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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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1.  Architectural Overview 

Introducing the CY8C36 family of ultra low-power, flash Programmable System-on-Chip (PSoC®) devices, part of a scalable 8-bit 
PSoC 3 and 32-bit PSoC 5 platform. The CY8C36 family provides configurable blocks of analog, digital, and interconnect circuitry 
around a CPU subsystem. The combination of a CPU with a flexible analog subsystem, digital subsystem, routing, and I/O enables 
a high level of integration in a wide variety of consumer, industrial, and medical applications.

Figure 1-1. Simplified Block Diagram

Figure 1-1 illustrates the major components of the CY8C36 
family. They are:

 8051 CPU subsystem

 Nonvolatile subsystem

 Programming, debug, and test subsystem

 Inputs and outputs

 Clocking

 Power

 Digital subsystem

 Analog subsystem

PSoC’s digital subsystem provides half of its unique 
configurability. It connects a digital signal from any peripheral to 
any pin through the digital system interconnect (DSI). It also 
provides functional flexibility through an array of small, fast, 
low-power UDBs. PSoC Creator provides a library of prebuilt and 
tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, 
timer, counter, PWM, AND, OR, and so on) that are mapped to 
the UDB array. You can also easily create a digital circuit using 
boolean primitives by means of graphical design entry. Each 
UDB contains programmable array logic (PAL)/programmable 
logic device (PLD) functionality, together with a small state 
machine engine to support a wide variety of peripherals.
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5.6  External Memory Interface

CY8C36 provides an external memory interface (EMIF) for 
connecting to external memory devices. The connection allows 
read and write accesses to external memories. The EMIF 
operates in conjunction with UDBs, I/O ports, and other 
hardware to generate external memory address and control 
signals. At 33 MHz, each memory access cycle takes four bus 
clock cycles.

Figure 5-1 is the EMIF block diagram. The EMIF supports 
synchronous and asynchronous memories. The CY8C36 
supports only one type of external memory device at a time. 

External memory can be accessed through the 8051 xdata 
space; up to 24 address bits can be used. See xdata Space on 
page 27. The memory can be 8 or 16 bits wide. 

Figure 5-1. EMIF Block Diagram
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5.7  Memory Map

The CY8C36 8051 memory map is very similar to the MCS-51 
memory map.

5.7.1  Code Space

The CY8C36 8051 code space is 64 KB. Only main flash exists 
in this space. See the “Flash Program Memory” section on 
page 23.

5.7.2  Internal Data Space

The CY8C36 8051 internal data space is 384 bytes, compressed 
within a 256-byte space. This space consists of 256 bytes of 
RAM (in addition to the SRAM mentioned in “Static RAM” on 
page 23) and a 128-byte space for Special Function Registers 
(SFRs). See Figure 5-2. The lowest 32 bytes are used for four 
banks of registers R0-R7. The next 16 bytes are bit-addressable.

Figure 5-2. 8051 Internal Data Space

In addition to the register or bit address modes used with the 
lower 48 bytes, the lower 128 bytes can be accessed with direct 
or indirect addressing. With direct addressing mode, the upper 
128 bytes map to the SFRs. With indirect addressing mode, the 
upper 128 bytes map to RAM. Stack operations use indirect 
addressing; the 8051 stack space is 256 bytes. See the 
“Addressing Modes” section on page 14.

5.7.3  SFRs

The special function register (SFR) space provides access to frequently accessed registers. The memory map for the SFR memory 
space is shown in Table 5-4. 

The CY8C36 family provides the standard set of registers found on industry standard 8051 devices. In addition, the CY8C36 devices 
add SFRs to provide direct access to the I/O ports on the device. The following sections describe the SFRs added to the CY8C36 
family.

Upper Core RAM Shared 
with Stack Space 

(indirect addressing)

SFR
Special Function Registers

(direct addressing)

Lower Core RAM Shared with Stack Space
(direct and indirect addressing)

Bit-Addressable Area

4 Banks, R0-R7 Each

0xFF

0x80

0x7F

0x30

0x2F

0x20

0x1F

0x00

Table 5-4.  SFR Map

Address 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0×F8 SFRPRT15DR SFRPRT15PS SFRPRT15SEL – – – – –

0×F0 B – SFRPRT12SEL – – – – –

0×E8 SFRPRT12DR SFRPRT12PS MXAX – – – – –

0×E0 ACC – – – – – – –

0×D8 SFRPRT6DR SFRPRT6PS SFRPRT6SEL – – – – –

0×D0 PSW – – – – – – –

0×C8 SFRPRT5DR SFRPRT5PS SFRPRT5SEL – – – – –

0×C0 SFRPRT4DR SFRPRT4PS SFRPRT4SEL – – – – –

0×B8 – – – – – – – –

0×B0 SFRPRT3DR SFRPRT3PS SFRPRT3SEL – – – – –

0×A8 IE – – – – – – –

0×A0 P2AX – SFRPRT1SEL – – – – –

0×98 SFRPRT2DR SFRPRT2PS SFRPRT2SEL – – – – –

0×90 SFRPRT1DR SFRPRT1PS – DPX0 – DPX1 – –

0×88 – SFRPRT0PS SFRPRT0SEL – – – – –

0×80 SFRPRT0DR SP DPL0 DPH0 DPL1 DPH1 DPS –



PSoC® 3: CY8C36 Family Datasheet

Document Number: 001-53413 Rev. *Y Page 31 of 137

6.2  Power System

The power system consists of separate analog, digital, and I/O 
supply pins, labeled VDDA, VDDD, and VDDIO×, respectively. It 
also includes two internal 1.8 V regulators that provide the digital 
(VCCD) and analog (VCCA) supplies for the internal core logic. 
The output pins of the regulators (VCCD and VCCA) and the 

VDDIO pins must have capacitors connected as shown in 
Figure 6-4. The two VCCD pins must be shorted together, with 
as short a trace as possible, and connected to a 1-µF ±10% ×5R 
capacitor. The power system also contains a sleep regulator, an 
I2C regulator, and a hibernate regulator. 

Figure 6-4. PSoC Power System

Notes

 The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as 
shown in Figure 2-8 on page 12.

 It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. 
With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a 
significant percentage of the rated working voltage.

 You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the 
internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins 
to the VCCx pins.

 You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this 
configuration, the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The 
allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by 
default, and should be disabled to reduce power consumption.
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6.2.1  Power Modes

PSoC 3 devices have four different power modes, as shown in 
Table 6-2 and Table 6-3. The power modes allow a design to 
easily provide required functionality and processing power while 
simultaneously minimizing power consumption and maximizing 
battery life in low-power and portable devices. 

PSoC 3 power modes, in order of decreasing power 
consumption are: 

 Active

 Alternate Active

 Sleep 

 Hibernate

Active is the main processing mode. Its functionality is 
configurable. Each power controllable subsystem is enabled or 
disabled by using separate power configuration template 
registers. In alternate active mode, fewer subsystems are 
enabled, reducing power. In sleep mode most resources are 
disabled regardless of the template settings. Sleep mode is 
optimized to provide timed sleep intervals and RTC functionality. 
The lowest power mode is hibernate, which retains register and 
SRAM state, but no clocks, and allows wakeup only from I/O 
pins. Figure 6-5 illustrates the allowable transitions between 
power modes. Sleep and hibernate modes should not be entered 
until all VDDIO supplies are at valid voltage levels.

. 

Table 6-2.  Power Modes

Power 
Modes Description Entry Condition Wakeup 

Source Active Clocks  Regulator

Active Primary mode of operation, all periph-
erals available (programmable)

Wakeup, reset, 
manual register 
entry 

Any interrupt Any 
(programmable)

All regulators available. Digital 
and analog regulators can be 
disabled if external regulation 
used.

Alternate 
Active

Similar to Active mode, and is typically 
configured to have fewer peripherals 
active to reduce power. One possible 
configuration is to use the UDBs for 
processing, with the CPU turned off

Manual register 
entry

Any interrupt Any 
(programmable)

All regulators available. Digital 
and analog regulators can be 
disabled if external regulation 
used.

Sleep All subsystems automatically disabled Manual register 
entry

Comparator, 
PICU, I2C, 
RTC, CTW, 
LVD

ILO/kHzECO Both digital and analog 
regulators buzzed. 
Digital and analog regulators 
can be disabled if external 
regulation used.

Hibernate All subsystems automatically disabled 
Lowest power consuming mode with 
all peripherals and internal regulators 
disabled, except hibernate regulator is 
enabled
Configuration and memory contents 
retained

Manual register 
entry 

PICU – Only hibernate regulator active.

Table 6-3.  Power Modes Wakeup Time and Power Consumption

Sleep 
Modes

Wakeup 
Time

Current 
(Typ)

Code 
Execution

Digital 
Resources

Analog 
Resources

Clock Sources 
Available Wakeup Sources Reset 

Sources

Active  – 1.2 mA[16] Yes All All All – All

Alternate 
Active 

 – – User 
defined

All All All – All

Sleep
<15 µs 1 µA No I2C Comparator ILO/kHzECO Comparator, 

PICU, I2C, RTC, 
CTW, LVD

XRES, LVD, 
WDR

Hibernate <100 µs 200 nA No None None None PICU XRES

Note
16. Bus clock off. Execute from cache at 6 MHz. See Table 11-2 on page 72.
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The switching frequency is set to 400 kHz using an oscillator
integrated into the boost converter. The boost converter can be
operated in two different modes: active and standby. Active
mode is the normal mode of operation where the boost regulator
actively generates a regulated output voltage. In standby mode,
most boost functions are disabled, thus reducing power
consumption of the boost circuit. Only minimal power is provided,
typically < 5 µA to power the PSoC device in Sleep mode. The
boost typically draws 250 µA in active mode and 25 µA in
standby mode. The boost operating modes must be used in
conjunction with chip power modes to minimize total power
consumption. Table 6-1 lists the boost power modes available in
different chip power modes.

6.2.2.1 Boost Firmware Requirements

To ensure boost inrush current is within specification at startup,
the Enable Fast IMO During Startup value must be unchecked
in the PSoC Creator IDE. The Enable Fast IMO During Startup
option is found in PSoC Creator in the design wide resources
(cydwr) file System tab. Un-checking this option configures the
device to run at 12 MHz vs 48 MHz during startup while
configuring the device. The slower clock speed results in
reduced current draw through the boost circuit.

6.2.2.2 Boost Design Process

Correct operation of the boost converter requires specific
component values determined for each designs unique
operating conditions. The CBAT capacitor, Inductor, Schottky
diode, and CBOOST capacitor components are required with the
values specified in the electrical specifications, Table 11-7 on
page 78. The only variable component value is the inductor
LBOOST which is primarily sized for correct operation of the boost
across operating conditions and secondarily for efficiency.
Additional operating region constraints exist for VOUT, VBAT, IOUT,
and TA. 

The following steps must be followed to determine boost
converter operating parameters and LBOOST value.

1. Choose desired VBAT, VOUT, TA, and IOUT operating condition 
ranges for the application.

2. Determine if VBAT and VOUT ranges fit the boost operating 
range based on the TA range over VBAT and VOUT chart, 
Figure 11-8 on page 78. If the operating ranges are not met, 
modify the operating conditions or use an external boost 
regulator.

3. Determine if the desired ambient temperature (TA) range fits 
the ambient temperature operating range based on the TA 
range over VBAT and VOUT chart, Figure 11-8 on page 78. If 
the temperature range is not met, modify the operating condi-
tions and return to step 2, or use an external boost regulator.

4. Determine if the desired output current (IOUT) range fits the 
output current operating range based on the IOUT range over 
VBAT and VOUT chart, Figure 11-9 on page 78. If the output 
current range is not met, modify the operating conditions and 
return to step 2, or use an external boost regulator.

5. Find the allowed inductor values based on the LBOOST values 
over VBAT and VOUT chart, Figure 11-10 on page 78.

6. Based on the allowed inductor values, inductor dimensions, 
inductor cost, boost efficiency, and VRIPPLE choose the 
optimum inductor value for the system. Boost efficiency and 
VRIPPLE typical values are provided in the Efficiency vs VBAT 
and VRIPPLE vs VBAT charts, Figure 11-11 on page 79 through 
Figure 11-14 on page 79. In general, if high efficiency and low 
VRIPPLE are most important, then the highest allowed inductor 
value should be used. If low inductor cost or small inductor 
size are most important, then one of the smaller allowed 
inductor values should be used. If the allowed inductor(s) 
efficiency, VRIPPLE, cost or dimensions are not acceptable for 
the application than an external boost regulator should be 
used.

6.3  Reset

CY8C36 has multiple internal and external reset sources 
available. The reset sources are:

 Power source monitoring – The analog and digital power 
voltages, VDDA, VDDD, VCCA, and VCCD are monitored in 
several different modes during power up, active mode, and 
sleep mode (buzzing). If any of the voltages goes outside 
predetermined ranges then a reset is generated. The monitors 
are programmable to generate an interrupt to the processor 
under certain conditions before reaching the reset thresholds.

 External – The device can be reset from an external source by 
pulling the reset pin (XRES) low. The XRES pin includes an 
internal pull-up to VDDIO1. VDDD, VDDA, and VDDIO1 must 
all have voltage applied before the part comes out of reset.

Watchdog timer – A watchdog timer monitors the execution of 
instructions by the processor. If the watchdog timer is not reset 
by firmware within a certain period of time, the watchdog timer 
generates a reset.

 Software – The device can be reset under program control. 

Table 6-1.  Chip and Boost Power Modes Compatibility

Chip Power Modes Boost Power Modes

Chip-active or alternate 
active mode 

Boost must be operated in its active 
mode.

Chip-sleep mode Boost can be operated in either active 
or standby mode. In boost standby 
mode, the chip must wake up periodi-
cally for boost active-mode refresh. 

Chip-hibernate mode Boost can be operated in its active 
mode. However, it is recommended not 
to use the boost in chip hibernate mode 
due to the higher current consumption 
in boost active mode.
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6.4.1  Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-3. Three configuration bits are 
used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight 
drive modes. Table 6-3 shows the I/O pin’s drive state based on the port data register value or digital array signal if bypass mode is 
selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For 
example, if a GPIO pin is configured for resistive pull-up mode and driven high while the pin is floating, the voltage measured at the 
pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

Table 6-3.  Drive Modes

Diagram Drive Mode PRTxDM2 PRTxDM1 PRTxDM0 PRTxDR = 1 PRTxDR = 0

0 High impedance analog 0 0 0 High Z High Z

1 High impedance digital 0 0 1 High Z High Z

2 Resistive pull-up[18] 0 1 0 Res High (5K) Strong Low

3 Resistive pull-down[18] 0 1 1 Strong High Res Low (5K)

4 Open drain, drives low 1 0 0 High Z Strong Low

5 Open drain, drive high 1 0 1 Strong High High Z

6 Strong drive 1 1 0 Strong High Strong Low

7 Resistive pull-up and pull-down[18] 1 1 1 Res High (5K) Res Low (5K)

Out
In

Pin
Out
In

Pin
Out
In

Pin Out
In

Pin

Out
In

Pin
Out
In

Pin
Out
In

Pin Out
In

Pin

0. High Impedance
    Analog

1. High Impedance
    Digital

2. Resistive Pull-Up 3. Resistive Pull-Down

4. Open Drain,
    Drives Low

5. Open Drain,
    Drives High

6. Strong Drive 7. Resistive Pull-Up
    and Pull-Down

VDD VDD

VDD VDD VDD

An An An An

AnAnAnAn

The ‘Out’ connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register 
(when HW connection is disabled). 
The ‘In’ connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. 
The ‘An’ connection connects to the Analog System.

Note
18. Resistive pull-up and pull-down are not available with SIO in regulated output mode.
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7.3  UDB Array Description

Figure 7-7 shows an example of a 16-UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure 

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 
utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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Figure 7-9. Digital System Interconnect

Interrupt and DMA routing is very flexible in the CY8C36 
programmable architecture. In addition to the numerous fixed 
function peripherals that can generate interrupt requests, any 
data signal in the UDB array routing can also be used to generate 
a request. A single peripheral may generate multiple 
independent interrupt requests simplifying system and firmware 
design. Figure 7-10 shows the structure of the IDMUX 
(Interrupt/DMA Multiplexer).

Figure 7-10. Interrupt and DMA Processing in the IDMUX 

7.4.1  I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 
for data and four for drive strength control.

When an I/O pin is connected to the routing, there are two 
primary connections available, an input and an output. In 
conjunction with drive strength control, this can implement a 
bidirectional I/O pin. A data output signal has the option to be 
single synchronized (pipelined) and a data input signal has the 
option to be double synchronized. The synchronization clock is 
the master clock (see Figure 6-1 on page 28). Normally all inputs 
from pins are synchronized as this is required if the CPU 
interacts with the signal or any signal derived from it. 
Asynchronous inputs have rare uses. An example of this is a 
feed through of combinational PLD logic from input pins to output 
pins.

Figure 7-11. I/O Pin Synchronization Routing

Figure 7-12. I/O Pin Output Connectivity 

There are four more DSI connections to a given I/O port to 
implement dynamic output enable control of pins. This 
connectivity gives a range of options, from fully ganged 8-bits 
controlled by one signal, to up to four individually controlled pins. 
The output enable signal is useful for creating tri-state 
bidirectional pins and buses.
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For most designs, the default values in Table 7-2 will provide
excellent performance without any calculations. The default
values were chosen to use standard resistor values between the
minimum and maximum limits. The values in Table 7-2 work for
designs with 1.8 V to 5.0V VDD, less than 200-pF bus capaci-
tance (CB), up to 25 µA of total input leakage (IIL), up to 0.4 V
output voltage level (VOL), and a max VIH of 0.7 * VDD. Standard
Mode and Fast Mode can use either GPIO or SIO PSoC pins.
Fast Mode Plus requires use of SIO pins to meet the VOL spec
at 20 mA. Calculation of custom pull-up resistor values is
required; if your design does not meet the default assumptions,
you use series resistors (RS) to limit injected noise, or you need
to maximize the resistor value for low power consumption.

Calculation of the ideal pull-up resistor value involves finding a
value between the limits set by three equations detailed in the
NXP I2C specification. These equations are:

Equation 1:

Equation 2:

Equation 3:

Equation parameters:

VDD = Nominal supply voltage for I2C bus

VOL = Maximum output low voltage of bus devices. 

IOL= Low-level output current from I2C specification

TR = Rise Time of bus from I2C specification

CB = Capacitance of each bus line including pins and PCB traces

VIH = Minimum high-level input voltage of all bus devices

VNH = Minimum high-level input noise margin from I2C specifi-
cation

IIH = Total input leakage current of all devices on the bus

The supply voltage (VDD) limits the minimum pull-up resistor
value due to bus devices maximum low output voltage (VOL)
specifications. Lower pull-up resistance increases current
through the pins and can, therefore, exceed the spec conditions
of VOL. Equation 1 is derived using Ohm's law to determine the
minimum resistance that will still meet the VOL specification at
3 mA for standard and fast modes, and 20 mA for fast mode plus
at the given VDD.

Equation 2 determines the maximum pull-up resistance due to
bus capacitance. Total bus capacitance is comprised of all pin,
wire, and trace capacitance on the bus. The higher the bus
capacitance, the lower the pull-up resistance required to meet
the specified bus speeds rise time due to RC delays. Choosing
a pull-up resistance higher than allowed can result in failing
timing requirements resulting in communication errors. Most
designs with five or less I2C devices and up to 20 centimeters of
bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value
is total bus leakage calculated in Equation 3. The primary source
of leakage is I/O pins connected to the bus. If leakage is too high,
the pull-ups will have difficulty maintaining an acceptable VIH
level causing communication errors. Most designs with five or
less I2C devices on the bus have less than 10 µA of total leakage
current.

Table 7-2.  Recommended default Pull-up Resistor Values

RP Units

Standard Mode – 100 kbps 4.7 k, 5% Ω

Fast Mode – 400 kbps 1.74 k, 1% Ω

Fast Mode Plus – 1 Mbps 620, 5% Ω

RPMIN VDD max  VOL– max   IOL min  =

RPMAX TR max  0.8473 CB max =

RPMAX VDD min  VIH min – VNH min  IIH max +=
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The same opamps and block interfaces are also connectable to 
an array of resistors which allows the construction of a variety of 
continuous time functions.

The opamp and resistor array is programmable to perform 
various analog functions including

 Naked operational amplifier – Continuous mode

 Unity-gain buffer – Continuous mode

 Programmable gain amplifier (PGA) – Continuous mode

 Transimpedance amplifier (TIA) – Continuous mode

 Up/down mixer – Continuous mode

 Sample and hold mixer (NRZ S/H) – Switched cap mode

 First order analog to digital modulator – Switched cap mode

8.5.1  Naked Opamp

The Naked Opamp presents both inputs and the output for 
connection to internal or external signals. The opamp has a unity 
gain bandwidth greater than 6.0 MHz and output drive current up 
to 650 µA. This is sufficient for buffering internal signals (such as 
DAC outputs) and driving external loads greater than 7.5 k.

8.5.2  Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly 
connected to the inverting input for a gain of 1.00. It has a –3 dB 
bandwidth greater than 6.0 MHz.

8.5.3  PGA

The PGA amplifies an external or internal signal. The PGA can 
be configured to operate in inverting mode or noninverting mode. 
The PGA function may be configured for both positive and 
negative gains as high as 50 and 49 respectively. The gain is 
adjusted by changing the values of R1 and R2 as illustrated in 
Figure 8-8 on page 62. The schematic in Figure 8-8 on page 62 
shows the configuration and possible resistor settings for the 
PGA. The gain is switched from inverting and non inverting by 
changing the shared select value of the both the input muxes. 
The bandwidth for each gain case is listed in Table 8-3.

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not 
be large enough to achieve the desired resolution in the ADC, or 
dynamic range of another SC/CT block such as a mixer. The gain 
is adjustable at runtime, including changing the gain of the PGA 
prior to each ADC sample.

8.5.4  TIA

The Transimpedance Amplifier (TIA) converts an internal or 
external current to an output voltage. The TIA uses an internal 
feedback resistor in a continuous time configuration to convert 
input current to output voltage. For an input current Iin, the output 
voltage is VREF - Iin x Rfb, where VREF is the value placed on the 
non inverting input. The feedback resistor Rfb is programmable 
between 20 K and 1 M through a configuration register. 
Table 8-4 shows the possible values of Rfb and associated 
configuration settings.

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external 
sensor's output is current as a function of some type of stimulus 
such as temperature, light, magnetic flux etc. In a common 
application, the voltage DAC output can be connected to the 
VREF TIA input to allow calibration of the external sensor bias 
current by adjusting the voltage DAC output voltage.

8.6  LCD Direct Drive

The PSoC Liquid Crystal Display (LCD) driver system is a highly 
configurable peripheral designed to allow PSoC to directly drive 
a broad range of LCD glass. All voltages are generated on chip, 
eliminating the need for external components. With a high 
multiplex ratio of up to 1/16, the CY8C36 family LCD driver 
system can drive a maximum of 736 segments. The PSoC LCD 
driver module was also designed with the conservative power 
budget of portable devices in mind, enabling different LCD drive 
modes and power down modes to conserve power.

Table 8-3.  Bandwidth

Gain Bandwidth

1 6.0 MHz

24 340 kHz

48 220 kHz

50 215 kHz

R1 R2

20 k to 980 k

S

20 k or 40 k
1

0

1

0

Vin

Vref

Vref

Vin

Table 8-4.  Feedback Resistor Settings

Configuration Word Nominal Rfb (K)

000b 20

001b 30

010b 40

011b 60

100b 120

101b 250

110b 500

111b 1000

Vref
Vout

I in

R fb
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PSoC Creator provides an LCD segment drive component. The 
component wizard provides easy and flexible configuration of 
LCD resources. You can specify pins for segments and 
commons along with other options. The software configures the 
device to meet the required specifications. This is possible 
because of the programmability inherent to PSoC devices.

Key features of the PSoC LCD segment system are:

 LCD panel direct driving 

 Type A (standard) and Type B (low-power) waveform support 

Wide operating voltage range support (2 V to 5 V) for LCD 
panels

 Static, 1/2, 1/3, 1/4, 1/5 bias voltage levels 

 Internal bias voltage generation through internal resistor ladder 

 Up to 62 total common and segment outputs

 Up to 1/16 multiplex for a maximum of 16 backplane/common 
outputs 

 Up to 62 front plane/segment outputs for direct drive

 Drives up to 736 total segments (16 backplane × 46 front plane) 

 Up to 64 levels of software controlled contrast 

 Ability to move display data from memory buffer to LCD driver 
through DMA (without CPU intervention) 

 Adjustable LCD refresh rate from 10 Hz to 150 Hz 

 Ability to invert LCD display for negative image 

 Three LCD driver drive modes, allowing power optimization 

Figure 8-10. LCD System

8.6.1  LCD Segment Pin Driver

Each GPIO pin contains an LCD driver circuit. The LCD driver 
buffers the appropriate output of the LCD DAC to directly drive 
the glass of the LCD. A register setting determines whether the 
pin is a common or segment. The pin’s LCD driver then selects 
one of the six bias voltages to drive the I/O pin, as appropriate 
for the display data. 

8.6.2  Display Data Flow

The LCD segment driver system reads display data and 
generates the proper output voltages to the LCD glass to 
produce the desired image. Display data resides in a memory 
buffer in the system SRAM. Each time you need to change the 
common and segment driver voltages, the next set of pixel data 
moves from the memory buffer into the Port Data Registers 
through DMA.

8.6.3  UDB and LCD Segment Control

A UDB is configured to generate the global LCD control signals 
and clocking. This set of signals is routed to each LCD pin driver 
through a set of dedicated LCD global routing channels. In 
addition to generating the global LCD control signals, the UDB 
also produces a DMA request to initiate the transfer of the next 
frame of LCD data. 

8.6.4  LCD DAC

The LCD DAC generates the contrast control and bias voltage 
for the LCD system. The LCD DAC produces up to five LCD drive 
voltages plus ground, based on the selected bias ratio. The bias 
voltages are driven out to GPIO pins on a dedicated LCD bias 
bus, as required. 

8.7  CapSense

The CapSense system provides a versatile and efficient means 
for measuring capacitance in applications such as touch sense 
buttons, sliders, and proximity detection. The CapSense system 
uses a configuration of system resources, including a few 
hardware functions primarily targeted for CapSense. Specific 
resource usage is detailed in the CapSense component in PSoC 
Creator. A capacitive sensing method using a Delta-Sigma 
Modulator (CSD) is used. It provides capacitance sensing using 
a switched capacitor technique with a delta-sigma modulator to 
convert the sensing current to a digital code.

8.8  Temp Sensor

Die temperature is used to establish programming parameters 
for writing flash. Die temperature is measured using a dedicated 
sensor based on a forward biased transistor. The temperature 
sensor has its own auxiliary ADC.
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Figure 11-8. TA range over VBAT and VOUT Figure 11-9. IOUT range over VBAT and VOUT

Figure 11-10. LBOOST values over VBAT and VOUT

Note
41. Based on device characterization (Not production tested).

Table 11-7.  Recommended External Components for Boost Circuit

Parameter Description Conditions Min Typ Max Units

LBOOST Boost inductor 4.7 µH nominal 3.7 4.7 5.7 µH

10 µH nominal 8.0 10.0 12.0 µH

22 µH nominal 17.0 22.0 27.0 µH

CBOOST Total capacitance sum of 
VDDD, VDDA, VDDIO

[41]
17.0 26.0 31.0 µF

CBAT Battery filter capacitor 17.0 22.0 27.0 µF

IF Schottky diode average 
forward current

1.0 – – A

VR Schottky reverse voltage 20.0 – – V
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11.4  Inputs and Outputs

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted. Unless otherwise specified, all charts and graphs show typical values.
When the power supplies ramp up, there are low-impedance connections between each GPIO pin and its VDDIO supply. This causes 
the pin voltages to track VDDIO until both VDDIO and VDDA reach the IPOR voltage, which can be as high as 1.45 V. At that point, the 
low-impedance connections no longer exist and the pins change to their normal NVL settings.

11.4.1  GPIO 

Notes
43. Based on device characterization (Not production tested).
44. For information on designing with PSoC oscillators, refer to the application note, AN54439 - PSoC® 3 and PSoC 5 External Oscillator.

Table 11-9.  GPIO DC Specifications

Parameter Description Conditions Min Typ Max Units

VIH Input voltage high threshold CMOS Input, PRT[×]CTL = 0 0.7  VDDIO – – V

VIL Input voltage low threshold CMOS Input, PRT[×]CTL = 0 – – 0.3 VDDIO V

VIH Input voltage high threshold LVTTL Input, PRT[×]CTL = 
1,VDDIO < 2.7 V

0.7 × VDDIO – – V

VIH Input voltage high threshold LVTTL Input, PRT[×]CTL = 1, 
VDDIO  2.7 V

2.0 – – V

VIL Input voltage low threshold LVTTL Input, PRT[×]CTL = 
1,VDDIO < 2.7 V

– – 0.3 × VDDIO V

VIL Input voltage low threshold LVTTL Input, PRT[×]CTL = 1, 
VDDIO  2.7 V

– – 0.8 V

VOH Output voltage high IOH = 4 mA at 3.3 VDDIO VDDIO – 0.6 – – V

IOH = 1 mA at 1.8 VDDIO VDDIO – 0.5 – – V

VOL Output voltage low IOL = 8 mA at 3.3 VDDIO – – 0.6 V

IOL = 4 mA at 1.8 VDDIO – – 0.6 V

IOL = 3 mA at 3.3 VDDIO – – 0.4 V

Rpullup Pull-up resistor 3.5 5.6 8.5 k 

Rpulldown Pull-down resistor 3.5 5.6 8.5 k

IIL Input leakage current (absolute value)[43] 25 °C, VDDIO = 3.0 V – – 2 nA

CIN Input capacitance[43] GPIOs not shared with opamp 
outputs, MHz ECO or kHzECO

– 4 7 pF

GPIOs shared with MHz ECO 
or kHzECO[44]

– 5 7 pF

GPIOs shared with opamp 
outputs

– – 18 pF

VH Input voltage hysteresis 
(Schmitt-Trigger)[43]

– 40 – mV

Idiode Current through protection diode to 
VDDIO and VSSIO

– – 100 µA

Rglobal Resistance pin to analog global bus 25 °C, VDDIO = 3.0 V – 320 – 

Rmux Resistance pin to analog mux bus 25 °C, VDDIO = 3.0 V – 220 – 

http://www.cypress.com/?rID=37884
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11.4.2  SIO 

Notes
46. See Figure 6-10 on page 39 and Figure 6-13 on page 43 for more information on SIO reference.
47. Based on device characterization (Not production tested)

Table 11-11.  SIO DC Specifications

Parameter Description Conditions Min Typ Max Units
Vinmax Maximum input voltage All allowed values of VDDIO and 

VDDD, see Section 11.1
– – 5.5 V

Vinref Input voltage reference (Differ-
ential input mode)

0.5 – 0.52 VDDIO V

Voutref
Output voltage reference (Regulated output mode)

VDDIO > 3.7 1 – VDDIO – 1 V
VDDIO < 3.7 1 – VDDIO – 0.5 V

VIH

Input voltage high threshold
GPIO mode CMOS input 0.7  VDDIO – – V
Differential input mode[46] Hysteresis disabled SIO_ref + 0.2 – – V

VIL

Input voltage low threshold
GPIO mode CMOS input – – 0.3 VDDIO V
Differential input mode[46] Hysteresis disabled – – SIO_ref – 0.2 V

VOH

Output voltage high
Unregulated mode IOH = 4 mA, VDDIO = 3.3 V VDDIO – 0.4 – – V
Regulated mode[46] IOH = 1 mA SIO_ref – 0.65 – SIO_ref + 0.2 V
Regulated mode[46] IOH = 0.1 mA SIO_ref – 0.3 – SIO_ref + 0.2 V

VOL

Output voltage low VDDIO = 3.30 V, IOL = 25 mA – – 0.8 V
VDDIO = 3.30 V, IOL = 20 mA – – 0.4 V
VDDIO = 1.80 V, IOL = 4 mA – – 0.4 V

Rpullup Pull-up resistor 3.5 5.6 8.5 k
Rpulldown Pull-down resistor 3.5 5.6 8.5 k
IIL Input leakage current (absolute 

value)[47]
– – – –

VIH < Vddsio 25 °C, Vddsio = 3.0 V, VIH = 3.0 V – – 14 nA
VIH > Vddsio 25 °C, Vddsio = 0 V, VIH = 3.0 V – – 10 µA

CIN Input Capacitance[47] – – 7 pF

VH
Input voltage hysteresis 
(Schmitt-Trigger)[47]

Single ended mode (GPIO mode) – 40 – mV
Differential mode – 35 – mV

Idiode
Current through protection diode 
to VSSIO

– – 100 µA
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11.4.3  USBIO

For operation in GPIO mode, the standard range for VDDD applies, see Device Level Specifications  on page 72.

Table 11-13.  SIO Comparator Specifications[49]

Parameter Description Conditions Min Typ Max Units

Vos Offset voltage VDDIO = 2 V – – 68 mV

VDDIO = 2.7 V – – 72

VDDIO = 5.5 V – – 82

TCVos Offset voltage drift with temp – – 250 μV/°C

CMRR Common mode rejection ratio VDDIO = 2 V 30 – – dB

VDDIO = 2.7 V 35 – –

VDDIO = 5.5 V 40 – –

Tresp Response time – – 30 ns

Table 11-14.  USBIO DC Specifications

Parameter Description Conditions Min Typ Max Units

Rusbi USB D+ pull-up resistance With idle bus 0.900 – 1.575 k

Rusba USB D+ pull-up resistance While receiving traffic 1.425 – 3.090  k

Vohusb Static output high 15 k ±5% to Vss, internal pull-up 
enabled

2.8 – 3.6 V

Volusb Static output low 15 k ±5% to Vss, internal pull-up 
enabled

– – 0.3 V

Vihgpio Input voltage high, GPIO mode VDDD 3 V 2 – – V

Vilgpio Input voltage low, GPIO mode VDDD 3 V – – 0.8 V

Vohgpio Output voltage high, GPIO mode IOH = 4 mA, VDDD  3 V 2.4 – – V

Volgpio Output voltage low, GPIO mode IOL = 4 mA, VDDD  3 V – – 0.3 V

Vdi Differential input sensitivity |(D+)–(D–)| – – 0.2 V

Vcm Differential input common mode 
range

– 0.8 – 2.5 V

Vse Single ended receiver threshold – 0.8 – 2 V

Rps2 PS/2 pull-up resistance In PS/2 mode, with PS/2 pull-up 
enabled

3 – 7 k

Rext External USB series resistor In series with each USB pin 21.78 
(–1%)

22 22.22 
(+1%)



Zo USB driver output impedance Including Rext 28 – 44 

CIN USB transceiver input capacitance – – 20 pF

IIL
[49] Input leakage current (absolute value) 25 °C, VDDD = 3.0 V – – 2 nA

Note
49. Based on device characterization (Not production tested).
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Figure 11-58. VDAC Step Response, Codes 0x40 - 0xC0, 1 V 
Mode, High speed mode, VDDA = 5 V

Figure 11-59. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V 
Mode, High speed mode, VDDA = 5 V

Figure 11-60. VDAC PSRR vs Frequency Figure 11-61. VDAC Voltage Noise, 1 V Mode, High speed 
mode, VDDA = 5 V

Table 11-31.  VDAC AC Specifications

Parameter Description Conditions Min Typ Max Units

FDAC Update rate 1 V scale – – 1000 ksps

4 V scale – – 250 ksps

TsettleP Settling time to 0.1%, step 25% to 
75%

1 V scale, Cload = 15 pF – 0.45 1 µs

4 V scale, Cload = 15 pF – 0.8 3.2 µs

TsettleN Settling time to 0.1%, step 75% to 
25%

1 V scale, Cload = 15 pF – 0.45 1 µs

4 V scale, Cload = 15 pF – 0.7 3 µs

Voltage noise Range = 1 V, High speed mode, 
VDDA = 5 V, 10 kHz

– 750 – nV/sqrtHz
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11.8  PSoC System Resources

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.8.1  POR with Brown Out

For brown out detect in regulated mode, VDDD and VDDA must be  2.0 V. Brown out detect is not available in externally regulated
mode.  

11.8.2  Voltage Monitors  

Table 11-65.  Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter Description Conditions Min Typ Max Units

PRESR Rising trip voltage Factory trim 1.64 – 1.68 V

PRESF Falling trip voltage 1.62 – 1.66 V

Table 11-66.  Power On Reset (POR) with Brown Out AC Specifications

Parameter Description Conditions Min Typ Max Units

PRES_TR Response time – – 0.5 µs

VDDD/VDDA droop rate Sleep mode – 5 – V/sec

Note
74. Based on device characterization (Not production tested).

Table 11-67.  Voltage Monitors DC Specifications

Parameter Description Conditions Min Typ Max Units

LVI Trip voltage – – – –

    LVI_A/D_SEL[3:0] = 0000b 1.68 1.73 1.77 V

    LVI_A/D_SEL[3:0] = 0001b 1.89 1.95 2.01 V

    LVI_A/D_SEL[3:0] = 0010b 2.14 2.20 2.27 V

    LVI_A/D_SEL[3:0] = 0011b 2.38 2.45 2.53 V

    LVI_A/D_SEL[3:0] = 0100b 2.62 2.71 2.79 V

    LVI_A/D_SEL[3:0] = 0101b 2.87 2.95 3.04 V

    LVI_A/D_SEL[3:0] = 0110b 3.11 3.21 3.31 V

    LVI_A/D_SEL[3:0] = 0111b 3.35 3.46 3.56 V

    LVI_A/D_SEL[3:0] = 1000b 3.59 3.70 3.81 V

    LVI_A/D_SEL[3:0] = 1001b 3.84 3.95 4.07 V

    LVI_A/D_SEL[3:0] = 1010b 4.08 4.20 4.33 V

    LVI_A/D_SEL[3:0] = 1011b 4.32 4.45 4.59 V

    LVI_A/D_SEL[3:0] = 1100b 4.56 4.70 4.84 V

    LVI_A/D_SEL[3:0] = 1101b 4.83 4.98 5.13 V

    LVI_A/D_SEL[3:0] = 1110b 5.05 5.21 5.37 V

    LVI_A/D_SEL[3:0] = 1111b 5.30 5.47 5.63 V

HVI Trip voltage 5.57 5.75 5.92 V

Table 11-68.  Voltage Monitors AC Specifications

Parameter Description Conditions Min Typ Max Units

Response time[74] – – 1 µs



PSoC® 3: CY8C36 Family Datasheet

Document Number: 001-53413 Rev. *Y Page 118 of 137

11.9.2  Internal Low Speed Oscillator  

Figure 11-73. ILO Frequency Variation vs. Temperature Figure 11-74. ILO Frequency Variation vs. VDD

Table 11-75.  ILO DC Specifications

Parameter Description Conditions Min Typ Max Units

ICC

Operating current[82] FOUT = 1 kHz – – 1.7 µA

FOUT = 33 kHz – – 2.6 µA

FOUT = 100 kHz – – 2.6 µA

Leakage current[82] Power down mode – – 15 nA

Table 11-76.  ILO AC Specifications

Parameter Description Conditions Min Typ Max Units

Startup time, all frequencies Turbo mode – – 2 ms

FILO ILO frequencies

100 kHz 45 100 200 kHz

1 kHz 0.5 1 2 kHz

Note
82. This value is calculated, not measured.
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13.  Packaging

Table 13-1.  Package Characteristics

Parameter Description Conditions Min Typ Max Units

TA Operating ambient temperature –40 25.00 85 °C

TJ Operating junction temperature –40 – 100 °C

TJA Package JA (48-pin SSOP) – 49 – °C/Watt

TJA Package JA (48-pin QFN) – 14 – °C/Watt

TJA Package JA (68-pin QFN) – 15 – °C/Watt

TJA Package JA (100-pin TQFP) – 34 – °C/Watt

TJC Package JC (48-pin SSOP) – 24 – °C/Watt

TJC Package JC (48-pin QFN) – 15 – °C/Watt

TJC Package JC (68-pin QFN) – 13 – °C/Watt

TJC Package JC (100-pin TQFP) – 10 – °C/Watt

TJA Package JA (72-pin CSP) – 18 – °C/Watt

TJC Package JC (72-pin CSP) – 0.13 – °C/Watt

Table 13-2.  Solder Reflow Peak Temperature

Package Maximum Peak 
Temperature 

Maximum Time at Peak 
Temperature

48-pin SSOP 260 °C 30 seconds

48-pin QFN 260 °C 30 seconds

68-pin QFN 260 °C 30 seconds

100-pin TQFP 260 °C 30 seconds

72-pin CSP 260 °C 30 seconds

Table 13-3.  Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package MSL 

48-pin SSOP MSL 3

48-pin QFN MSL 3 

68-pin QFN MSL 3

100-pin TQFP MSL 3

72-pin CSP MSL 1


