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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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In addition to the flexibility of the UDB array, PSoC also provides 
configurable digital blocks targeted at specific functions. For the 
CY8C36 family these blocks can include four 16-bit timers, 
counters, and PWM blocks; I2C slave, master, and multi-master; 
FS USB; and Full CAN 2.0b.

For more details on the peripherals see the “Example 
Peripherals” section on page 44 of this data sheet. For 
information on UDBs, DSI, and other digital blocks, see the 
“Digital Subsystem” section on page 44 of this data sheet.

PSoC’s analog subsystem is the second half of its unique 
configurability. All analog performance is based on a highly 
accurate absolute voltage reference with less than 0.1-percent 
error over temperature and voltage. The configurable analog 
subsystem includes:

 Analog muxes

 Comparators

 Voltage references

 ADC

 DACs

 DFB

All GPIO pins can route analog signals into and out of the device 
using the internal analog bus. This allows the device to interface 
up to 62 discrete analog signals. The heart of the analog 
subsystem is a fast, accurate, configurable delta-sigma ADC 
with these features:

 Less than 100 µV offset

 A gain error of 0.2 percent

 INL less than ±1 LSB

 DNL less than ±1 LSB

 SINAD better than 66 dB

This converter addresses a wide variety of precision analog 
applications, including some of the most demanding sensors.

The output of the ADC can optionally feed the programmable 
DFB through the DMA without CPU intervention. You can 
configure the DFB to perform IIR and FIR digital filters and 
several user-defined custom functions. The DFB can implement 
filters with up to 64 taps. It can perform a 48-bit 
multiply-accumulate (MAC) operation in one clock cycle.

Four high-speed voltage or current DACs support 8-bit output 
signals at an update rate of up to 8 Msps. They can be routed 
out of any GPIO pin. You can create higher resolution voltage 
PWM DAC outputs using the UDB array. This can be used to 
create a PWM DAC of up to 10 bits, at up to 48 kHz. The digital 
DACs in each UDB support PWM, PRS, or delta-sigma 
algorithms with programmable widths.

In addition to the ADC, DACs, and DFB, the analog subsystem 
provides multiple:

 Uncommitted opamps

 Configurable switched capacitor/continuous time (SC/CT) 
blocks. These support: 
 Transimpedance amplifiers 
 Programmable gain amplifiers
 Mixers
 Other similar analog components

See the “Analog Subsystem” section on page 56 of this data 
sheet for more details.

PSoC’s 8051 CPU subsystem is built around a single-cycle 
pipelined 8051 8-bit processor running at up to 67 MHz. The 
CPU subsystem includes a programmable nested vector 
interrupt controller, DMA controller, and RAM. PSoC’s nested 
vector interrupt controller provides low latency by allowing the 
CPU to vector directly to the first address of the interrupt service 
routine, bypassing the jump instruction required by other 
architectures. The DMA controller enables peripherals to 
exchange data without CPU involvement. This allows the CPU 
to run slower (saving power) or use those CPU cycles to improve 
the performance of firmware algorithms. The single cycle 8051 
CPU runs ten times faster than a standard 8051 processor. The 
processor speed itself is configurable, allowing you to tune active 
power consumption for specific applications. 

PSoC’s nonvolatile subsystem consists of flash, byte-writeable 
EEPROM, and nonvolatile configuration options. It provides up 
to 64 KB of on-chip flash. The CPU can reprogram individual 
blocks of flash, enabling bootloaders. You can enable an ECC 
for high reliability applications. A powerful and flexible protection 
model secures the user's sensitive information, allowing 
selective memory block locking for read and write protection. Up 
to 2 KB of byte-writeable EEPROM is available on-chip to store 
application data. Additionally, selected configuration options 
such as boot speed and pin drive mode are stored in nonvolatile 
memory. This allows settings to activate immediately after POR.

The three types of PSoC I/O are extremely flexible. All I/Os have 
many drive modes that are set at POR. PSoC also provides up 
to four I/O voltage domains through the VDDIO pins. Every GPIO 
has analog I/O, LCD drive[3], CapSense[4], flexible interrupt 
generation, slew rate control, and digital I/O capability. The SIOs 
on PSoC allow VOH to be set independently of VDDIO when used 
as outputs. When SIOs are in input mode they are high 
impedance. This is true even when the device is not powered or 
when the pin voltage goes above the supply voltage. This makes 
the SIO ideally suited for use on an I2C bus where the PSoC may 
not be powered when other devices on the bus are. The SIO pins 
also have high current sink capability for applications such as 
LED drives. The programmable input threshold feature of the 
SIO can be used to make the SIO function as a general purpose 
analog comparator. For devices with FS USB the USB physical 
interface is also provided (USBIO). When not using USB these 
pins may also be used for limited digital functionality and device 
programming. All of the features of the PSoC I/Os are covered 
in detail in the “I/O System and Routing” section on page 37 of 
this data sheet.

The PSoC device incorporates flexible internal clock generators, 
designed for high stability and factory trimmed for high accuracy. 
The internal main oscillator (IMO) is the clock base for the 
system, and has 1-percent accuracy at 3 MHz. The IMO can be 
configured to run from 3 MHz up to 62 MHz. Multiple clock 
derivatives can be generated from the main clock frequency to 
meet application needs. The device provides a PLL to generate 
clock frequencies up to 67 MHz from the IMO, external crystal, 
or external reference clock. It also contains a separate, very 
low-power internal low speed oscillator (ILO) for the sleep and 
watchdog timers. A 32.768-kHz external watch crystal is also 
supported for use in RTC applications. The clocks, together with 
programmable clock dividers, provide the flexibility to integrate 
most timing requirements.
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MOV @Ri, Direct Move direct byte to indirect RAM 2 3

MOV @Ri, #data Move immediate data to indirect RAM 2 2

MOV DPTR, #data16 Load data pointer with 16 bit constant 3 3

MOVC A, @A+DPTR Move code byte relative to DPTR to accumulator 1 5

MOVC A, @A + PC Move code byte relative to PC to accumulator 1 4

MOVX A,@Ri Move external RAM (8-bit) to accumulator 1 4

MOVX A, @DPTR Move external RAM (16-bit) to accumulator 1 3

MOVX @Ri, A Move accumulator to external RAM (8-bit) 1 5

MOVX @DPTR, A Move accumulator to external RAM (16-bit) 1 4

PUSH Direct Push direct byte onto stack 2 3

POP Direct Pop direct byte from stack 2 2

XCH A, Rn Exchange register with accumulator 1 2

XCH A, Direct Exchange direct byte with accumulator 2 3

XCH A, @Ri Exchange indirect RAM with accumulator 1 3

XCHD A, @Ri Exchange low order indirect digit RAM with accumulator 1 3

Table 4-4.  Boolean Instructions 

Mnemonic Description Bytes Cycles

CLR C Clear carry 1 1

CLR bit Clear direct bit 2 3

SETB C Set carry 1 1

SETB bit Set direct bit 2 3

CPL C Complement carry 1 1

CPL bit Complement direct bit 2 3

ANL C, bit AND direct bit to carry 2 2

ANL C, /bit AND complement of direct bit to carry 2 2

ORL C, bit OR direct bit to carry 2 2

ORL C, /bit OR complement of direct bit to carry 2 2

MOV C, bit Move direct bit to carry 2 2

MOV bit, C Move carry to direct bit 2 3

JC rel Jump if carry is set 2 3

JNC rel Jump if no carry is set 2 3

JB bit, rel Jump if direct bit is set 3 5

JNB bit, rel Jump if direct bit is not set 3 5

JBC bit, rel Jump if direct bit is set and clear bit 3 5

Table 4-3.  Data Transfer Instructions  (continued)

Mnemonic Description Bytes Cycles
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4.4.2  DMA Features

 24 DMA channels

 Each channel has one or more transaction descriptors (TD) to 
configure channel behavior. Up to 128 total TDs can be defined

 TDs can be dynamically updated

 Eight levels of priority per channel

 Any digitally routable signal, the CPU, or another DMA channel, 
can trigger a transaction

 Each channel can generate up to two interrupts per transfer

 Transactions can be stalled or canceled

 Supports transaction size of infinite or 1 to 64 KB

 TDs may be nested and/or chained for complex transactions

4.4.3  Priority Levels

The CPU always has higher priority than the DMA controller 
when their accesses require the same bus resources. Due to the 
system architecture, the CPU can never starve the DMA. DMA 
channels of higher priority (lower priority number) may interrupt 
current DMA transfers. In the case of an interrupt, the current 
transfer is allowed to complete its current transaction. To ensure 
latency limits when multiple DMA accesses are requested 
simultaneously, a fairness algorithm guarantees an interleaved 
minimum percentage of bus bandwidth for priority levels 2 
through 7. Priority levels 0 and 1 do not take part in the fairness 
algorithm and may use 100% of the bus bandwidth. If a tie occurs 
on two DMA requests of the same priority level, a simple round 
robin method is used to evenly share the allocated bandwidth. 
The round robin allocation can be disabled for each DMA 
channel, allowing it to always be at the head of the line. Priority 
levels 2 to 7 are guaranteed the minimum bus bandwidth shown 
in Table 4-7 after the CPU and DMA priority levels 0 and 1 have 
satisfied their requirements. 

When the fairness algorithm is disabled, DMA access is granted 
based solely on the priority level; no bus bandwidth guarantees 
are made.

4.4.4  Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to 
chain multiple channels allow the creation of both simple and 
complex use cases. General use cases include, but are not 
limited to:

4.4.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a 
source and sink (peripherals or memory location). The basic 
timing diagrams of DMA read and write cycles shown in 
Figure 4-1. For more description on other transfer modes, refer 
to the Technical Reference Manual.

Figure 4-1. DMA Timing Diagram

4.4.4.2 Auto Repeat DMA

Auto repeat DMA is typically used when a static pattern is 
repetitively read from system memory and written to a peripheral. 
This is done with a single TD that chains to itself.

4.4.4.3 Ping Pong DMA

A ping pong DMA case uses double buffering to allow one buffer 
to be filled by one client while another client is consuming the 

data previously received in the other buffer. In its simplest form, 
this is done by chaining two TDs together so that each TD calls 
the opposite TD when complete.

4.4.4.4 Circular DMA

Circular DMA is similar to ping pong DMA except it contains more 
than two buffers. In this case there are multiple TDs; after the last 
TD is complete it chains back to the first TD.

Table 4-7.  Priority Levels

Priority Level % Bus Bandwidth

0 100.0

1 100.0

2 50.0

3 25.0

4 12.5

5 6.2

6 3.1

7 1.5

CLK

ADDR 16/32

WRITE

DATA

READY

Basic DMA Read Transfer without wait states

A B

DATA (A)

ADDRESS Phase DATA Phase

A B

ADDRESS Phase DATA Phase

CLK

WRITE

DATA

READY

DATA (A)

Basic DMA Write Transfer without wait states

ADDR 16/32
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5.4  EEPROM

PSoC EEPROM memory is a byte-addressable nonvolatile 
memory. The CY8C36 has up to 2 KB of EEPROM memory to 
store user data. Reads from EEPROM are random access at the 
byte level. Reads are done directly; writes are done by sending 
write commands to an EEPROM programming interface. CPU 
code execution can continue from flash during EEPROM writes. 
EEPROM is erasable and writeable at the row level. The 
EEPROM is divided into 128 rows of 16 bytes each. The factory 
default values of all EEPROM bytes are 0.

Because the EEPROM is mapped to the 8051 xdata space, the 
CPU cannot execute out of EEPROM. There is no ECC 
hardware associated with EEPROM. If ECC is required it must 
be handled in firmware.

It can take as much as 20 milliseconds to write to EEPROM or 
flash. During this time the device should not be reset, or 
unexpected changes may be made to portions of EEPROM or 
flash. Reset sources (see Section 6.3.1) include XRES pin, 
software reset, and watchdog; care should be taken to make 
sure that these are not inadvertently activated. In addition, the 
low voltage detect circuits should be configured to generate an 
interrupt instead of a reset.

5.5  Nonvolatile Latches (NVLs)

PSoC has a 4-byte array of nonvolatile latches (NVLs) that are 
used to configure the device at reset. The NVL register map is 
shown in Table 5-2.

The details for individual fields and their factory default settings are shown in Table 5-3.

Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase / write cycles is limited 
– see “Nonvolatile Latches (NVL))” on page 110.

Table 5-2.  Device Configuration NVL Register Map

Register Address 7 6 5 4 3 2 1 0

0x00 PRT3RDM[1:0] PRT2RDM[1:0] PRT1RDM[1:0] PRT0RDM[1:0]

0x01 PRT12RDM[1:0] PRT6RDM[1:0] PRT5RDM[1:0] PRT4RDM[1:0]

0x02 XRESMEN DBGEN PRT15RDM[1:0]

0x03 DIG_PHS_DLY[3:0] ECCEN DPS[1:0] CFGSPEED

Table 5-3.  Fields and Factory Default Settings

Field Description Settings

PRTxRDM[1:0] Controls reset drive mode of the corresponding IO 
port. See “Reset Configuration” on page 43. All pins 
of the port are set to the same mode.

00b (default) - high impedance analog
01b - high impedance digital
10b - resistive pull up
11b - resistive pull down

XRESMEN Controls whether pin P1[2] is used as a GPIO or as 
an external reset. See “Pin Descriptions” on page 12, 
XRES description.

0 (default for 68-pin 72-pin, and 100-pin parts) - GPIO
1 (default for 48-pin parts) - external reset

DBGEN Debug Enable allows access to the debug system, for 
third-party programmers.

0 - access disabled
1 (default) - access enabled

CFGSPEED Controls the speed of the IMO-based clock during the 
device boot process, for faster boot or low-power 
operation

0 (default) - 12 MHz IMO
1 - 48 MHz IMO

DPS[1:0] Controls the usage of various P1 pins as a debug 
port. See “Programming, Debug Interfaces, 
Resources” on page 65.

00b - 5-wire JTAG
01b (default) - 4-wire JTAG
10b - SWD
11b - debug ports disabled

ECCEN Controls whether ECC flash is used for ECC or for 
general configuration and data storage. See “Flash 
Program Memory” on page 23.

0 - ECC disabled
1 (default) - ECC enabled

DIG_PHS_DLY[3:0] Selects the digital clock phase delay. See the TRM for details.
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Figure 6-5. Power Mode Transitions

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When 
in active mode, the active configuration template bits control 
which available resources are enabled or disabled. When a 
resource is disabled, the digital clocks are gated, analog bias 
currents are disabled, and leakage currents are reduced as 
appropriate. User firmware can dynamically control subsystem 
power by setting and clearing bits in the active configuration 
template. The CPU can disable itself, in which case the CPU is 
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always 
returned to active, and the CPU is automatically enabled, 
regardless of its template settings. Active mode is the default 
global power mode upon boot. 

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate 
active mode, fewer subsystems are enabled, to reduce power 
consumption. One possible configuration is to turn off the CPU 
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode reduces power consumption when a resume time of 
15 µs is acceptable. The wake time is used to ensure that the 
regulator outputs are stable enough to directly enter active 
mode.

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are 
disabled. Internal voltages are reduced to the minimal level to 
keep vital systems alive. Configuration state is preserved in 
hibernate mode and SRAM memory is retained. GPIOs 
configured as digital outputs maintain their previous values and 
external GPIO pin interrupt settings are preserved. The device 
can only return from hibernate mode in response to an external 
I/O interrupt. The resume time from hibernate mode is less than 
100 µs.

To achieve an extremely low current, the hibernate regulator has 
limited capacity. This limits the frequency of any signal present 
on the input pins - no GPIO should toggle at a rate greater than 
10 kHz while in hibernate mode. If pins must be toggled at a high 
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events

Wakeup events are configurable and can come from an interrupt 
or device reset. A wakeup event restores the system to active 
mode. Firmware enabled interrupt sources include internally 
generated interrupts, power supervisor, central timewheel, and 
I/O interrupts. Internal interrupt sources can come from a variety 
of peripherals, such as analog comparators and UDBs. The 
central timewheel provides periodic interrupts to allow the 
system to wake up, poll peripherals, or perform real-time 
functions. Reset event sources include the external reset I/O pin 
(XRES), WDT, and precision reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs; VDDA, VDDD, and VDDIO if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 34. A 22 µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH,
or 22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this chapter and
electrical specifications. The inductor must be placed within 1 cm
of the VBAT and IND pins and have a minimum saturation
current of 750 mA. Between the IND and VBOOST pins a
Schottky diode must be placed within 1 cm of the pins. The
Schottky diode shall have a forward current rating of at least 1.0
A and a reverse voltage of at least 20 V. A 22 µF bulk capacitor
(CBOOST) must be connected close to VBOOST to provide
regulator output stability. It is important to sum the total
capacitance connected to the VBOOST pin and ensure the
maximum CBOOST specification is not exceeded. All capacitors

Active

Manual

Hibernate

Alternate 
Active

Sleep
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Figure 6-13. SIO Reference for Input and Output

6.4.13  SIO as Comparator

This section applies only to SIO pins. The adjustable input level 
feature of the SIOs as explained in the Adjustable Input Level 
section can be used to construct a comparator. The threshold for 
the comparator is provided by the SIO's reference generator. The 
reference generator has the option to set the analog signal 
routed through the analog global line as threshold for the 
comparator. Note that a pair of SIO pins share the same 
threshold.

The digital input path in Figure 6-10 on page 39 illustrates this 
functionality. In the figure, ‘Reference level’ is the analog signal 
routed through the analog global. The hysteresis feature can 
also be enabled for the input buffer of the SIO, which increases 
noise immunity for the comparator.

6.4.14  Hot Swap

This section applies only to SIO pins. SIO pins support ‘hot swap’ 
capability to plug into an application without loading the signals 
that are connected to the SIO pins even when no power is 
applied to the PSoC device. This allows the unpowered PSoC to 
maintain a high impedance load to the external device while also 
preventing the PSoC from being powered through a SIO pin’s 
protection diode.

Powering the device up or down while connected to an 
operational I2C bus may cause transient states on the SIO pins. 
The overall I2C bus design should take this into account.

6.4.15  Over Voltage Tolerance

All I/O pins provide an over voltage tolerance feature at any 
operating VDD. 

 There are no current limitations for the SIO pins as they present a 
high impedance load to the external circuit where VDDIO < VIN < 
5.5 V.

 The GPIO pins must be limited to 100 µA using a current limiting 
resistor. GPIO pins clamp the pin voltage to approximately one 
diode above the VDDIO supply where VDDIO < VIN < VDDA.

 In case of a GPIO pin configured for analog input/output, the 
analog voltage on the pin must not exceed the VDDIO supply 
voltage to which the GPIO belongs.

A common application for this feature is connection to a bus such 
as I2C where different devices are running from different supply 
voltages. In the I2C case, the PSoC chip is configured in the 
Open Drain, Drives Low mode for the SIO pin. This allows an 
external pull-up to pull the I2C bus voltage above the PSoC pin 
supply. For example, the PSoC chip can operate at 1.8 V, and an 
external device can run from 5 V. Note that the SIO pin’s VIH and 
VIL levels are determined by the associated VDDIO supply pin. 

The SIO pin must be in one of the following modes: 0 (high 
impedance analog), 1 (high impedance digital), or 4 (open drain 
drives low). See Figure 6-12 for details. Absolute maximum 
ratings for the device must be observed for all I/O pins. 

6.4.16  Reset Configuration

While reset is active all I/Os are reset to and held in the High 
Impedance Analog state. After reset is released, the state can be 
reprogrammed on a port-by-port basis to pull-down or pull-up. To 
ensure correct reset operation, the port reset configuration data 
is stored in special nonvolatile registers. The stored reset data is 
automatically transferred to the port reset configuration registers 
at reset release.

6.4.17  Low-Power Functionality

In all low-power modes the I/O pins retain their state until the part 
is awakened and changed or reset. To awaken the part, use a 
pin interrupt, because the port interrupt logic continues to 
function in all low-power modes.

6.4.18  Special Pin Functionality

Some pins on the device include additional special functionality 
in addition to their GPIO or SIO functionality. The specific special 
function pins are listed in Pinouts on page 6. The special features 
are:

 Digital
 4- to 25-MHz crystal oscillator
 32.768-kHz crystal oscillator
 Wake from sleep on I2C address match. Any pin can be used 

for I2C if wake from sleep is not required.
 JTAG interface pins
 SWD interface pins
 SWV interface pins
 External reset 

 Analog
 Opamp inputs and outputs
 High current IDAC outputs
 External reference inputs

PIN

Drive
Logic

Driver
Vhigh

Reference 
Generator

SIO_Ref

Digital 
Input

Digital 
Output 

Input Path

Output Path

Vinref

Voutref
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7.2  Universal Digital Block

The universal digital block (UDB) represents an evolutionary 
step to the next generation of PSoC embedded digital peripheral 
functionality. The architecture in first generation PSoC digital 
blocks provides coarse programmability in which a few fixed 
functions with a small number of options are available. The new 
UDB architecture is the optimal balance between configuration 
granularity and efficient implementation. A cornerstone of this 
approach is to provide the ability to customize the devices digital 
operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted 
logic (PLD), structured logic (Datapath), and a flexible routing 
scheme to provide interconnect between these elements, I/O 
connections, and other peripherals. UDB functionality ranges 
from simple self contained functions that are implemented in one 
UDB, or even a portion of a UDB (unused resources are 
available for other functions), to more complex functions that 
require multiple UDBs. Examples of basic functions are timers, 
counters, CRC generators, PWMs, dead band generators, and 
communications functions, such as UARTs, SPI, and I2C. Also, 
the PLD blocks and connectivity provide full featured general 
purpose programmable logic within the limits of the available 
resources. 

Figure 7-2. UDB Block Diagram

The main component blocks of the UDB are:

 PLD blocks – There are two small PLDs per UDB. These blocks 
take inputs from the routing array and form registered or 
combinational sum-of-products logic. PLDs are used to 
implement state machines, state bits, and combinational logic 
equations. PLD configuration is automatically generated from 
graphical primitives.

 Datapath module – This 8-bit wide datapath contains structured 
logic to implement a dynamically configurable ALU, a variety 
of compare configurations and condition generation. This block 
also contains input/output FIFOs, which are the primary parallel 
data interface between the CPU/DMA system and the UDB.

 Status and control module – The primary role of this block is to 
provide a way for CPU firmware to interact and synchronize 
with UDB operation.

 Clock and reset module – This block provides the UDB clocks 
and reset selection and control.

7.2.1  PLD Module

The primary purpose of the PLD blocks is to implement logic 
expressions, state machines, sequencers, lookup tables, and 
decoders. In the simplest use model, consider the PLD blocks as 
a standalone resource onto which general purpose RTL is 
synthesized and mapped. The more common and efficient use 
model is to create digital functions from a combination of PLD 
and datapath blocks, where the PLD implements only the 
random logic and state portion of the function while the datapath 
(ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure

One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 
inputs, which feed across eight product terms. Each product term 
(AND function) can be from 1 to 12 inputs wide, and in a given 
product term, the true (T) or complement (C) of each input can 
be selected. The product terms are summed (OR function) to 
create the PLD outputs. A sum can be from 1 to 8 product terms 
wide. The 'C' in 12C4 indicates that the width of the OR gate (in 
this case 8) is constant across all outputs (rather than variable 
as in a 22V10 device). This PLA like structure gives maximum 
flexibility and insures that all inputs and outputs are permutable 
for ease of allocation by the software tools. There are two 12C4 
PLDs in each UDB.
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7.3  UDB Array Description

Figure 7-7 shows an example of a 16-UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure 

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 
utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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Figure 7-13. I/O Pin Output Enable Connectivity 7.5  CAN

The CAN peripheral is a fully functional CAN supporting 
communication baud rates up to 1 Mbps. The CAN controller 
implements the CAN2.0A and CAN2.0B specifications as 
defined in the Bosch specification and conforms to the 
ISO-11898-1 standard. The CAN protocol was originally 
designed for automotive applications with a focus on a high level 
of fault detection. This ensures high communication reliability at 
a low cost. Because of its success in automotive applications, 
CAN is used as a standard communication protocol for motion 
oriented machine control networks (CANOpen) and factory 
automation applications (DeviceNet). The CAN controller 
features allow the efficient implementation of higher level 
protocols without affecting the performance of the 
microcontroller CPU. Full configuration support is provided in 
PSoC Creator.

Figure 7-14. CAN Bus System Implementation 

7.5.1  CAN Features

 CAN2.0A/B protocol implementation – ISO 11898 compliant
 Standard and extended frames with up to 8 bytes of data per 

frame
 Message filter capabilities
 Remote Transmission Request (RTR) support
 Programmable bit rate up to 1 Mbps

 Listen Only mode

 SW readable error counter and indicator

 Sleep mode: Wake the device from sleep with activity on the 
Rx pin

 Supports two or three wire interface to external transceiver (Tx, 
Rx, and Enable). The three-wire interface is compatible with 
the Philips PHY; the PHY is not included on-chip. The three 
wires can be routed to any I/O

 Enhanced interrupt controller
 CAN receive and transmit buffers status
 CAN controller error status including BusOff 

 Receive path
 16 receive buffers each with its own message filter
 Enhanced hardware message filter implementation that 

covers the ID, IDE, and RTR
 DeviceNet addressing support
 Multiple receive buffers linkable to build a larger receive 

message array
 Automatic transmission request (RTR) response handler
 Lost received message notification

 Transmit path
 Eight transmit buffers
 Programmable transmit priority

• Round robin
• Fixed priority

 Message transmissions abort capability

7.5.2  Software Tools Support

CAN Controller configuration integrated into PSoC Creator:

 CAN Configuration walkthrough with bit timing analyzer

 Receive filter setup
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Figure 7-15. CAN Controller Block Diagram
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For most designs, the default values in Table 7-2 will provide
excellent performance without any calculations. The default
values were chosen to use standard resistor values between the
minimum and maximum limits. The values in Table 7-2 work for
designs with 1.8 V to 5.0V VDD, less than 200-pF bus capaci-
tance (CB), up to 25 µA of total input leakage (IIL), up to 0.4 V
output voltage level (VOL), and a max VIH of 0.7 * VDD. Standard
Mode and Fast Mode can use either GPIO or SIO PSoC pins.
Fast Mode Plus requires use of SIO pins to meet the VOL spec
at 20 mA. Calculation of custom pull-up resistor values is
required; if your design does not meet the default assumptions,
you use series resistors (RS) to limit injected noise, or you need
to maximize the resistor value for low power consumption.

Calculation of the ideal pull-up resistor value involves finding a
value between the limits set by three equations detailed in the
NXP I2C specification. These equations are:

Equation 1:

Equation 2:

Equation 3:

Equation parameters:

VDD = Nominal supply voltage for I2C bus

VOL = Maximum output low voltage of bus devices. 

IOL= Low-level output current from I2C specification

TR = Rise Time of bus from I2C specification

CB = Capacitance of each bus line including pins and PCB traces

VIH = Minimum high-level input voltage of all bus devices

VNH = Minimum high-level input noise margin from I2C specifi-
cation

IIH = Total input leakage current of all devices on the bus

The supply voltage (VDD) limits the minimum pull-up resistor
value due to bus devices maximum low output voltage (VOL)
specifications. Lower pull-up resistance increases current
through the pins and can, therefore, exceed the spec conditions
of VOL. Equation 1 is derived using Ohm's law to determine the
minimum resistance that will still meet the VOL specification at
3 mA for standard and fast modes, and 20 mA for fast mode plus
at the given VDD.

Equation 2 determines the maximum pull-up resistance due to
bus capacitance. Total bus capacitance is comprised of all pin,
wire, and trace capacitance on the bus. The higher the bus
capacitance, the lower the pull-up resistance required to meet
the specified bus speeds rise time due to RC delays. Choosing
a pull-up resistance higher than allowed can result in failing
timing requirements resulting in communication errors. Most
designs with five or less I2C devices and up to 20 centimeters of
bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value
is total bus leakage calculated in Equation 3. The primary source
of leakage is I/O pins connected to the bus. If leakage is too high,
the pull-ups will have difficulty maintaining an acceptable VIH
level causing communication errors. Most designs with five or
less I2C devices on the bus have less than 10 µA of total leakage
current.

Table 7-2.  Recommended default Pull-up Resistor Values

RP Units

Standard Mode – 100 kbps 4.7 k, 5% Ω

Fast Mode – 400 kbps 1.74 k, 1% Ω

Fast Mode Plus – 1 Mbps 620, 5% Ω

RPMIN VDD max  VOL– max   IOL min  =

RPMAX TR max  0.8473 CB max =

RPMAX VDD min  VIH min – VNH min  IIH max +=
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Figure 8-1. Analog Subsystem Block Diagram

The PSoC Creator software program provides a user friendly 
interface to configure the analog connections between the GPIO 
and various analog resources and connections from one analog 
resource to another. PSoC Creator also provides component 
libraries that allow you to configure the various analog blocks to 
perform application specific functions (PGA, transimpedance 
amplifier, voltage DAC, current DAC, and so on). The tool also 
generates API interface libraries that allow you to write firmware 
that allows the communication between the analog peripheral 
and CPU/Memory.

8.1  Analog Routing

The CY8C36 family of devices has a flexible analog routing 
architecture that provides the capability to connect GPIOs and 
different analog blocks, and also route signals between different 
analog blocks. One of the strong points of this flexible routing 
architecture is that it allows dynamic routing of input and output 
connections to the different analog blocks. 

For information on how to make pin selections for optimal analog 
routing, refer to the application note, AN58304 - PSoC® 3 and 
PSoC® 5 - Pin Selection for Analog Designs.

8.1.1  Features

 Flexible, configurable analog routing architecture

 16 analog globals (AG) and two analog mux buses 
(AMUXBUS) to connect GPIOs and the analog blocks

 Each GPIO is connected to one analog global and one analog 
mux bus

 Eight analog local buses (abus) to route signals between the 
different analog blocks

Multiplexers and switches for input and output selection of the 
analog blocks

8.1.2  Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) 
provide analog connectivity between GPIOs and the various 
analog blocks. There are 16 AGs in the CY8C36 family. The 
analog routing architecture is divided into four quadrants as 
shown in Figure 8-2. Each quadrant has four analog globals 
(AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is 
connected to the corresponding AG through an analog switch. 
The analog mux bus is a shared routing resource that connects 
to every GPIO through an analog switch. There are two 
AMUXBUS routes in CY8C36, one in the left half (AMUXBUSL) 
and one in the right half (AMUXBUSR), as shown in Figure 8-2. 
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8.11  Sample and Hold

The main application for a sample and hold, is to hold a value 
stable while an ADC is performing a conversion. Some 
applications require multiple signals to be sampled 
simultaneously, such as for power calculations (V and I).

Figure 8-13. Sample and Hold Topology 
(1 and 2 are opposite phases of a clock)

8.11.1  Down Mixer

The SC/CT block can be used as a mixer to down convert an 
input signal. This circuit is a high bandwidth passive sample 
network that can sample input signals up to 14 MHz. This 
sampled value is then held using the opamp with a maximum 
clock rate of 4 MHz. The output frequency is at the difference 
between the input frequency and the highest integer multiple of 
the Local Oscillator that is less than the input. 

8.11.2  First Order Modulator – SC Mode

A first order modulator is constructed by placing the SC/CT block 
in an integrator mode and using a comparator to provide a 1-bit 
feedback to the input. Depending on this bit, a reference voltage 
is either subtracted or added to the input signal. The block output 
is the output of the comparator and not the integrator in the 
modulator case. The signal is downshifted and buffered and then 
processed by a decimator to make a delta-sigma converter or a 
counter to make an incremental converter. The accuracy of the 
sampled data from the first-order modulator is determined from 
several factors. 

The main application for this modulator is for a low frequency 
ADC with high accuracy. Applications include strain gauges, 
thermocouples, precision voltage, and current measurement.

9.  Programming, Debug Interfaces, 
Resources

PSoC devices include extensive support for programming, 
testing, debugging, and tracing both hardware and firmware. 
Three interfaces are available: JTAG, SWD, and SWV. JTAG and 
SWD support all programming and debug features of the device. 
JTAG also supports standard JTAG scan chains for board level 
test and chaining multiple JTAG devices to a single JTAG 
connection.

For more information on PSoC 3 Programming, refer to the 
PSoC® 3 Device Programming Specifications.

Complete Debug on Chip (DoC) functionality enables full device 
debugging in the final system using the standard production 
device. It does not require special interfaces, debugging pods, 
simulators, or emulators. Only the standard programming 
connections are required to fully support debug.

The PSoC Creator IDE software provides fully integrated 
programming and debug support for PSoC devices. The low cost 
MiniProg3 programmer and debugger is designed to provide full 
programming and debug support of PSoC devices in conjunction 
with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV 
interfaces are compatible with industry standard third party tools.

All DOC circuits are disabled by default and can only be enabled 
in firmware. If not enabled, the only way to reenable them is to 
erase the entire device, clear flash protection, and reprogram the 
device with new firmware that enables DOC. Disabling DOC 
features, robust flash protection, and hiding custom analog and 
digital functionality inside the PSoC device provide a level of 
security not possible with multichip application solutions. 
Additionally, all device interfaces can be permanently disabled 
(Device Security) for applications concerned about phishing 
attacks due to a maliciously reprogrammed device. Permanently 
disabling interfaces is not recommended in most applications 
because the you cannot access the device later. Because all 
programming, debug, and test interfaces are disabled when 
Device Security is enabled, PSoCs with Device Security enabled 
may not be returned for failure analysis.
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Table 9-1.  Debug Configurations

Debug and Trace Configuration GPIO Pins Used

All debug and trace disabled 0

JTAG 4 or 5

SWD 2

SWV 1

SWD + SWV 3
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9.2  Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG 
interface. It requires only two pins instead of the four or five 
needed by JTAG. SWD provides all of the programming and 
debugging features of JTAG at the same speed. SWD does not 
provide access to scan chains or device chaining. The SWD 
clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) 
or the USBIO D+ and D– pins. The USBIO pins are useful for in 
system programming of USB solutions that would otherwise 
require a separate programming connector. One pin is used for 
the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This 
only happens if, within 8 μs (key window) after reset, that pin pair 

(JTAG or USB) receives a predetermined acquire sequence of 
1s and 0s. If the NVL latches are set for SWD (see Section 5.5), 
this sequence need not be applied to the JTAG pin pair. The 
acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash 
memory. 

The SWD interface can be enabled from the JTAG interface or 
disabled, allowing its pins to be used as GPIO. Unlike JTAG, the 
SWD interface can always be reacquired on any device during 
the key window. It can then be used to reenable the JTAG 
interface, if desired. When using SWD or JTAG pins as standard 
GPIO, make sure that the GPIO functionality and PCB circuits do 
not interfere with SWD or JTAG use.

Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

VSSD, VSSA

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3

SWDCK (P1[1] or P15[7])

SWDIO (P1[0] or P15[6])

XRES or P1[2]  3, 4

GND
GND

SWDCK

SWDIO

XRES

Host Programmer PSoC 3
VDD

1  The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming    
    should be the same. XRES pin (XRES_N or P1[2]) is  powered by VDDIO1. The USB SWD pins are 
    powered by VDDD.  So for Programming using the USB SWD pins with XRES pin, the VDDD, VDDIO1 of 
   PSoC 3 should be at the same voltage level as Host VDD. Rest of PSoC 3 voltage domains ( VDDA, VDDIO0,  
VDDIO2, VDDIO3) need not be at the same voltage level as host Programmer.   The Port 1 SWD pins are   

   powered by VDDIO1.  So VDDIO1 of PSoC 3 should be at same voltage level as host VDD for Port 1 SWD  
   programming. Rest of PSoC 3 voltage domains ( VDDD,  VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same  
   voltage level as host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 3.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 3. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

4  P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For  
   devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48-
   pin devices, but use dedicated XRES pin for rest of devices.

VDD
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11.3  Power Regulators

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.3.1  Digital Core Regulator 

Figure 11-5. Regulators VCC vs VDD Figure 11-6. Digital Regulator PSRR vs Frequency and VDD

11.3.2  Analog Core Regulator 

Figure 11-7. Analog Regulator PSRR vs Frequency and VDD

Table 11-4.  Digital Core Regulator DC Specifications

Parameter Description Conditions Min Typ Max Units

VDDD Input voltage 1.8 – 5.5 V

VCCD Output voltage – 1.80 – V

Regulator output capacitor ± 10%, ×5R ceramic or better. The two 
VCCD pins must be shorted together, with 
as short a trace as possible, see Power 
System on page 31

0.9 1 1.1 µF

Table 11-5.  Analog Core Regulator DC Specifications

Parameter Description Conditions Min Typ Max Units

VDDA Input voltage 1.8 – 5.5 V

VCCA Output voltage – 1.80 – V

Regulator output capacitor ±10%, ×5R ceramic or better 0.9 1 1.1 µF
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Table 11-22.  Delta-sigma ADC AC Specifications
Parameter Description Conditions Min Typ Max Units

Startup time – – 4 Samples

THD Total harmonic distortion[55] Buffer gain = 1, 12-bit, 
Range = ±1.024 V

– – 0.0032 %

12-Bit Resolution Mode

SR12 Sample rate, continuous, high power[55] Range = ±1.024 V, unbuffered 4 – 192 ksps

BW12 Input bandwidth at max sample rate[55] Range = ±1.024 V, unbuffered – 44 – kHz

SINAD12int Signal to noise ratio, 12-bit, internal reference[55] Range = ±1.024 V, unbuffered 66 – – dB

8-Bit Resolution Mode

SR8 Sample rate, continuous, high power[55] Range = ±1.024 V, unbuffered 8 – 384 ksps

BW8 Input bandwidth at max sample rate[55] Range = ±1.024 V, unbuffered – 88 – kHz

SINAD8int Signal to noise ratio, 8-bit, internal reference[55] Range = ±1.024 V, unbuffered 43 – – dB

Table 11-23.  Delta-sigma ADC Sample Rates, Range = ±1.024 V

Resolution, 
Bits

Continuous Multi-Sample

Min Max Min Max

8 8000 384000 1911 91701

9 6400 307200 1543 74024

10 5566 267130 1348 64673

11 4741 227555 1154 55351

12 4000 192000 978 46900

Note
55. Based on device characterization (Not production tested).

Figure 11-33. Delta-sigma ADC IDD vs sps, Range = ±1.024 V, 
Continuous Sample Mode, Input Buffer Bypassed
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11.5.10  Programmable Gain Amplifier

The PGA is created using a SC/CT analog block; see the PGA component data sheet in PSoC Creator for full electrical specifications 
and APIs.

Unless otherwise specified, operating conditions are:

Operating temperature = 25 °C for typical values

 Unless otherwise specified, all charts and graphs show typical values

Figure 11-62. PGA Voffset Histogram, 4096 samples/ 
1024 parts

Table 11-36.  PGA DC Specifications

Parameter Description Conditions Min Typ Max Units

Vin Input voltage range Power mode = minimum VSSA – VDDA V

Vos Input offset voltage Power mode = high, 
gain = 1

– – 10 mV

TCVos Input offset voltage drift 
with temperature

Power mode = high, 
gain = 1

– – ±30 µV/°C

Ge1 Gain error, gain = 1 – – ±0.15 %

Ge16 Gain error, gain = 16 – – ±2.5 %

Ge50 Gain error, gain = 50 – – ±5 %

Vonl DC output nonlinearity Gain = 1 – – ±0.01 % of 
FSR

Cin Input capacitance – – 7 pF

Voh Output voltage swing Power mode = high, 
gain = 1, Rload = 100 k 
to VDDA / 2

VDDA – 0.15 – – V

Vol Output voltage swing Power mode = high, 
gain = 1, Rload = 100 k 
to VDDA / 2

– – VSSA + 0.15 V

Vsrc Output voltage under load Iload = 250 µA, VDDA  
2.7 V, power mode = high

– – 300 mV

Idd Operating current Power mode = high – 1.5 1.65 mA

PSRR Power supply rejection 
ratio

48 – – dB
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11.6.8  Universal Digital Blocks (UDBs)

PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, 
AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, 
APIs, and example code.

Figure 11-65. Clock to Output Performance

Table 11-54.  UDB AC Specifications

Parameter Description Conditions Min Typ Max Units

Datapath Performance

FMAX_TIMER Maximum frequency of 16-bit timer in 
a UDB pair

– – 67.01 MHz

FMAX_ADDER Maximum frequency of 16-bit adder 
in a UDB pair

– – 67.01 MHz

FMAX_CRC Maximum frequency of 16-bit 
CRC/PRS in a UDB pair

– – 67.01 MHz

PLD Performance

FMAX_PLD Maximum frequency of a two-pass 
PLD function in a UDB pair

– – 67.01 MHz

Clock to Output Performance

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-65.

25 °C, VDDD  2.7 V – 20 25 ns

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-65.

Worst-case placement, routing, 
and pin selection

– – 55 ns
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11.8  PSoC System Resources

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.8.1  POR with Brown Out

For brown out detect in regulated mode, VDDD and VDDA must be  2.0 V. Brown out detect is not available in externally regulated
mode.  

11.8.2  Voltage Monitors  

Table 11-65.  Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter Description Conditions Min Typ Max Units

PRESR Rising trip voltage Factory trim 1.64 – 1.68 V

PRESF Falling trip voltage 1.62 – 1.66 V

Table 11-66.  Power On Reset (POR) with Brown Out AC Specifications

Parameter Description Conditions Min Typ Max Units

PRES_TR Response time – – 0.5 µs

VDDD/VDDA droop rate Sleep mode – 5 – V/sec

Note
74. Based on device characterization (Not production tested).

Table 11-67.  Voltage Monitors DC Specifications

Parameter Description Conditions Min Typ Max Units

LVI Trip voltage – – – –

    LVI_A/D_SEL[3:0] = 0000b 1.68 1.73 1.77 V

    LVI_A/D_SEL[3:0] = 0001b 1.89 1.95 2.01 V

    LVI_A/D_SEL[3:0] = 0010b 2.14 2.20 2.27 V

    LVI_A/D_SEL[3:0] = 0011b 2.38 2.45 2.53 V

    LVI_A/D_SEL[3:0] = 0100b 2.62 2.71 2.79 V

    LVI_A/D_SEL[3:0] = 0101b 2.87 2.95 3.04 V

    LVI_A/D_SEL[3:0] = 0110b 3.11 3.21 3.31 V

    LVI_A/D_SEL[3:0] = 0111b 3.35 3.46 3.56 V

    LVI_A/D_SEL[3:0] = 1000b 3.59 3.70 3.81 V

    LVI_A/D_SEL[3:0] = 1001b 3.84 3.95 4.07 V

    LVI_A/D_SEL[3:0] = 1010b 4.08 4.20 4.33 V

    LVI_A/D_SEL[3:0] = 1011b 4.32 4.45 4.59 V

    LVI_A/D_SEL[3:0] = 1100b 4.56 4.70 4.84 V

    LVI_A/D_SEL[3:0] = 1101b 4.83 4.98 5.13 V

    LVI_A/D_SEL[3:0] = 1110b 5.05 5.21 5.37 V

    LVI_A/D_SEL[3:0] = 1111b 5.30 5.47 5.63 V

HVI Trip voltage 5.57 5.75 5.92 V

Table 11-68.  Voltage Monitors AC Specifications

Parameter Description Conditions Min Typ Max Units

Response time[74] – – 1 µs
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*M 3464258 12/14/2011 MKEA Updated Analog Global specs
Updated IDAC range 
Updated TIA section 
Modified VDDIO description in Section 3
Added note on Sleep and Hibernate modes in the Power Modes section
Updated Boost Converter section
Updated conditions for Inductive boost AC specs
Added VDAC/IDAC noise graphs and specs
Added pin capacitance specs for ECO pins
Removed CL from 32 kHz External Crystal DC Specs table.
Added reference to AN54439 in Section 6.1.2.2
Deleted T_SWDO_hold row from the SWD Interface AC Specifications table
Removed Pin 46 connections in “Example Schematic for 100-pin TQFP Part with 
Power Connections”
Updated Active Mode IDD description in Table 11-2.
Added IDDDR and IDDAR specs in Table 11-2.
Replaced “total device program time” with TPROG in Flash AC specs table
Added IGPIO, ISIO and IUSBIO specs in Absolute Maximum Ratings
Added conditions to ICC spec in 32 kHz External Crystal DC Specs table.
Updated TCVOS value 
Removed Boost Efficiency vs VOUT graph
Updated boost graphs
Updated min value of GPIO input edge rate
Removed 3.4 Mbps in UDBs from I2C section
Updated USBIO Block diagram; added USBIO drive mode description
Updated Analog Interconnect diagram
Changed max IMO startup time to 12 µs
Added note for IIL spec in USBIO DC specs table
Updated GPIO Block diagram
Updated voltage reference specs
Added text explaining power supply ramp up in Section 11-4.
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