

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3666lti-027t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview	4
2. Pinouts	6
3. Pin Descriptions	12
4. CPU	
4.1 8051 CPU	
4.2 Addressing Modes	14 11
4 4 DMA and PHUB	
4.5 Interrupt Controller	
5. Memory	
5.1 Static RAM	
5.2 Flash Program Memory	
5.3 Flash Security	
5.4 EEPROM	
5.5 Nonvolatile Latches (NVLs)	
5.6 External Memory Interface	
6. System Integration	
6.2 Power System	20 31
6.3 Reset	
6.4 I/O System and Routing	
7. Digital Subsystem	
7. Digital Subsystem 7.1 Example Peripherals	 44 44
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block	44 44 46
7. Digital Subsystem	44 44 46 49
7. Digital Subsystem	
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 UDD 	44 44 46 49 49 51
7. Digital Subsystem	44 44 46 49 49 51 51 53
7. Digital Subsystem	44 44 46 49 49 51 53 53 53
 7. Digital Subsystem	44 44 46 49 49 51 53 53 53 54 56
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 	44 44 49 49 51 53 53 53 54 56 56
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 	44 44 46 49 49 51 53 53 53 53 54 56 56 57
 7. Digital Subsystem	44 44 49 49 51 53 53 53 54 56 56 57 57 59
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 	
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 	44 46 49 49 51 53 53 53 54 56 56 57 59 60 60 61
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 	44 44 49 49 51 53 53 53 53 54 56 56 57 59 60 61 61
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 	44 44 49 49 51 53 53 53 54 56 56 57 59 60 60 61 61 61 62
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 9.0 Terms Operators 	44 44 49 49 51 53 53 53 54 56 56 57 59 60 61 61 62 62 62
 7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor 8 DAC 	44 44 49 49 51 53 53 53 54 56 56 56 57 59 60 61 61 61 62 63 63 63
 7. Digital Subsystem	44 44 46 49 51 53 53 54 56 57 59 60 61 62 63 64
 7. Digital Subsystem	44 44 46 49 51 53 53 54 56 57 59 60 61 62 63 64 64

9. Programming, Debug Interfaces, Resources	65
9.2 Serial Wire Debug Interface	
9.3 Debug Features	
9.4 Trace Features	
9.5 Single Wire Viewer Interface	
9.6 Programming Features	68
9.7 Device Security	68
9.8 CSP Package Bootloader	69
10. Development Support	
10.1 Documentation	
10.2 Online	
10.3 Tools	
11. Electrical Specifications	71
11.1 Absolute Maximum Ratings	71
11.2 Device Level Specifications	72
11.3 Power Regulators	76
11.4 Inputs and Outputs	80
11.5 Analog Peripherals	
11.6 Digital Peripherals	105
11.7 Memory	109 112
11.0 FOUC System Resources	113 116
10. Ordenie z lafernetie z	110
12. Ordering information	1 20 121
	121
13. Packaging	122
14. Acronyms	126
15. Reference Documents	127
16. Document Conventions	128
16.1 Units of Measure	128
17. Revision History	129
18. Sales, Solutions, and Legal Information	137
Worldwide Sales and Design Support	137
Products	137
PSoC® Solutions	137
Cypress Developer Community	137
Lechnical Support	137

4.3.1.5 Program Branching Instructions

The 8051 supports a set of conditional and unconditional jump instructions that help to modify the program execution flow. Table 4-5 shows the list of jump instructions.

Table 4-5. Jump Instructions

Mnemonic	Description	Bytes	Cycles
ACALL addr11	Absolute subroutine call	2	4
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	4
RETI	Return from interrupt	1	4
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A + DPTR	Jump indirect relative to DPTR	1	5
JZ rel	Jump if accumulator is zero	2	4
JNZ rel	Jump if accumulator is nonzero	2	4
CJNE A, Direct, rel	Compare direct byte to accumulator and jump if not equal	3	5
CJNE A, #data, rel	Compare immediate data to accumulator and jump if not equal	3	4
CJNE Rn, #data, rel	Compare immediate data to register and jump if not equal	3	4
CJNE @Ri, #data, rel	Compare immediate data to indirect RAM and jump if not equal	3	5
DJNZ Rn,rel	Decrement register and jump if not zero	2	4
DJNZ Direct, rel	Decrement direct byte and jump if not zero	3	5
NOP	No operation	1	1

4.4 DMA and PHUB

The PHUB and the DMA controller are responsible for data transfer between the CPU and peripherals, and also data transfers between peripherals. The PHUB and DMA also control device configuration during boot. The PHUB consists of:

- A central hub that includes the DMA controller, arbiter, and router
- Multiple spokes that radiate outward from the hub to most peripherals

There are two PHUB masters: the CPU and the DMA controller. Both masters may initiate transactions on the bus. The DMA channels can handle peripheral communication without CPU intervention. The arbiter in the central hub determines which DMA channel is the highest priority if there are multiple requests.

4.4.1 PHUB Features

- CPU and DMA controller are both bus masters to the PHUB
- Eight Multi-layer AHB Bus parallel access paths (spokes) for peripheral access

- Simultaneous CPU and DMA access to peripherals located on different spokes
- Simultaneous DMA source and destination burst transactions on different spokes
- Supports 8-, 16-, 24-, and 32-bit addressing and data Table 4-6. PHUB Spokes and Peripherals

PHUB Spokes	Peripherals
0	SRAM
1	IOs, PICU, EMIF
2	PHUB local configuration, Power manager, Clocks, IC, SWV, EEPROM, Flash programming interface
3	Analog interface and trim, Decimator
4	USB, CAN, I ² C, Timers, Counters, and PWMs
5	DFB
6	UDBs group 1
7	UDBs group 2

Figure 4-3. Interrupt Structure

Table 4-8. Interrupt Vector Table

#	Fixed Function	DMA	UDB
0	LVD	phub_termout0[0]	udb_intr[0]
1	Cache/ECC	phub_termout0[1]	udb_intr[1]
2	Reserved	phub_termout0[2]	udb_intr[2]
3	Sleep (Pwr Mgr)	phub_termout0[3]	udb_intr[3]
4	PICU[0]	phub_termout0[4]	udb_intr[4]
5	PICU[1]	phub_termout0[5]	udb_intr[5]
6	PICU[2]	phub_termout0[6]	udb_intr[6]
7	PICU[3]	phub_termout0[7]	udb_intr[7]
8	PICU[4]	phub_termout0[8]	udb_intr[8]
9	PICU[5]	phub_termout0[9]	udb_intr[9]
10	PICU[6]	phub_termout0[10]	udb_intr[10]
11	PICU[12]	phub_termout0[11]	udb_intr[11]
12	PICU[15]	phub_termout0[12]	udb_intr[12]
13	Comparators Combined	phub_termout0[13]	udb_intr[13]
14	Switched Caps Combined	phub_termout0[14]	udb_intr[14]
15	l ² C	phub_termout0[15]	udb_intr[15]
16	CAN	phub_termout1[0]	udb_intr[16]
17	Timer/Counter0	phub_termout1[1]	udb_intr[17]
18	Timer/Counter1	phub_termout1[2]	udb_intr[18]
19	Timer/Counter2	phub_termout1[3]	udb_intr[19]
20	Timer/Counter3	phub_termout1[4]	udb_intr[20]
21	USB SOF Int	phub_termout1[5]	udb_intr[21]
22	USB Arb Int	phub_termout1[6]	udb_intr[22]

5.4 EEPROM

PSoC EEPROM memory is a byte-addressable nonvolatile memory. The CY8C36 has up to 2 KB of EEPROM memory to store user data. Reads from EEPROM are random access at the byte level. Reads are done directly; writes are done by sending write commands to an EEPROM programming interface. CPU code execution can continue from flash during EEPROM writes. EEPROM is erasable and writeable at the row level. The EEPROM is divided into 128 rows of 16 bytes each. The factory default values of all EEPROM bytes are 0.

Because the EEPROM is mapped to the 8051 xdata space, the CPU cannot execute out of EEPROM. There is no ECC hardware associated with EEPROM. If ECC is required it must be handled in firmware.

It can take as much as 20 milliseconds to write to EEPROM or flash. During this time the device should not be reset, or unexpected changes may be made to portions of EEPROM or flash. Reset sources (see Section 6.3.1) include XRES pin, software reset, and watchdog; care should be taken to make sure that these are not inadvertently activated. In addition, the low voltage detect circuits should be configured to generate an interrupt instead of a reset.

5.5 Nonvolatile Latches (NVLs)

PSoC has a 4-byte array of nonvolatile latches (NVLs) that are used to configure the device at reset. The NVL register map is shown in Table 5-2.

Table 5-2. Device Configuration NVL Register Map

Register Address	7	6	5	4	3	2	1	0		
0x00	PRT3RDM[1:0] PRT2RDM[1:0] PRT1RDM[1:0]		PRT2RDM[1:0] PRT1RDM[1:0]		PRT2RDM[1		[1:0] PRT2RDM[1:0]		PRT0	RDM[1:0]
0x01	PRT12R	DM[1:0]	PRT6RDM[1:0] PRT5RDM[1:0]		:0] PRT6RDM[1:0] PRT5RDM[1:0] PRT4RDM[RDM[1:0]			
0x02	XRESMEN	DBGEN			PRT15	5RDM[1:0]				
0x03		DIG_PHS_I	DLY[3:0] ECCEN DPS		DLY[3:0]		[1:0]	CFGSPEED		

The details for individual fields and their factory default settings are shown in Table 5-3.

Table 5-3. Fields and Factory Default Settings

Field	Description	Settings
PRTxRDM[1:0]	Controls reset drive mode of the corresponding IO port. See "Reset Configuration" on page 43. All pins of the port are set to the same mode.	00b (default) - high impedance analog 01b - high impedance digital 10b - resistive pull up 11b - resistive pull down
XRESMEN	Controls whether pin P1[2] is used as a GPIO or as an external reset. See "Pin Descriptions" on page 12, XRES description.	0 (default for 68-pin 72-pin, and 100-pin parts) - GPIO 1 (default for 48-pin parts) - external reset
DBGEN	Debug Enable allows access to the debug system, for third-party programmers.	0 - access disabled 1 (default) - access enabled
CFGSPEED	Controls the speed of the IMO-based clock during the device boot process, for faster boot or low-power operation	0 (default) - 12 MHz IMO 1 - 48 MHz IMO
DPS[1:0]	Controls the usage of various P1 pins as a debug port. See "Programming, Debug Interfaces, Resources" on page 65.	00b - 5-wire JTAG 01b (default) - 4-wire JTAG 10b - SWD 11b - debug ports disabled
ECCEN	Controls whether ECC flash is used for ECC or for general configuration and data storage. See "Flash Program Memory" on page 23.	0 - ECC disabled 1 (default) - ECC enabled
DIG_PHS_DLY[3:0]	Selects the digital clock phase delay.	See the TRM for details.

Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase / write cycles is limited – see "Nonvolatile Latches (NVL))" on page 110.

Table 6-1. Oscillator Summary

Source	Fmin	Tolerance at Fmin	Fmax	Tolerance at Fmax	Startup Time
IMO	3 MHz	±1% over voltage and temperature	62 MHz	±7%	13 µs max
MHzECO	4 MHz	Crystal dependent	25 MHz	Crystal dependent	5 ms typ, max is crystal dependent
DSI	0 MHz	Input dependent	33 MHz	Input dependent	Input dependent
PLL	24 MHz	Input dependent	67 MHz	Input dependent	250 µs max
Doubler	48 MHz	Input dependent	48 MHz	Input dependent	1 µs max
ILO	1 kHz	-50%, +100%	100 kHz	-55%, +100%	15 ms max in lowest power mode
kHzECO	32 kHz	Crystal dependent	32 kHz	Crystal dependent	500 ms typ, max is crystal dependent

6.1.1 Internal Oscillators

Figure 6-1 shows that there are two internal oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due to its $\pm 1\%$ accuracy. The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from $\pm 1\%$ at 3 MHz, up to $\pm 7\%$ at 62 MHz. The IMO, in conjunction with the PLL, allows generation of other clocks up to the device's maximum frequency (see Phase-Locked Loop).

The IMO provides clock outputs at 3, 6, 12, 24, 48, and 62 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works at an input frequency of 24 MHz, providing 48 MHz for the USB. It can be configured to use a clock from the IMO, MHzECO, or the DSI (external pin).

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be multiplied to higher frequencies. This is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time.

The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL outputs clock frequencies in the range of 24 to 67 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate, to generate the other clocks up to the device's maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit setting). It can be configured to use a clock from the IMO, MHZECO or DSI (external pin). The PLL clock source can be used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low-power modes.

6.1.1.4 Internal Low-Speed Oscillator

The ILO provides clock frequencies for low-power consumption, including the watchdog timer, and sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz.

The 1-kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself to low-power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (CTW).

The central timewheel is a 1-kHz, free-running, 13-bit counter clocked by the ILO. The central timewheel is always enabled, except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low-power mode. Firmware can reset the central timewheel. Systems that require accurate timing should use the RTC capability instead of the central timewheel.

The 100-kHz clock (CLK100K) can be used as a low power master clock. It can also generate time intervals using the fast timewheel.

The fast timewheel is a 5-bit counter, clocked by the 100-kHz clock. It features programmable settings and automatically resets when the terminal count is reached. An optional interrupt can be generated each time the terminal count is reached. This enables flexible, periodic interrupts of the CPU at a higher rate than is allowed using the central timewheel.

The 33-kHz clock (CLK33K) comes from a divide-by-3 operation on CLK100K. This output can be used as a reduced accuracy version of the 32.768-kHz ECO clock with no need for a crystal.

6.1.2 External Oscillators

Figure 6-1 shows that there are two external oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.2.1 MHz External Crystal Oscillator

The MHzECO provides high frequency, high precision clocking using an external crystal (see Figure 6-2). It supports a wide variety of crystal types, in the range of 4 to 25 MHz. When used in conjunction with the PLL, it can generate other clocks up to the device's maximum frequency (see Phase-Locked Loop). The GPIO pins connecting to the external crystal and capacitors are fixed. MHzECO accuracy depends on the crystal chosen.

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIO×, respectively. It also includes two internal 1.8 V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the

VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a $1-\mu F \pm 10\% \times 5R$ capacitor. The power system also contains a sleep regulator, an I^2C regulator, and a hibernate regulator.

Figure 6-4. PSoC Power System

Notes

- The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-8 on page 12.
- It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a significant percentage of the rated working voltage.
- You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins to the VCCx pins.
- You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this configuration, the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by default, and should be disabled to reduce power consumption.

6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to "1" and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt.

While level sensitive interrupts are not directly supported; universal digital blocks (UDB) provide this functionality to the system when needed.

6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin.

The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, select pins provide direct connections to specific analog features such as the high current DACs or uncommitted opamps.

6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders^[19]. See the "CapSense" section on page 63 for more information.

6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 62 for details.

6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically a voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins. Resistive pull-up and pull-down drive modes are not available with SIO in regulated output mode.

6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- 0.5 × V_{RFF}
- V_{REF}

Typically a voltage DAC (VDAC) generates the V_{REF} reference. "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins.

6.4.19 JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all I/O pins for board level test.

7. Digital Subsystem

The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. You do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- Universal Digital Blocks (UDB) These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal Digital Block Array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the Digital System Interconnect.
- Digital System Interconnect (DSI) Digital signals from Universal Digital Blocks (UDBs), fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the Digital System Interconnect to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the Universal Digital Block Array.

Figure 7-1. CY8C36 Digital Programmable Architecture

7.1 Example Peripherals

The flexibility of the CY8C36 family's Universal Digital Blocks (UDBs) and Analog Blocks allow the user to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog, however, users may also create their own custom components using PSoC Creator. Using PSoC Creator, users may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the data sheet, and the list is always growing. An example of a component available for use in CY8C36 family, but, not explicitly called out in this data sheet is the UART component.

7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C36 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
 - □ I²C
 - u UART
 - □ SPI
- Functions
 - D EMIF
 - □ PWMs
 - Timers
 - Counters
- Logic
 - NOT
 - o OR

 - AND

7.1.2 Example Analog Components

The following is a sample of the analog components available in PSoC Creator for the CY8C36 family. The exact amount of hardware resources (SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Amplifiers
- _ TIA
- □ PGA
- □ opamp
- ADC
- Delta-Sigma
- DACs
- Current
- Voltage
- □ PWM
- Comparators
- Mixers

Figure 7-13. I/O Pin Output Enable Connectivity

Port i

7.5 CAN

The CAN peripheral is a fully functional CAN supporting communication baud rates up to 1 Mbps. The CAN controller implements the CAN2.0A and CAN2.0B specifications as defined in the Bosch specification and conforms to the ISO-11898-1 standard. The CAN protocol was originally designed for automotive applications with a focus on a high level of fault detection. This ensures high communication reliability at a low cost. Because of its success in automotive applications, CAN is used as a standard communication protocol for motion oriented machine control networks (CANOpen) and factory automation applications (DeviceNet). The CAN controller features allow the efficient implementation of higher level protocols without affecting the performance of the microcontroller CPU. Full configuration support is provided in PSoC Creator.

7.5.1 CAN Features

- CAN2.0A/B protocol implementation ISO 11898 compliant
- Standard and extended frames with up to 8 bytes of data per frame
- Message filter capabilities
- Remote Transmission Request (RTR) support
- Programmable bit rate up to 1 Mbps
- Listen Only mode
- SW readable error counter and indicator
- Sleep mode: Wake the device from sleep with activity on the Rx pin
- Supports two or three wire interface to external transceiver (Tx, Rx, and Enable). The three-wire interface is compatible with the Philips PHY; the PHY is not included on-chip. The three wires can be routed to any I/O
- Enhanced interrupt controller
 CAN receive and transmit buffers status
 - CAN controller error status including BusOff

- Receive path
 - □ 16 receive buffers each with its own message filter
 - Enhanced hardware message filter implementation that covers the ID, IDE, and RTR
 - DeviceNet addressing support
 - Multiple receive buffers linkable to build a larger receive message array
 - Automatic transmission request (RTR) response handler
 Lost received message notification
- Transmit path
- Eight transmit buffers
- Programmable transmit priority
 - Round robin
 - · Fixed priority
- Message transmissions abort capability

7.5.2 Software Tools Support

- CAN Controller configuration integrated into PSoC Creator:
- CAN Configuration walkthrough with bit timing analyzer
- Receive filter setup

8.2.3 Start of Conversion Input

The SoC signal is used to start an ADC conversion. A digital clock or UDB output can be used to drive this input. It can be used when the sampling period must be longer than the ADC conversion time or when the ADC must be synchronized to other hardware. This signal is optional and does not need to be connected if ADC is running in a continuous mode.

8.2.4 End of Conversion Output

The EoC signal goes high at the end of each ADC conversion. This signal may be used to trigger either an interrupt or DMA request.

8.3 Comparators

The CY8C36 family of devices contains four comparators in a device. Comparators have these features:

Input offset factory trimmed to less than 5 mV

- Rail-to-rail common mode input range (VSSA to VDDA)
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low-power
- Comparator outputs can be routed to lookup tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO, DAC outputs and SC block outputs

8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB Digital System Interface.

8.3.2 LUT

The CY8C36 family of devices contains four LUTs. The LUT is a two input, one output lookup table that is driven by any one or two of the comparators in the chip. The output of any LUT is routed to the digital system interface of the UDB array. From the digital system interface of the UDB array, these signals can be connected to UDBs, DMA controller, I/O, or the interrupt controller.

The LUT control word written to a register sets the logic function on the output. The available LUT functions and the associated control word is shown in Table 8-2.

Table 8-2. LUT Function vs. Program Word and Inputs

Control Word	Output (A and B are LUT inputs)
0000b	FALSE ('0')
0001b	A AND B
0010b	A AND (NOT B)
0011b	A
0100b	(NOT A) AND B
0101b	В
0110b	A XOR B
0111b	A OR B
1000b	A NOR B
1001b	A XNOR B
1010b	NOT B
1011b	A OR (NOT B)
1100b	NOT A
1101b	(NOT A) OR B
1110b	A NAND B
1111b	TRUE ('1')

8.4 Opamps

The CY8C36 family of devices contain up to four general purpose opamps in a device.

Figure 8-6. Opamp

The opamp is uncommitted and can be configured as a gain stage or voltage follower, or output buffer on external or internal signals.

See Figure 8-7. In any configuration, the input and output signals can all be connected to the internal global signals and monitored with an ADC, or comparator. The configurations are implemented with switches between the signals and GPIO pins.

Figure 8-7. Opamp Configurations

The opamp has three speed modes, slow, medium, and fast. The slow mode consumes the least amount of quiescent power and the fast mode consumes the most power. The inputs are able to swing rail-to-rail. The output swing is capable of rail-to-rail operation at low current output, within 50 mV of the rails. When driving high current loads (about 25 mA) the output voltage may only get within 500 mV of the rails.

8.5 Programmable SC/CT Blocks

The CY8C36 family of devices contains up to four switched capacitor/continuous time (SC/CT) blocks in a device. Each switched capacitor/continuous time block is built around a single rail-to-rail high bandwidth opamp.

Switched capacitor is a circuit design technique that uses capacitors plus switches instead of resistors to create analog functions. These circuits work by moving charge between capacitors by opening and closing different switches. Nonoverlapping in phase clock signals control the switches, so that not all switches are ON simultaneously.

The PSoC Creator tool offers a user friendly interface, which allows you to easily program the SC/CT blocks. Switch control and clock phase control configuration is done by PSoC Creator so users only need to determine the application use parameters such as gain, amplifier polarity, V_{REF} connection, and so on.

11. Electrical Specifications

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. The unique flexibility of the PSoC UDBs and analog blocks enable many functions to be implemented in PSoC Creator components, see the component data sheets for full AC/DC specifications of individual functions. See the "Example Peripherals" section on page 44 for further explanation of PSoC Creator components.

11.1 Absolute Maximum Ratings

	Table 11-1.	Absolute Maximum	Ratings DC S	pecifications ^[22]
--	-------------	-------------------------	--------------	-------------------------------

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{DDA}	Analog supply voltage relative to V _{SSA}		-0.5	_	6	V
V _{DDD}	Digital supply voltage relative to V_{SSD}		-0.5	_	6	V
V _{DDIO}	I/O supply voltage relative to $V_{\mbox{\scriptsize SSD}}$		-0.5	-	6	V
V _{CCA}	Direct analog core voltage input		-0.5	-	1.95	V
V _{CCD}	Direct digital core voltage input		-0.5	-	1.95	V
V _{SSA}	Analog ground voltage		V _{SSD} – 0.5	_	V _{SSD} + 0.5	V
V _{GPIO} ^[23]	DC input voltage on GPIO	Includes signals sourced by V_{DDA} and routed internal to the pin	V _{SSD} – 0.5	_	V _{DDIO} + 0.5	V
V _{SIO}	DC input voltage on SIO	Output disabled	$V_{SSD} - 0.5$	-	7	V
		Output enabled	$V_{SSD} - 0.5$	-	6	V
V _{IND}	Voltage at boost converter input		0.5	-	5.5	V
V _{BAT}	Boost converter supply		$V_{SSD} - 0.5$	-	5.5	V
I _{VDDIO}	Current per V _{DDIO} supply pin		-	_	100	mA
I _{GPIO}	GPIO current		-30	-	41	mA
I _{SIO}	SIO current		-49	-	28	mA
IUSBIO	USBIO current		-56	_	59	mA
V _{EXTREF}	ADC external reference inputs	Pins P0[3], P3[2]	-	-	2	V
LU	Latch up current ^[24]		-140	-	140	mA
ESD	Electrostatic discharge voltage,	V _{SSA} tied to V _{SSD}	2200	-	-	V
	Human body model	$V_{\rm SSA}$ not tied to $V_{\rm SSD}$	750	-	-	V
ESD _{CDM}	Electrostatic discharge voltage, Charge device model		500	_	-	V

Notes

22. Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.
 23. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin ≤ V_{DDIO} ≤ V_{DDA}.
 24. Meets or exceeds JEDEC Spec EIA/JESD78 IC Latch-up Test.

11.5.2 Delta-Sigma ADC

Unless otherwise specified, operating conditions are:

- Operation in continuous sample mode
- fclk = 6.144 MHz
- Reference = 1.024 V internal reference bypassed on P3.2 or P0.3
- Unless otherwise specified, all charts and graphs show typical values

Table 11-21. 12-bit Delta-sigma ADC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		8	-	12	bits
	Number of channels, single ended		-	-	No. of GPIO	-
	Number of channels, differential	Differential pair is formed using a pair of GPIOs.	-	-	No. of GPIO/2	-
	Monotonic	Yes	_	-	_	-
Ge	Gain error	Buffered, buffer gain = 1, Range = ±1.024 V, 25 °C	-	-	±0.2	%
Gd	Gain drift	Buffered, buffer gain = 1, Range = ±1.024 V	-	-	50	ppm/°C
Vos	Input offset voltage	Buffered, 12-bit mode	-	-	±0.1	mV
TCVos	Temperature coefficient, input offset voltage	Buffer gain = 1, 12-bit, Range = ±1.024 V	-	-	1	µV/°C
	Input voltage range, single ended ^[52]		V _{SSA}	-	V _{DDA}	V
	Input voltage range, differential unbuf- fered ^[52]		V_{SSA}	-	V_{DDA}	V
	Input voltage range, differential, buffered ^[52]		V_{SSA}	-	V _{DDA} – 1	V
INL12	Integral non linearity ^[52]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
DNL12	Differential non linearity ^[52]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
INL8	Integral non linearity ^[52]	Range = ±1.024 V, unbuffered	_	-	±1	LSB
DNL8	Differential non linearity ^[52]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
Rin_Buff	ADC input resistance	Input buffer used	10	-	I	MΩ
Rin_ADC12	ADC input resistance	Input buffer bypassed, 12 bit, Range = ±1.024 V	-	148 ^[53]	-	kΩ
Rin_ExtRef	ADC external reference input resistance		_	70 ^[53, 54]	-	kΩ
Vextref	ADC external reference input voltage, see also internal reference in Voltage Reference on page 93	Pins P0[3], P3[2]	0.9	_	1.3	V
Current Co	nsumption					
I _{DD_12}	$I_{DDA} + I_{DDD}$ current consumption, 12 bit ^[52]	192 ksps, unbuffered	_	-	1.95	mA
I _{BUFF}	Buffer current consumption ^[52]		-	-	2.5	mA

Notes

52. Based on device characterization (not production tested).
53. By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to the inverse of the clock frequency. This value is calculated, not measured. For more information see the Technical Reference Manual.

54. Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1-μF capacitor is recommended. For more information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.

11.5.5 Comparator

Table 11-26. Comparator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Input offset voltage in fast mode	Factory trim, V_{DDA} > 2.7 V, Vin \ge 0.5 V	-		10	mV
	Input offset voltage in slow mode	Factory trim, Vin $\ge 0.5 V$	-		9	mV
V _{OS}	Input offset voltage in fast mode ^[60]	Custom trim	-	-	4	mV
	Input offset voltage in slow mode ^[60]	Custom trim	-	-	4	mV
	Input offset voltage in ultra low-power mode	V _{DDA} ≤ 4.6 V	-	±12	-	mV
V _{HYST}	Hysteresis	Hysteresis enable mode	-	10	32	mV
V _{ICM}	Input common mode voltage	High current / fast mode	V _{SSA}	-	V _{DDA}	V
		Low current / slow mode	V _{SSA}	-	V _{DDA}	V
		Ultra low power mode V _{DDA} ≤ 4.6 V	V_{SSA}	-	V _{DDA} – 1.15	V
CMRR	Common mode rejection ratio		-	50	-	dB
I _{CMP}	High current mode/fast mode ^[61]		-	-	400	μA
	Low current mode/slow mode ^[61]		_	_	100	μA
	Ultra low-power mode ^[61]	V _{DDA} ≤ 4.6 V	-	6	-	μA

Table 11-27. Comparator AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Response time, high current mode ^[61]	50 mV overdrive, measured pin-to-pin	-	75	110	ns
T _{RESP}	Response time, low current mode ^[61]	50 mV overdrive, measured pin-to-pin	-	155	200	ns
	Response time, ultra low-power mode ^[61]	50 mV overdrive, measured pin-to-pin, V _{DDA} ≤ 4.6 V	-	55	-	μs

11.5.6 Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 12 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-28. IDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		-	-	8	bits
I _{OUT}	Output current at code = 255	Range = 2.04 mA, code = 255, $V_{DDA} \ge 2.7$ V, Rload = 600 Ω	-	2.04	-	mA
		Range = 2.04 mA, high speed mode, code = 255, V _{DDA} \leq 2.7 V, Rload = 300 Ω	-	2.04	-	mA
		Range = 255 μ A, code = 255, Rload = 600 Ω	_	255	_	μA
		Range = 31.875 μ A, code = 255, Rload = 600 Ω	_	31.875	_	μA
	Monotonicity		-	-	Yes	

Notes

60. The recommended procedure for using a custom trim value for the on-chip comparators can be found in the TRM.61. Based on device characterization (Not production tested).

Figure 11-36. IDAC INL vs Input Code, Range = 255 μ A, Source Mode

Figure 11-38. IDAC DNL vs Input Code, Range = 255 $\mu\text{A},$ Source Mode

Figure 11-40. IDAC INL vs Temperature, Range = 255 $\mu A,$ High speed mode

Figure 11-37. IDAC INL vs Input Code, Range = 255μ A, Sink Mode

Figure 11-41. IDAC DNL vs Temperature, Range = 255 μ A, High speed mode

12.1 Part Numbering Conventions

PSoC 3 devices follow the part numbering convention described here. All fields are single character alphanumeric (0, 1, 2, ..., 9, A, B, ..., Z) unless stated otherwise.

CY8Cabcdetg-xxx	
 a: Architecture a: PSoC 3 5: PSoC 5 b: Family group within architecture 4: CY8C34 family 	 ef: Package code Two character alphanumeric AX: TQFP LT: QFN PV: SSOP FN: CSP
 6: CY8C36 family 8: CY8C38 family c: Speed grade 4: 48 MHz 6: 67 MHz 	 g: Temperature range C: commercial I: industrial A: automotive
■ d: Flash capacity □ 4: 16 KB □ 5: 32 KB	 xxx: Peripheral set Three character numeric No meaning is associated with these three characters.

□ 6: 64 KB

Example	$\underbrace{CY8C}_{F} \stackrel{3}{} \stackrel{6}{} \stackrel{6}{} \stackrel{6}{} \stackrel{P}{} \stackrel{V}{} \stackrel{I}{} \stackrel{r}{} \stackrel{r}}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}}{} \stackrel{r}}{} \stackrel{r}{} \stackrel{r}}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}} \stackrel{r}{} \stackrel{r}} \stackrel{r}{} \stackrel{r}} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r} \stackrel{r} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{r} \stackrel{r}} \stackrel{r} \stackrel{\mathsf}} \stackrel{\mathsf}} \stackrel$
	Cypress Prefix
3: PSoC 3	Architecture
6: CY8C36 Family	Family Group within Architecture
6: 67 MHz	Speed Grade
6: 64 KB	Flash Capacity
PV: SSOP	Package Code
I: Industrial	Temperature Range ————————————————————————————————————
	Peripheral Set

Tape and reel versions of these devices are available and are marked with a "T" at the end of the part number.

All devices in the PSoC 3 CY8C36 family comply to RoHS-6 specifications, demonstrating the commitment by Cypress to lead-free products. Lead (Pb) is an alloying element in solders that has resulted in environmental concerns due to potential toxicity. Cypress uses nickel-palladium-gold (NiPdAu) technology for the majority of leadframe-based packages.

A high level review of the Cypress Pb-free position is available on our website. Specific package information is also available. Package Material Declaration data sheets (PMDDs) identify all substances contained within Cypress packages. PMDDs also confirm the absence of many banned substances. The information in the PMDDs will help Cypress customers plan for recycling or other "end of life" requirements.

Figure 13-1. 48-pin (300 mil) SSOP Package Outline

BOTTOM VIEW 5.6±0.10 PIN 1 ID -0.23±0.05 SOLDERABLE 5.6±0.10 **EXPOSED** 5.55 REF PAD 0.40±0.10 $\Pi \Pi \Pi$ ł - - 0.50±0.10 5.55 REF

NOTES:

- 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LT48D	LEAD FREE

001-45616 *E

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibels
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohours
kHz	kilohertz
kΩ	kilohms
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	megaohms
Msps	megasamples per second
μA	microamperes
μF	microfarads
μH	microhenrys

Symbol	Unit of Measure
μs	microseconds
μV	microvolts
μW	microwatts
mA	milliamperes
ms	milliseconds
mV	millivolts
nA	nanoamperes
ns	nanoseconds
nV	nanovolts
Ω	ohms
pF	picofarads
ppm	parts per million
ps	picoseconds
S	seconds
sps	samples per second
sqrtHz	square root of hertz
V	volts

Table 16-1. Units of Measure (continued)

Description Title: PSoC [®] 3: CY8C36 Family Datasheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-53413					
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
*T	4188568	11/14/2013	MKEA	Added SIO Comparator Specifications. Corrected typo in the V_{REF} parameter in the Voltage Reference Specifications. Added CSP information in Packaging and Ordering Information sections. Updated delta-sigma V_{OS} spec conditions.	
*U	4385782	05/21/2014	MKEA	Updated General Description and Features. Added More Information and PSoC Creator sections. Updated 100-pin TQFP package diagram.	
*V	4708125	03/31/2015	MKEA	Added INL4 and DNL4 specs in VDAC DC Specifications. Updated Figure 6-11. Added second note after Figure 6-4. Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2. Updated Section 6.2.2. Added Section 7.8.1. Updated Boost specifications.	
*W	4807497	06/23/2015	MKEA	Added reference to code examples in More Information. Updated typ value of TWRITE from 2 to 10 in EEPROM AC specs table. Changed "Device supply for USB operation" to "Device supply (VDDD) for USB operation" in USB DC Specifications. Clarified power supply sequencing and margin for VDDA and VDDD. Updated Serial Wire Debug Interface with limitations of debugging on Port 15. Updated Section 11.7.5. Updated Delta-sigma ADC DC Specifications	
*X	4932879	09/24/2015	MKEA	Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1, respectively. Added reference to AN54439 in Section 11.9.3. Added MHz ECO DC specs table. Removed references to IPOR rearm issues in Section 6.3.1.1. Table 6-1: Changed DSI Fmax to 33 MHz. Figure 6-1: Changed External I/O or DSI to 0-33 MHz. Table 11-10: Changed Fgpioin Max to 33 MHz. Table 11-12: Changed Fsioin Max to 33 MHz.	
*Y	5322536	06/27/2016	MKEA	Updated More Information. Corrected typos in External Electrical Connections. Added links to CAD Libraries in Section 2.	

18. Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2009-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and ober countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware solely for use with Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-53413 Rev. *Y

Revised June 27, 2016

ARM is a registered trademark, and Keil, and RealView are trademarks, of ARM Limited.