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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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The switching frequency is set to 400 kHz using an oscillator
integrated into the boost converter. The boost converter can be
operated in two different modes: active and standby. Active
mode is the normal mode of operation where the boost regulator
actively generates a regulated output voltage. In standby mode,
most boost functions are disabled, thus reducing power
consumption of the boost circuit. Only minimal power is provided,
typically < 5 µA to power the PSoC device in Sleep mode. The
boost typically draws 250 µA in active mode and 25 µA in
standby mode. The boost operating modes must be used in
conjunction with chip power modes to minimize total power
consumption. Table 6-1 lists the boost power modes available in
different chip power modes.

6.2.2.1 Boost Firmware Requirements

To ensure boost inrush current is within specification at startup,
the Enable Fast IMO During Startup value must be unchecked
in the PSoC Creator IDE. The Enable Fast IMO During Startup
option is found in PSoC Creator in the design wide resources
(cydwr) file System tab. Un-checking this option configures the
device to run at 12 MHz vs 48 MHz during startup while
configuring the device. The slower clock speed results in
reduced current draw through the boost circuit.

6.2.2.2 Boost Design Process

Correct operation of the boost converter requires specific
component values determined for each designs unique
operating conditions. The CBAT capacitor, Inductor, Schottky
diode, and CBOOST capacitor components are required with the
values specified in the electrical specifications, Table 11-7 on
page 78. The only variable component value is the inductor
LBOOST which is primarily sized for correct operation of the boost
across operating conditions and secondarily for efficiency.
Additional operating region constraints exist for VOUT, VBAT, IOUT,
and TA. 

The following steps must be followed to determine boost
converter operating parameters and LBOOST value.

1. Choose desired VBAT, VOUT, TA, and IOUT operating condition 
ranges for the application.

2. Determine if VBAT and VOUT ranges fit the boost operating 
range based on the TA range over VBAT and VOUT chart, 
Figure 11-8 on page 78. If the operating ranges are not met, 
modify the operating conditions or use an external boost 
regulator.

3. Determine if the desired ambient temperature (TA) range fits 
the ambient temperature operating range based on the TA 
range over VBAT and VOUT chart, Figure 11-8 on page 78. If 
the temperature range is not met, modify the operating condi-
tions and return to step 2, or use an external boost regulator.

4. Determine if the desired output current (IOUT) range fits the 
output current operating range based on the IOUT range over 
VBAT and VOUT chart, Figure 11-9 on page 78. If the output 
current range is not met, modify the operating conditions and 
return to step 2, or use an external boost regulator.

5. Find the allowed inductor values based on the LBOOST values 
over VBAT and VOUT chart, Figure 11-10 on page 78.

6. Based on the allowed inductor values, inductor dimensions, 
inductor cost, boost efficiency, and VRIPPLE choose the 
optimum inductor value for the system. Boost efficiency and 
VRIPPLE typical values are provided in the Efficiency vs VBAT 
and VRIPPLE vs VBAT charts, Figure 11-11 on page 79 through 
Figure 11-14 on page 79. In general, if high efficiency and low 
VRIPPLE are most important, then the highest allowed inductor 
value should be used. If low inductor cost or small inductor 
size are most important, then one of the smaller allowed 
inductor values should be used. If the allowed inductor(s) 
efficiency, VRIPPLE, cost or dimensions are not acceptable for 
the application than an external boost regulator should be 
used.

6.3  Reset

CY8C36 has multiple internal and external reset sources 
available. The reset sources are:

 Power source monitoring – The analog and digital power 
voltages, VDDA, VDDD, VCCA, and VCCD are monitored in 
several different modes during power up, active mode, and 
sleep mode (buzzing). If any of the voltages goes outside 
predetermined ranges then a reset is generated. The monitors 
are programmable to generate an interrupt to the processor 
under certain conditions before reaching the reset thresholds.

 External – The device can be reset from an external source by 
pulling the reset pin (XRES) low. The XRES pin includes an 
internal pull-up to VDDIO1. VDDD, VDDA, and VDDIO1 must 
all have voltage applied before the part comes out of reset.

Watchdog timer – A watchdog timer monitors the execution of 
instructions by the processor. If the watchdog timer is not reset 
by firmware within a certain period of time, the watchdog timer 
generates a reset.

 Software – The device can be reset under program control. 

Table 6-1.  Chip and Boost Power Modes Compatibility

Chip Power Modes Boost Power Modes

Chip-active or alternate 
active mode 

Boost must be operated in its active 
mode.

Chip-sleep mode Boost can be operated in either active 
or standby mode. In boost standby 
mode, the chip must wake up periodi-
cally for boost active-mode refresh. 

Chip-hibernate mode Boost can be operated in its active 
mode. However, it is recommended not 
to use the boost in chip hibernate mode 
due to the higher current consumption 
in boost active mode.
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6.4.1  Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-3. Three configuration bits are 
used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight 
drive modes. Table 6-3 shows the I/O pin’s drive state based on the port data register value or digital array signal if bypass mode is 
selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For 
example, if a GPIO pin is configured for resistive pull-up mode and driven high while the pin is floating, the voltage measured at the 
pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

Table 6-3.  Drive Modes

Diagram Drive Mode PRTxDM2 PRTxDM1 PRTxDM0 PRTxDR = 1 PRTxDR = 0

0 High impedance analog 0 0 0 High Z High Z

1 High impedance digital 0 0 1 High Z High Z

2 Resistive pull-up[18] 0 1 0 Res High (5K) Strong Low

3 Resistive pull-down[18] 0 1 1 Strong High Res Low (5K)

4 Open drain, drives low 1 0 0 High Z Strong Low

5 Open drain, drive high 1 0 1 Strong High High Z

6 Strong drive 1 1 0 Strong High Strong Low

7 Resistive pull-up and pull-down[18] 1 1 1 Res High (5K) Res Low (5K)
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Out
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Pin Out
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Out
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    Analog

1. High Impedance
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5. Open Drain,
    Drives High

6. Strong Drive 7. Resistive Pull-Up
    and Pull-Down

VDD VDD

VDD VDD VDD

An An An An
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The ‘Out’ connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register 
(when HW connection is disabled). 
The ‘In’ connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. 
The ‘An’ connection connects to the Analog System.

Note
18. Resistive pull-up and pull-down are not available with SIO in regulated output mode.
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The USBIO pins (P15[7] and P15[6]), when enabled for I/O mode, have limited drive mode control. The drive mode is set using the 
PRT15.DM0[7, 6] register. A resistive pull option is also available at the USBIO pins, which can be enabled using the PRT15.DM1[7, 
6] register. When enabled for USB mode, the drive mode control has no impact on the configuration of the USB pins. Unlike the GPIO 
and SIO configurations, the port wide configuration registers do not configure the USB drive mode bits. Table 6-4 shows the drive 
mode configuration for the USBIO pins.

 High Impedance Analog

The default reset state with both the output driver and digital
input buffer turned off. This prevents any current from flowing
in the I/O’s digital input buffer due to a floating voltage. This
state is recommended for pins that are floating or that support
an analog voltage. High impedance analog pins do not provide
digital input functionality. 

To achieve the lowest chip current in sleep modes, all I/Os
must either be configured to the high impedance analog mode,
or have their pins driven to a power supply rail by the PSoC
device or by external circuitry.

 High Impedance Digital

The input buffer is enabled for digital signal input. This is the
standard high impedance (HiZ) state recommended for digital
inputs.

 Resistive pull-up or resistive pull-down

Resistive pull-up or pull-down, respectively, provides a series
resistance in one of the data states and strong drive in the
other. Pins can be used for digital input and output in these
modes. Interfacing to mechanical switches is a common
application for these modes. Resistive pull-up and pull-down
are not available with SIO in regulated output mode.

Open Drain, Drives High and Open Drain, Drives Low 

Open drain modes provide high impedance in one of the data
states and strong drive in the other. Pins can be used for digital
input and output in these modes. A common application for
these modes is driving the I2C bus signal lines.

 Strong Drive

Provides a strong CMOS output drive in either high or low
state. This is the standard output mode for pins. Strong Drive
mode pins must not be used as inputs under normal
circumstances. This mode is often used to drive digital output
signals or external FETs.

 Resistive pull-up and pull-down

Similar to the resistive pull-up and resistive pull-down modes
except the pin is always in series with a resistor. The high data
state is pull-up while the low data state is pull-down. This mode
is most often used when other signals that may cause shorts
can drive the bus. Resistive pull-up and pull-down are not
available with SIO in regulated output mode.

6.4.2  Pin Registers

Registers to configure and interact with pins come in two forms 
that may be used interchangeably. 

All I/O registers are available in the standard port form, where 
each bit of the register corresponds to one of the port pins. This 
register form is efficient for quickly reconfiguring multiple port 
pins at the same time.

I/O registers are also available in pin form, which combines the 
eight most commonly used port register bits into a single register 
for each pin. This enables very fast configuration changes to 
individual pins with a single register write.

6.4.3  Bidirectional Mode

High speed bidirectional capability allows pins to provide both 
the high impedance digital drive mode for input signals and a 
second user selected drive mode such as strong drive (set using 
PRT×DM[2:0] registers) for output signals on the same pin, 
based on the state of an auxiliary control bus signal. The 
bidirectional capability is useful for processor busses and 
communications interfaces such as the SPI Slave MISO pin that 
requires dynamic hardware control of the output buffer.

The auxiliary control bus routes up to 16 UDB or digital peripheral 
generated output enable signals to one or more pins. 

6.4.4  Slew Rate Limited Mode

GPIO and SIO pins have fast and slow output slew rate options 
for strong and open drain drive modes, not resistive drive modes. 
Because it results in reduced EMI, the slow edge rate option is 
recommended for signals that are not speed critical, generally 
less than 1 MHz. The fast slew rate is for signals between 1 MHz 
and 33 MHz. The slew rate is individually configurable for each 
pin, and is set by the PRT×SLW registers.

Table 6-4.  USBIO Drive Modes (P15[7] and P15[6])

PRT15.DM1[7,6]
Pull up enable

PRT15.DM0[7,6] 
Drive Mode enable PRT15.DR[7,6] = 1 PRT15.DR[7,6] = 0 Description

0 0 High Z Strong Low Open Drain, Strong Low

0 1 Strong High Strong Low Strong Outputs

1 0 Res High (5k) Strong Low Resistive Pull Up, Strong Low

1 1 Strong High Strong Low Strong Outputs
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6.4.5  Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the 
system. All eight pins in each port interface to their own Port 
Interrupt Control Unit (PICU) and associated interrupt vector. 
Each pin of the port is independently configurable to detect rising 
edge, falling edge, both edge interrupts, or to not generate an 
interrupt. 

Depending on the configured mode for each pin, each time an 
interrupt event occurs on a pin, its corresponding status bit of the 
interrupt status register is set to “1” and an interrupt request is 
sent to the interrupt controller. Each PICU has its own interrupt 
vector in the interrupt controller and the pin status register 
providing easy determination of the interrupt source down to the 
pin level.

Port pin interrupts remain active in all sleep modes allowing the 
PSoC device to wake from an externally generated interrupt.

While level sensitive interrupts are not directly supported; 
universal digital blocks (UDB) provide this functionality to the 
system when needed.

6.4.6  Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level 
for the default CMOS input thresholds or the optional LVTTL 
input thresholds. All input buffers incorporate Schmitt triggers for 
input hysteresis. Additionally, individual pin input buffers can be 
disabled in any drive mode.

6.4.7  I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the 
device and package. Each I/O supply must be less than or equal 
to the voltage on the chip’s analog (VDDA) pin. This feature 
allows users to provide different I/O voltage levels for different 
pins on the device. Refer to the specific device package pinout 
to determine VDDIO capability for a given port and pin.

The SIO port pins support an additional regulated high output 
capability, as described in Adjustable Output Level.

6.4.8  Analog Connections

These connections apply only to GPIO pins. All GPIO pins may 
be used as analog inputs or outputs. The analog voltage present 
on the pin must not exceed the VDDIO supply voltage to which 
the GPIO belongs. Each GPIO may connect to one of the analog 
global busses or to one of the analog mux buses to connect any 
pin to any internal analog resource such as ADC or comparators. 
In addition, select pins provide direct connections to specific 
analog features such as the high current DACs or uncommitted 
opamps. 

6.4.9  CapSense

This section applies only to GPIO pins. All GPIO pins may be 
used to create CapSense buttons and sliders[19]. See the 
“CapSense” section on page 63 for more information. 

6.4.10  LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be 
used to generate Segment and Common drive signals for direct 
glass drive of LCD glass. See the “LCD Direct Drive” section on 
page 62 for details.

6.4.11  Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the 
ability to provide a regulated high output level for interface to 
external signals that are lower in voltage than the SIO’s 
respective VDDIO. SIO pins are individually configurable to 
output either the standard VDDIO level or the regulated output, 
which is based on an internally generated reference. Typically a 
voltage DAC (VDAC) is used to generate the reference (see 
Figure 6-13). The “DAC” section on page 64 has more details on 
VDAC use and reference routing to the SIO pins. Resistive 
pull-up and pull-down drive modes are not available with SIO in 
regulated output mode.

6.4.12  Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support 
the standard CMOS and LVTTL input levels but also support a 
differential mode with programmable levels. SIO pins are 
grouped into pairs. Each pair shares a reference generator block 
which, is used to set the digital input buffer reference level for 
interface to external signals that differ in voltage from VDDIO. 
The reference sets the pins voltage threshold for a high logic 
level (see Figure 6-13). Available input thresholds are:

 0.5 VDDIO

 0.4 VDDIO

 0.5 VREF

 VREF

Typically a voltage DAC (VDAC) generates the VREF reference. 
“DAC” section on page 64 has more details on VDAC use and 
reference routing to the SIO pins.

Note
19. GPIOs with opamp outputs are not recommended for use with CapSense
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6.4.19  JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all 
I/O pins for board level test.

7.  Digital Subsystem

The digital programmable system creates application specific 
combinations of both standard and advanced digital peripherals 
and custom logic functions. These peripherals and logic are then 
interconnected to each other and to any pin on the device, 
providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined 
here to provide an overview of capabilities and architecture. You 
do not need to interact directly with the programmable digital 
system at the hardware and register level. PSoC Creator 
provides a high level schematic capture graphical interface to 
automatically place and route resources similar to PLDs. 

The main components of the digital programmable system are:

 Universal Digital Blocks (UDB) – These form the core 
functionality of the digital programmable system. UDBs are a 
collection of uncommitted logic (PLD) and structural logic 
(Datapath) optimized to create all common embedded 
peripherals and customized functionality that are application or 
design specific.

 Universal Digital Block Array – UDB blocks are arrayed within 
a matrix of programmable interconnect. The UDB array 
structure is homogeneous and allows for flexible mapping of 
digital functions onto the array. The array supports extensive 
and flexible routing interconnects between UDBs and the 
Digital System Interconnect.

 Digital System Interconnect (DSI) – Digital signals from 
Universal Digital Blocks (UDBs), fixed function peripherals, I/O 
pins, interrupts, DMA, and other system core signals are 
attached to the Digital System Interconnect to implement full 
featured device connectivity. The DSI allows any digital function 
to any pin or other feature routability when used with the 
Universal Digital Block Array.

Figure 7-1. CY8C36 Digital Programmable Architecture

7.1  Example Peripherals

The flexibility of the CY8C36 family’s Universal Digital Blocks 
(UDBs) and Analog Blocks allow the user to create a wide range 
of components (peripherals). The most common peripherals 
were built and characterized by Cypress and are shown in the 
PSoC Creator component catalog, however, users may also 
create their own custom components using PSoC Creator. Using 
PSoC Creator, users may also create their own components for 
reuse within their organization, for example sensor interfaces, 
proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is 
too numerous to list in the data sheet, and the list is always 
growing. An example of a component available for use in 
CY8C36 family, but, not explicitly called out in this data sheet is 
the UART component.

7.1.1  Example Digital Components

The following is a sample of the digital components available in 
PSoC Creator for the CY8C36 family. The exact amount of 
hardware resources (UDBs, routing, RAM, flash) used by a 
component varies with the features selected in PSoC Creator for 
the component. 

 Communications
 I2C
 UART 
 SPI

 Functions
 EMIF
 PWMs
 Timers
 Counters

 Logic
 NOT
 OR
 XOR
 AND

7.1.2  Example Analog Components

The following is a sample of the analog components available in 
PSoC Creator for the CY8C36 family. The exact amount of 
hardware resources (SC/CT blocks, routing, RAM, flash) used 
by a component varies with the features selected in PSoC 
Creator for the component. 

 Amplifiers
 TIA
 PGA
 opamp

 ADC
 Delta-Sigma

 DACs
 Current
 Voltage
 PWM

 Comparators

Mixers

IO
 P

or
t

Digital Core System 
and Fixed Function Peripherals

U
D

B
 A

rr
a

y

U
D

B
 A

rr
a

y

IO
 P

or
t

IO
 P

or
t

IO
 P

or
t DSI Routing Interface

DSI Routing Interface

Digital Core System 
and Fixed Function Peripherals

UDB UDB UDB UDB

UDB UDB UDB UDB

UDB UDB UDB UDB

UDB UDB UDB UDB

UDB UDB UDB UDB

UDB UDB UDB UDB



PSoC® 3: CY8C36 Family Datasheet

Document Number: 001-53413 Rev. *Y Page 49 of 137

7.3  UDB Array Description

Figure 7-7 shows an example of a 16-UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure 

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 
utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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7.9  Digital Filter Block

Some devices in the CY8C36 family of devices have a dedicated 
HW accelerator block used for digital filtering. The DFB has a 
dedicated multiplier and accumulator that calculates a 24-bit by 
24-bit multiply accumulate in one bus clock cycle. This enables 
the mapping of a direct form FIR filter that approaches a 
computation rate of one FIR tap for each clock cycle. The MCU 
can implement any of the functions performed by this block, but 
at a slower rate that consumes MCU bandwidth.

The heart of the DFB is a datapath (DP), which is the numerical 
calculation unit of the DFB. The DP is a 24-bit fixed-point 
numerical processor containing a 48-bit multiply and accumulate 
function (MAC), a multi-function ALU, sample and coefficient 
data RAMs as well as data routing, shifting, holding and rounding 
functions.

In the MAC, two 24-bit values can be multiplied and the result 
added to the 48-bit accumulator in each bus clock cycle. The 
MAC is the only portion of the DP that is wider than 24 bits. All 
results from the MAC are passed on to the ALU as 24-bit values 
representing the high-order 24 bits in the accumulator shifted by 
one (bits 46:23). The MAC assumes an implied binary point after 
the most significant bit.

The DP also contains an optimized ALU that supports add, 
subtract, comparison, threshold, absolute value, squelch, 
saturation, and other functions. The DP unit is controlled by 
seven control fields totaling 18 bits coming from the DFB 
Controller. For more information see the TRM.

The PSoC Creator interface provides a wizard to implement FIR 
and IIR digital filters with coefficients for LPF, BPF, HPF, Notch 
and arbitrary shape filters. 64 pairs of data and coefficients are 
stored. This enables a 64 tap FIR filter or up to 4 16 tap filters of 
either FIR or IIR formulation.

Figure 7-20. DFB Application Diagram (pwr/gnd not shown)

The typical use model is for data to be supplied to the DFB over 
the system bus from another on-chip system data source such 
as an ADC. The data typically passes through main memory or 
is directly transferred from another chip resource through DMA. 
The DFB processes this data and passes the result to another 
on chip resource such as a DAC or main memory through DMA 
on the system bus.

Data movement in or out of the DFB is typically controlled by the 
system DMA controller but can be moved directly by the MCU.

8.  Analog Subsystem
The analog programmable system creates application specific 
combinations of both standard and advanced analog signal 
processing blocks. These blocks are then interconnected to 
each other and also to any pin on the device, providing a high 
level of design flexibility and IP security. The features of the 
analog subsystem are outlined here to provide an overview of 
capabilities and architecture.

 Flexible, configurable analog routing architecture provided by 
analog globals, analog mux bus, and analog local buses.

 High resolution Delta-Sigma ADC.

 Up to four 8-bit DACs that provide either voltage or current 
output.

 Four comparators with optional connection to configurable LUT 
outputs.

 Up to four configurable switched capacitor/continuous time 
(SC/CT) blocks for functions that include opamp, unity gain 
buffer, programmable gain amplifier, transimpedance amplifier, 
and mixer.

 Up to four opamps for internal use and connection to GPIO that 
can be used as high current output buffers.

 CapSense subsystem to enable capacitive touch sensing.

 Precision reference for generating an accurate analog voltage 
for internal analog blocks.
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read_data
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The same opamps and block interfaces are also connectable to 
an array of resistors which allows the construction of a variety of 
continuous time functions.

The opamp and resistor array is programmable to perform 
various analog functions including

 Naked operational amplifier – Continuous mode

 Unity-gain buffer – Continuous mode

 Programmable gain amplifier (PGA) – Continuous mode

 Transimpedance amplifier (TIA) – Continuous mode

 Up/down mixer – Continuous mode

 Sample and hold mixer (NRZ S/H) – Switched cap mode

 First order analog to digital modulator – Switched cap mode

8.5.1  Naked Opamp

The Naked Opamp presents both inputs and the output for 
connection to internal or external signals. The opamp has a unity 
gain bandwidth greater than 6.0 MHz and output drive current up 
to 650 µA. This is sufficient for buffering internal signals (such as 
DAC outputs) and driving external loads greater than 7.5 k.

8.5.2  Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly 
connected to the inverting input for a gain of 1.00. It has a –3 dB 
bandwidth greater than 6.0 MHz.

8.5.3  PGA

The PGA amplifies an external or internal signal. The PGA can 
be configured to operate in inverting mode or noninverting mode. 
The PGA function may be configured for both positive and 
negative gains as high as 50 and 49 respectively. The gain is 
adjusted by changing the values of R1 and R2 as illustrated in 
Figure 8-8 on page 62. The schematic in Figure 8-8 on page 62 
shows the configuration and possible resistor settings for the 
PGA. The gain is switched from inverting and non inverting by 
changing the shared select value of the both the input muxes. 
The bandwidth for each gain case is listed in Table 8-3.

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not 
be large enough to achieve the desired resolution in the ADC, or 
dynamic range of another SC/CT block such as a mixer. The gain 
is adjustable at runtime, including changing the gain of the PGA 
prior to each ADC sample.

8.5.4  TIA

The Transimpedance Amplifier (TIA) converts an internal or 
external current to an output voltage. The TIA uses an internal 
feedback resistor in a continuous time configuration to convert 
input current to output voltage. For an input current Iin, the output 
voltage is VREF - Iin x Rfb, where VREF is the value placed on the 
non inverting input. The feedback resistor Rfb is programmable 
between 20 K and 1 M through a configuration register. 
Table 8-4 shows the possible values of Rfb and associated 
configuration settings.

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external 
sensor's output is current as a function of some type of stimulus 
such as temperature, light, magnetic flux etc. In a common 
application, the voltage DAC output can be connected to the 
VREF TIA input to allow calibration of the external sensor bias 
current by adjusting the voltage DAC output voltage.

8.6  LCD Direct Drive

The PSoC Liquid Crystal Display (LCD) driver system is a highly 
configurable peripheral designed to allow PSoC to directly drive 
a broad range of LCD glass. All voltages are generated on chip, 
eliminating the need for external components. With a high 
multiplex ratio of up to 1/16, the CY8C36 family LCD driver 
system can drive a maximum of 736 segments. The PSoC LCD 
driver module was also designed with the conservative power 
budget of portable devices in mind, enabling different LCD drive 
modes and power down modes to conserve power.

Table 8-3.  Bandwidth

Gain Bandwidth

1 6.0 MHz

24 340 kHz

48 220 kHz

50 215 kHz

R1 R2

20 k to 980 k

S

20 k or 40 k
1

0

1

0

Vin

Vref

Vref

Vin

Table 8-4.  Feedback Resistor Settings

Configuration Word Nominal Rfb (K)

000b 20

001b 30

010b 40

011b 60

100b 120

101b 250

110b 500

111b 1000

Vref
Vout

I in

R fb
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8.9  DAC

The CY8C36 parts contain up to four Digital to Analog 
Convertors (DACs). Each DAC is 8-bit and can be configured for 
either voltage or current output. The DACs support CapSense, 
power supply regulation, and waveform generation. Each DAC 
has the following features:

 Adjustable voltage or current output in 255 steps
 Programmable step size (range selection)
 Eight bits of calibration to correct ± 25% of gain error

 Source and sink option for current output 
 High and low speed / power modes
 8 Msps conversion rate for current output
 1 Msps conversion rate for voltage output
Monotonic in nature
 Data and strobe inputs can be provided by the CPU or DMA, 

or routed directly from the DSI
 Dedicated low-resistance output pin for high-current mode

Figure 8-11. DAC Block Diagram

8.9.1  Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 
31.875 µA, 0 to 255 µA, and 0 to 2.04 mA. The IDAC can be 
configured to source or sink current.

8.9.2  Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed 
through resistors. The two ranges available for the VDAC are 0 
to 1.02 V and 0 to 4.08 V. In voltage mode any load connected 
to the output of a DAC should be purely capacitive (the output of 
the VDAC is not buffered).

8.10  Up/Down Mixer

In continuous time mode, the SC/CT block components are used 
to build an up or down mixer. Any mixing application contains an 
input signal frequency and a local oscillator frequency. The 
polarity of the clock, Fclk, switches the amplifier between 
inverting or noninverting gain. The output is the product of the 
input and the switching function from the local oscillator, with 
frequency components at the local oscillator plus and minus the 
signal frequency (Fclk + Fin and Fclk – Fin) and reduced-level 
frequency components at odd integer multiples of the local 

oscillator frequency. The local oscillator frequency is provided by 
the selected clock source for the mixer. 

Continuous time up and down mixing works for applications with 
input signals and local oscillator frequencies up to 1 MHz.

Figure 8-12. Mixer Configuration

Reference 

Source

Scaler

I source  Range 

1x , 8x , 64x

I sink  Range    

1x , 8x , 64x

R

3R

Vout
Iout

Vref

Vout
0

1

 

Rmix 0 20 k or 40 k

Rmix 0 20 k or 40 k

sc_clk

sc_clk

Vin

C2 = 1.7 pF

C1 = 850 fF
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9.2  Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG 
interface. It requires only two pins instead of the four or five 
needed by JTAG. SWD provides all of the programming and 
debugging features of JTAG at the same speed. SWD does not 
provide access to scan chains or device chaining. The SWD 
clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) 
or the USBIO D+ and D– pins. The USBIO pins are useful for in 
system programming of USB solutions that would otherwise 
require a separate programming connector. One pin is used for 
the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This 
only happens if, within 8 μs (key window) after reset, that pin pair 

(JTAG or USB) receives a predetermined acquire sequence of 
1s and 0s. If the NVL latches are set for SWD (see Section 5.5), 
this sequence need not be applied to the JTAG pin pair. The 
acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash 
memory. 

The SWD interface can be enabled from the JTAG interface or 
disabled, allowing its pins to be used as GPIO. Unlike JTAG, the 
SWD interface can always be reacquired on any device during 
the key window. It can then be used to reenable the JTAG 
interface, if desired. When using SWD or JTAG pins as standard 
GPIO, make sure that the GPIO functionality and PCB circuits do 
not interfere with SWD or JTAG use.

Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

VSSD, VSSA

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3

SWDCK (P1[1] or P15[7])

SWDIO (P1[0] or P15[6])

XRES or P1[2]  3, 4

GND
GND

SWDCK

SWDIO

XRES

Host Programmer PSoC 3
VDD

1  The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming    
    should be the same. XRES pin (XRES_N or P1[2]) is  powered by VDDIO1. The USB SWD pins are 
    powered by VDDD.  So for Programming using the USB SWD pins with XRES pin, the VDDD, VDDIO1 of 
   PSoC 3 should be at the same voltage level as Host VDD. Rest of PSoC 3 voltage domains ( VDDA, VDDIO0,  
VDDIO2, VDDIO3) need not be at the same voltage level as host Programmer.   The Port 1 SWD pins are   

   powered by VDDIO1.  So VDDIO1 of PSoC 3 should be at same voltage level as host VDD for Port 1 SWD  
   programming. Rest of PSoC 3 voltage domains ( VDDD,  VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same  
   voltage level as host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 3.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 3. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

4  P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For  
   devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48-
   pin devices, but use dedicated XRES pin for rest of devices.

VDD
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Sleep Mode[32]

CPU = OFF
RTC = ON (= ECO32K ON, in low-power 
mode)
Sleep timer = ON (= ILO ON at 1 kHz)[33]

WDT = OFF
I2C Wake = OFF
Comparator = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
4.5 V - 5.5 V

T = –40 °C – 1.1 2.3 µA

T = 25 °C – 1.1 2.2

T = 85 °C – 15 30

VDD = VDDIO = 
2.7 V – 3.6 V

T = –40 °C – 1 2.2

T = 25 °C – 1 2.1

T = 85 °C – 12 28

VDD = VDDIO = 
1.71 V – 1.95 V[34]

T = 25 °C – 2.2 4.2

Comparator = ON
CPU = OFF
RTC = OFF
Sleep timer = OFF
WDT = OFF
I2C Wake = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
2.7 V – 3.6 V[35]

T = 25 °C – 2.2 2.7

I2C Wake = ON
CPU = OFF
RTC = OFF
Sleep timer = OFF
WDT = OFF
Comparator = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
2.7 V – 3.6 V[35]

T = 25 °C – 2.2 2.8

Hibernate Mode[32]

Hibernate mode current
All regulators and oscillators off
SRAM retention
GPIO interrupts are active
Boost = OFF
SIO pins in single ended input, unregulated 
output
mode

VDD = VDDIO = 
4.5 V - 5.5 V

T = –40 °C – 0.2 1.5 µA

T = 25 °C – 0.5 1.5

T = 85 °C – 4.1 5.3

VDD = VDDIO = 
2.7 V – 3.6 V

T = –40 °C – 0.2 1.5

T = 25 °C – 0.2 1.5

T = 85 °C – 3.2 4.2

VDD = VDDIO = 
1.71 V – 1.95 V[34]

T = –40 °C – 0.2 1.5

T = 25 °C – 0.3 1.5

T = 85 °C – 3.3 4.3

IDDAR Analog current consumption while device 
is reset[36]

VDDA  3.6 V – 0.3 0.6 mA

VDDA  3.6 V – 1.4 3.3 mA

IDDDR Digital current consumption while device is 
reset[36]

VDDD  3.6 V – 1.1 3.1 mA

VDDD  3.6 V – 0.7 3.1 mA

Table 11-2.  DC Specifications (continued)

Parameter Description Conditions Min Typ[29] Max Units

Notes
32. If VCCD and VCCA are externally regulated, the voltage difference between VCCD and VCCA must be less than 50 mV.
33. Sleep timer generates periodic interrupts to wake up the CPU. This specification applies only to those times that the CPU is off.
34. Externally regulated mode.
35. Based on device characterization (not production tested).
36. Based on device characterization (not production tested). USBIO pins tied to ground (VSSD).
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Figure 11-1. Active Mode Current vs FCPU, VDD = 3.3 V, 
Temperature = 25 °C

Figure 11-2. Active Mode Current vs Temperature and FCPU, 
VDD = 3.3 V

Figure 11-3. Active Mode Current vs VDD and Temperature, 
FCPU = 24 MHz
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Figure 11-15. GPIO Output High Voltage and Current Figure 11-16. GPIO Output Low Voltage and Current

Table 11-10.  GPIO AC Specifications

Parameter Description Conditions Min Typ Max Units
TriseF Rise time in Fast Strong Mode[45] 3.3 V VDDIO Cload = 25 pF – – 6 ns
TfallF Fall time in Fast Strong Mode[45] 3.3 V VDDIO Cload = 25 pF – – 6 ns
TriseS Rise time in Slow Strong Mode[45] 3.3 V VDDIO Cload = 25 pF – – 60 ns
TfallS Fall time in Slow Strong Mode[45] 3.3 V VDDIO Cload = 25 pF – – 60 ns

Fgpioout

GPIO output operating frequency – – – –
2.7 V < VDDIO < 5.5 V, fast strong drive 
mode

90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, fast strong drive 
mode

90/10% VDDIO into 25 pF – – 20 MHz

3.3 V < VDDIO < 5.5 V, slow strong drive 
mode

90/10% VDDIO into 25 pF – – 7 MHz

1.71 V < VDDIO < 3.3 V, slow strong 
drive mode

90/10% VDDIO into 25 pF – – 3.5 MHz

Fgpioin
GPIO input operating frequency
1.71 V < VDDIO < 5.5 V 90/10% VDDIO – – 33 MHz

Note
45. Based on device characterization (Not production tested).
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Figure 11-46. IDAC Step Response, Codes 0x40 - 0xC0, 
255 µA Mode, Source Mode, High speed mode, VDDA = 5 V

Figure 11-47. IDAC Glitch Response, Codes 0x7F - 0x80, 
255 µA Mode, Source Mode, High speed mode, VDDA = 5 V

Figure 11-48. IDAC PSRR vs Frequency Figure 11-49. IDAC Current Noise, 255 µA Mode, 
Source Mode, High speed mode, VDDA = 5 V
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Figure 11-58. VDAC Step Response, Codes 0x40 - 0xC0, 1 V 
Mode, High speed mode, VDDA = 5 V

Figure 11-59. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V 
Mode, High speed mode, VDDA = 5 V

Figure 11-60. VDAC PSRR vs Frequency Figure 11-61. VDAC Voltage Noise, 1 V Mode, High speed 
mode, VDDA = 5 V

Table 11-31.  VDAC AC Specifications

Parameter Description Conditions Min Typ Max Units

FDAC Update rate 1 V scale – – 1000 ksps

4 V scale – – 250 ksps

TsettleP Settling time to 0.1%, step 25% to 
75%

1 V scale, Cload = 15 pF – 0.45 1 µs

4 V scale, Cload = 15 pF – 0.8 3.2 µs

TsettleN Settling time to 0.1%, step 75% to 
25%

1 V scale, Cload = 15 pF – 0.45 1 µs

4 V scale, Cload = 15 pF – 0.7 3 µs

Voltage noise Range = 1 V, High speed mode, 
VDDA = 5 V, 10 kHz

– 750 – nV/sqrtHz
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11.5.8  Mixer

The mixer is created using a SC/CT analog block; see the Mixer component data sheet in PSoC Creator for full electrical specifications 
and APIs.

11.5.9  Transimpedance Amplifier

The TIA is created using a SC/CT analog block; see the TIA component data sheet in PSoC Creator for full electrical specifications
and APIs. 

Table 11-32.  Mixer DC Specifications

Parameter Description Conditions Min Typ Max Units

VOS Input offset voltage – – 15 mV

Quiescent current – 0.9 2 mA

G Gain – 0 – dB

Table 11-33.  Mixer AC Specifications[63]

Parameter Description Conditions Min Typ Max Units

fLO Local oscillator frequency Down mixer mode – – 4 MHz

fin Input signal frequency Down mixer mode – – 14 MHz

fLO Local oscillator frequency Up mixer mode – – 1 MHz

fin Input signal frequency Up mixer mode – – 1 MHz

SR Slew rate 3 – – V/µs

Table 11-34.  Transimpedance Amplifier (TIA) DC Specifications

Parameter Description Conditions Min Typ Max Units

VIOFF Input offset voltage – –  10 mV

Rconv Conversion resistance[64] R = 20K; 40 pF load –25 – +35 %

R = 30K; 40 pF load –25 – +35 %

R = 40K; 40 pF load –25 – +35 %

R = 80K; 40 pF load –25 – +35 %

R = 120K; 40 pF load –25 – +35 %

R = 250K; 40 pF load –25 – +35 %

R= 500K; 40 pF load –25 – +35 %

R = 1M; 40 pF load –25 – +35 %

Quiescent current – 1.1 2 mA

Table 11-35.  Transimpedance Amplifier (TIA) AC Specifications

Parameter Description Conditions Min Typ Max Units

BW Input bandwidth (–3 dB) R = 20K; –40 pF load 1500 – – kHz

R = 120K; –40 pF load 240 – – kHz

R = 1M; –40 pF load 25 – – kHz

Notes
63. Based on device characterization (Not production tested).
64. Conversion resistance values are not calibrated. Calibrated values and details about calibration are provided in PSoC Creator component data sheets. External 

precision resistors can also be used.
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11.6.6  Digital Filter Block  

11.6.7  USB 

Table 11-51.  DFB DC Specifications

Parameter Description Conditions Min Typ Max Units

DFB operating current 64-tap FIR at FDFB

500 kHz (6.7 ksps) – 0.16 0.27 mA

1 MHz (13.4 ksps) – 0.33 0.53 mA

10 MHz (134 ksps) – 3.3 5.3 mA

48 MHz (644 ksps) – 15.7 25.5 mA

67 MHz (900 ksps) – 21.8 35.6 mA

Table 11-52.  DFB AC Specifications

Parameter Description Conditions Min Typ Max Units

FDFB DFB operating frequency DC – 67.01 MHz

Note
66. Rise/fall time matching (TR) not guaranteed, see USB Driver AC Specifications on page 87.

Table 11-53.  USB DC Specifications

Parameter Description Conditions Min Typ Max Units

VUSB_5 Device supply (VDDD) for USB 
operation

USB configured, USB regulator 
enabled

4.35 – 5.25 V

VUSB_3.3 USB configured, USB regulator 
bypassed

3.15 – 3.6 V

VUSB_3 USB configured, USB regulator 
bypassed[66]

2.85 – 3.6 V

IUSB_Configured Device supply current in device 
active mode, bus clock and IMO = 
24 MHz

VDDD = 5 V, FCPU = 1.5 MHz – 10 – mA

VDDD = 3.3 V, FCPU = 1.5 MHz – 8 – mA

IUSB_Suspended Device supply current in device 
sleep mode

VDDD = 5 V, connected to USB 
host, PICU configured to wake on 
USB resume signal

– 0.5 – mA

VDDD = 5 V, disconnected from 
USB host

– 0.3 – mA

VDDD = 3.3 V, connected to USB 
host, PICU configured to wake on 
USB resume signal

– 0.5 – mA

VDDD = 3.3 V, disconnected from 
USB host

– 0.3 – mA
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Figure 11-71. IMO Frequency Variation vs. Temperature Figure 11-72. IMO Frequency Variation vs. VCC

Jp–p

Jitter (peak to peak)[81]

F = 24 MHz – 0.9 – ns

F = 3 MHz – 1.6 – ns 

Jperiod

Jitter (long term)[81]

F = 24 MHz – 0.9 – ns

F = 3 MHz – 12 – ns

Table 11-74.  IMO AC Specifications (continued)

Parameter Description Conditions Min Typ Max Units

Note
81. Based on device characterization (Not production tested).
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14.  Acronyms

Table 14-1.  Acronyms Used in this Document 

Acronym Description

abus analog local bus

ADC analog-to-digital converter

AG analog global

AHB AMBA (advanced microcontroller bus archi-
tecture) high-performance bus, an ARM data 
transfer bus

ALU arithmetic logic unit

AMUXBUS analog multiplexer bus

API application programming interface

APSR application program status register

ARM® advanced RISC machine, a CPU architecture

ATM automatic thump mode

BW bandwidth

CAN Controller Area Network, a communications 
protocol

CMRR common-mode rejection ratio

CPU central processing unit

CRC cyclic redundancy check, an error-checking 
protocol

DAC digital-to-analog converter, see also IDAC, VDAC

DFB digital filter block

DIO digital input/output, GPIO with only digital 
capabilities, no analog. See GPIO.

DMA direct memory access, see also TD

DNL differential nonlinearity, see also INL

DNU do not use

DR port write data registers

DSI digital system interconnect

DWT data watchpoint and trace

ECC error correcting code

ECO external crystal oscillator

EEPROM electrically erasable programmable read-only 
memory

EMI electromagnetic interference

EMIF external memory interface

EOC end of conversion

EOF end of frame

EPSR execution program status register 

ESD electrostatic discharge

ETM embedded trace macrocell

FIR finite impulse response, see also IIR

FPB flash patch and breakpoint

FS full-speed

GPIO general-purpose input/output, applies to a PSoC 
pin

HVI high-voltage interrupt, see also LVI, LVD

IC integrated circuit

IDAC current DAC, see also DAC, VDAC

IDE integrated development environment

I2C, or IIC Inter-Integrated Circuit, a communications 
protocol

IIR infinite impulse response, see also FIR

ILO internal low-speed oscillator, see also IMO

IMO internal main oscillator, see also ILO

INL integral nonlinearity, see also DNL

I/O input/output, see also GPIO, DIO, SIO, USBIO

IPOR initial power-on reset 

IPSR interrupt program status register

IRQ interrupt request

ITM instrumentation trace macrocell

LCD liquid crystal display

LIN Local Interconnect Network, a communications 
protocol.

LR link register

LUT lookup table

LVD low-voltage detect, see also LVI

LVI low-voltage interrupt, see also HVI

LVTTL low-voltage transistor-transistor logic

MAC multiply-accumulate

MCU microcontroller unit

MISO master-in slave-out

NC no connect

NMI nonmaskable interrupt

NRZ non-return-to-zero

NVIC nested vectored interrupt controller

NVL nonvolatile latch, see also WOL

opamp operational amplifier

PAL programmable array logic, see also PLD

PC program counter

PCB printed circuit board

PGA programmable gain amplifier

Table 14-1.  Acronyms Used in this Document  (continued)
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*N 3645908 06/14/2012 MKEA Added paragraph clarifying that to achieve low hibernate current, you must limit 
the frequency of IO input signals.
Revised description of IPOR and clarified PRES term.
Changed footnote to state that all GPIO input voltages - not just analog voltages 
- must be less than Vddio.
Updated 100-TQFP package drawing
Clarified description of opamp Iout spec
Changed “compliant with I2C” to “compatible with I2C”
Updated 48-QFN package drawing
Changed reset status register description text to clarify that not all reset sources 
are in the register
Updated example PCB layout figure
Removed text stating that FTW is a wakeup source
Changed supply ramp rate spec from 1 V/ns to 0.066 V/µs
Added “based on char” footnote to voltage monitors response time spec
Changed analog global spec descriptions and values
Added spec for ESDHBM for when Vssa and Vssd are separate
Added a statement about support for JTAG programmers and file formats
Changed comparator specs and conditions
Added text describing flash cache, and updated related text
Changed text and added figures describing Vddio source and sink
Added a statement about support for JTAG programmers and file formats.
Changed comparator specs and conditions
Added text on adjustability of buzz frequency
Updated terminology for “master” and “system” clock
Deleted the text “debug operations are possible while the device is reset”
Deleted and updated text regarding SIO performance under certain power ramp 
conditions
Removed from boost mention of 22 µH inductors. This included deleting some 
graph figures.
Changed DAC high and low speed/power mode descriptions and conditions
Changed IMO startup time spec
Added text on XRES and PRES re-arm times
Added text about usage in externally regulated mode
Updated package diagram spec 001-45616 to *D revision.
Changed supply ramp rate spec from 1 V/ns to 0.066 V/µs
Changed text describing SIO modes for overvoltage tolerance
Added chip Idd specs for active and low-power modes, for multiple voltage, 
temperature and usage conditions
Added chip Idd specs for active and low-power modes, for multiple voltage, 
temperature and usage conditions
Updated Vref temperature drift specs. Added Vref graphs and footnote.
Updated DFB description text
Changed load cap conditions in opamp specs
Updated del-sig ADC spec tables, to replace three the instances of “16 bit” with 
“12 bit”
Updated package diagram spec 001-45616 to *D revision

*O 3648803 06/18/2012 WKA/
MKEA

No changes. EROS update.
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