and analog subsection support a wide range of peripherals. To assist you 
in selecting the ideal part, PSoC Creator makes a part recommendation after you choose the components required by your application. 
All CY8C36 derivatives incorporate device and flash security in user-selectable security levels; see the TRM for details. 

Table 12-1.  CY8C36 Family with Single Cycle 8051

Part Number

MCU Core Analog Digital I/O[88]

Package JTAG ID[89]
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32 KB Flash

CY8C3665PVI-008 67 32 4 1 ✔ 12-bit Del-Sig 4 4 4 2 ✔ ✔ 20 4 – – 29 25 4 0 48-pin SSOP 0×1E008069 

CY8C3665AXI-198 67 32 8 1 ✔ 12-bit Del-Sig 2 0 0 0 – ✔ 16 0 – – 70 62 8 0 100-pin TQFP 0x1E0C6069

CY8C3665LTI-044 67 32 4 1 ✔ 12-bit Del-Sig 4 4 4 0 ✔ ✔ 20 4 ✔ – 48 38 8 2 68-pin QFN 0x1E02C069

CY8C3665LTI-199 67 32 8 1 ✔ 12-bit Del-Sig 2 0 0 0 – ✔ 16 0 – – 46 38 8 0 68-pin QFN 0x1E0C7069

CY8C3665FNI-211 67 32 4 1 ✔ 12-bit Del-Sig 4 4 4 4 ✔ ✔ 20 4 ✔ – 48 38 8 2 72 WLCSP 0x1E0D3069

64 KB Flash

CY8C3666AXI-052 67 64 8 2 ✔ 12-bit Del-Sig 4 4 4 4 ✔ ✔ 24 4 – – 70 62 8 0 100-pin TQFP 0×1E034069 

CY8C3666AXI-036 67 64 8 2 ✔ 12-bit Del-Sig 4 4 4 4 ✔ ✔ 24 4 ✔ – 72 62 8 2 100-pin TQFP 0×1E024069 

CY8C3666LTI-027 67 64 8 2 ✔ 12-bit Del-Sig 4 4 4 4 ✔ ✔ 24 4 ✔ – 48 38 8 2 68-pin QFN 0×1E01B069 

CY8C3666LTI-050 67 64 8 2 ✔ 12-bit Del-Sig 4 4 4 2 ✔ ✔ 24 4 ✔ – 31 25 4 2 48-pin QFN 0×1E032069 

CY8C3666AXI-037 67 64 8 2 ✔ 12-bit Del-Sig 4 4 4 4 ✔ ✔ 24 4 – ✔ 70 62 8 0 100-pin TQFP 0×1E025069 

CY8C3666AXI-200 67 64 8 2 ✔ 12-bit Del-Sig 2 2 0 2 – ✔ 20 2 – – 70 62 8 0 100-pin TQFP 0x1E0C8069

CY8C3666LTI-201 67 64 8 2 ✔ 12-bit Del-Sig 2 2 0 2 – ✔ 20 2 – – 46 38 8 0 68-pin QFN 0x1E0C9069

CY8C3666AXI-202 67 64 8 2 ✔ 12-bit Del-Sig 4 2 2 2 – ✔ 24 4 – – 70 62 8 0 100-pin TQFP 0x1E0CA069

CY8C3666LTI-203 67 64 8 2 ✔ 12-bit Del-Sig 4 2 2 2 – ✔ 24 4 – – 46 38 8 0 68-pin QFN 0x1E0CB069

Notes
86. Analog blocks support a wide variety of functionality including TIA, PGA, and mixers. See the Example Peripherals on page 44 for more information on how analog 

blocks can be used.
87. UDBs support a wide variety of functionality including SPI, LIN, UART, timer, counter, PWM, PRS, and others. Individual functions may use a fraction of a UDB or 

multiple UDBs. Multiple functions can share a single UDB. See the Example Peripherals on page 44 for more information on how UDBs can be used.
88. The I/O Count includes all types of digital I/O: GPIO, SIO, and the two USB I/O. See the I/O System and Routing on page 37 for details on the functionality of each of 

these types of I/O.
89. The JTAG ID has three major fields. The most significant nibble (left digit) is the version, followed by a 2 byte part number and a 3 nibble manufacturer ID.
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Figure 13-3. 68-pin QFN 8×8 with 0.4 mm Pitch Package Outline (Sawn Version)

Figure 13-4. 100-pin TQFP (14 × 14 × 1.4 mm) Package Outline
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