

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E-XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | 8051                                                                        |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 67MHz                                                                       |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, LINbus, SPI, UART/USART                          |
| Peripherals                | CapSense, DMA, LCD, POR, PWM, WDT                                           |
| Number of I/O              | 38                                                                          |
| Program Memory Size        | 64KB (64K x 8)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 2K x 8                                                                      |
| RAM Size                   | 8K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                                |
| Data Converters            | A/D 16x12b; D/A 2x8b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 68-VFQFN Exposed Pad                                                        |
| Supplier Device Package    | 68-QFN (8x8)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3666lti-201t |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





#### Figure 2-8. Example PCB Layout for 100-pin TQFP Part for Optimal Analog Performance

# 3. Pin Descriptions

**IDAC0, IDAC1, IDAC2, IDAC3.** Low resistance output pin for high current DACs (IDAC).

# Opamp0out, Opamp1out<sup>[15]</sup>, Opamp2out, Opamp3out<sup>[15]</sup>.

High current output of uncommitted opamp.<sup>[14]</sup>

Extref0, Extref1. External reference input to the analog system.

**Opamp0–**, **Opamp1–**<sup>[15]</sup>, **Opamp2–**, **Opamp3–**<sup>[15]</sup>. Inverting input to uncommitted opamp.

# **Opamp0+, Opamp1+**<sup>[15]</sup>, **Opamp2+, Opamp3+**<sup>[15]</sup>.

Noninverting input to uncommitted opamp.

**GPIO.** General purpose I/O pin provides interfaces to the CPU, digital peripherals, analog peripherals, interrupts, LCD segment drive, and CapSense.<sup>[14]</sup>

**I2C0: SCL, I2C1: SCL.**  $I^2C$  SCL line providing wake from sleep on an address match. Any I/O pin can be used for  $I^2C$  SCL if wake from sleep is not required.

**I2C0: SDA, I2C1: SDA.**  $I^2C$  SDA line providing wake from sleep on an address match. Any I/O pin can be used for  $I^2C$  SDA if wake from sleep is not required.

Ind. Inductor connection to boost pump.

kHz XTAL: Xo, kHz XTAL: Xi. 32.768 kHz crystal oscillator pin.

MHz XTAL: Xo, MHz XTAL: Xi. 4 to 25 MHz crystal oscillator pin.

**nTRST.** Optional JTAG Test Reset programming and debug port connection to reset the JTAG connection.

**SIO.** Special I/O provides interfaces to the CPU, digital peripherals and interrupts with a programmable high threshold voltage, analog comparator, high sink current, and high impedance state when the device is unpowered.

**SWDCK.** Serial wire debug clock programming and debug port connection.

**SWDIO.** Serial wire debug input and output programming and debug port connection.

SWV. Single wire viewer debug output.

TCK. JTAG test clock programming and debug port connection.

**TDI.** JTAG test data in programming and debug port connection.

**TDO.** JTAG test data out programming and debug port connection.

**TMS.** JTAG test mode select programming and debug port connection.

**USBIO**, **D+.** Provides D+ connection directly to a USB 2.0 bus. May be used as a digital I/O pin. Pins are Do Not Use (DNU) on devices without USB.

**USBIO**, **D–.** Provides D– connection directly to a USB 2.0 bus. May be used as a digital I/O pin. Pins are Do Not Use (DNU) on devices without USB.

VBOOST. Power sense connection to boost pump.

VBAT. Battery supply to boost pump.

#### Notes

14. GPIOs with opamp outputs are not recommended for use with CapSense.

<sup>15.</sup> This feature on select devices only. See Ordering Information on page 120 for details.



### Table 4-1. Arithmetic Instructions

| Mnemonic       | Description                                          | Bytes | Cycles |
|----------------|------------------------------------------------------|-------|--------|
| ADD A,Rn       | Add register to accumulator                          | 1     | 1      |
| ADD A,Direct   | Add direct byte to accumulator                       | 2     | 2      |
| ADD A,@Ri      | Add indirect RAM to accumulator                      | 1     | 2      |
| ADD A,#data    | Add immediate data to accumulator                    | 2     | 2      |
| ADDC A,Rn      | Add register to accumulator with carry               | 1     | 1      |
| ADDC A, Direct | Add direct byte to accumulator with carry            | 2     | 2      |
| ADDC A,@Ri     | Add indirect RAM to accumulator with carry           | 1     | 2      |
| ADDC A,#data   | Add immediate data to accumulator with carry         | 2     | 2      |
| SUBB A,Rn      | Subtract register from accumulator with borrow       | 1     | 1      |
| SUBB A, Direct | Subtract direct byte from accumulator with borrow    | 2     | 2      |
| SUBB A,@Ri     | Subtract indirect RAM from accumulator with borrow   | 1     | 2      |
| SUBB A,#data   | Subtract immediate data from accumulator with borrow | 2     | 2      |
| INC A          | Increment accumulator                                | 1     | 1      |
| INC Rn         | Increment register                                   | 1     | 2      |
| INC Direct     | Increment direct byte                                | 2     | 3      |
| INC @Ri        | Increment indirect RAM                               | 1     | 3      |
| DEC A          | Decrement accumulator                                | 1     | 1      |
| DEC Rn         | Decrement register                                   | 1     | 2      |
| DEC Direct     | Decrement direct byte                                | 2     | 3      |
| DEC @Ri        | Decrement indirect RAM                               | 1     | 3      |
| INC DPTR       | Increment data pointer                               | 1     | 1      |
| MUL            | Multiply accumulator and B                           | 1     | 2      |
| DIV            | Divide accumulator by B                              | 1     | 6      |
| DAA            | Decimal adjust accumulator                           | 1     | 3      |

#### 4.3.1.2 Logical Instructions

The logical instructions perform Boolean operations such as AND, OR, XOR on bytes, rotate of accumulator contents, and swap of nibbles in an accumulator. The Boolean operations on the bytes are performed on the bit-by-bit basis. Table 4-2 on page 15 shows the list of logical instructions and their description.

| Table 4-2. Logical Instruction | Table 4-2. | Logical Inst | ructions |
|--------------------------------|------------|--------------|----------|
|--------------------------------|------------|--------------|----------|

|     | Mnemonic      | Description                       | Bytes | Cycles |
|-----|---------------|-----------------------------------|-------|--------|
| ANL | A,Rn          | AND register to accumulator       | 1     | 1      |
| ANL | A,Direct      | AND direct byte to accumulator    | 2     | 2      |
| ANL | A,@Ri         | AND indirect RAM to accumulator   | 1     | 2      |
| ANL | A,#data       | AND immediate data to accumulator | 2     | 2      |
| ANL | Direct, A     | AND accumulator to direct byte    | 2     | 3      |
| ANL | Direct, #data | AND immediate data to direct byte | 3     | 3      |
| ORL | A,Rn          | OR register to accumulator        | 1     | 1      |
| ORL | A,Direct      | OR direct byte to accumulator     | 2     | 2      |
| ORL | A,@Ri         | OR indirect RAM to accumulator    | 1     | 2      |



# 5.6 External Memory Interface

CY8C36 provides an external memory interface (EMIF) for connecting to external memory devices. The connection allows read and write accesses to external memories. The EMIF operates in conjunction with UDBs, I/O ports, and other hardware to generate external memory address and control signals. At 33 MHz, each memory access cycle takes four bus clock cycles. Figure 5-1 is the EMIF block diagram. The EMIF supports synchronous and asynchronous memories. The CY8C36 supports only one type of external memory device at a time.

External memory can be accessed through the 8051 xdata space; up to 24 address bits can be used. See xdata Space on page 27. The memory can be 8 or 16 bits wide.



Figure 5-1. EMIF Block Diagram



## 6.2.1 Power Modes

PSoC 3 devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low-power and portable devices.

PSoC 3 power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

#### Table 6-2. Power Modes

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals and RTC functionality. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from I/O pins. Figure 6-5 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all V<sub>DDIO</sub> supplies are at valid voltage levels.

| Power<br>Modes      | Description                                                                                                                                                                                                                 | Entry Condition                            | Wakeup<br>Source                                           | Active Clocks         | Regulator                                                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Active              | Primary mode of operation, all peripherals available (programmable)                                                                                                                                                         | Wakeup, reset,<br>manual register<br>entry | Any interrupt                                              | Any<br>(programmable) | All regulators available. Digital<br>and analog regulators can be<br>disabled if external regulation<br>used.                     |
| Alternate<br>Active | Similar to Active mode, and is typically<br>configured to have fewer peripherals<br>active to reduce power. One possible<br>configuration is to use the UDBs for<br>processing, with the CPU turned off                     | Manual register<br>entry                   | Any interrupt                                              | Any<br>(programmable) | All regulators available. Digital<br>and analog regulators can be<br>disabled if external regulation<br>used.                     |
| Sleep               | All subsystems automatically disabled                                                                                                                                                                                       | Manual register<br>entry                   | Comparator,<br>PICU, I <sup>2</sup> C,<br>RTC, CTW,<br>LVD | ILO/kHzECO            | Both digital and analog<br>regulators buzzed.<br>Digital and analog regulators<br>can be disabled if external<br>regulation used. |
| Hibernate           | All subsystems automatically disabled<br>Lowest power consuming mode with<br>all peripherals and internal regulators<br>disabled, except hibernate regulator is<br>enabled<br>Configuration and memory contents<br>retained | Manual register<br>entry                   | PICU                                                       | -                     | Only hibernate regulator active.                                                                                                  |

#### Table 6-3. Power Modes Wakeup Time and Power Consumption

| Sleep<br>Modes      | Wakeup<br>Time | Current<br>(Typ)       | Code<br>Execution | Digital<br>Resources | Analog<br>Resources | Clock Sources<br>Available | Wakeup Sources                                          | Reset<br>Sources  |
|---------------------|----------------|------------------------|-------------------|----------------------|---------------------|----------------------------|---------------------------------------------------------|-------------------|
| Active              | -              | 1.2 mA <sup>[16]</sup> | Yes               | All                  | All                 | All                        | -                                                       | All               |
| Alternate<br>Active | -              | -                      | User<br>defined   | All                  | All                 | All                        | -                                                       | All               |
| Sleep               | <15 µs         | 1 µA                   | No                | I <sup>2</sup> C     | Comparator          | ILO/kHzECO                 | Comparator,<br>PICU, I <sup>2</sup> C, RTC,<br>CTW, LVD | XRES, LVD,<br>WDR |
| Hibernate           | <100 µs        | 200 nA                 | No                | None                 | None                | None                       | PICU                                                    | XRES              |

Note 16. Bus clock off. Execute from cache at 6 MHz. See Table 11-2 on page 72.



Figure 6-5. Power Mode Transitions



# 6.2.1.1 Active Mode

Active mode is the primary operating mode of the device. When in active mode, the active configuration template bits control which available resources are enabled or disabled. When a resource is disabled, the digital clocks are gated, analog bias currents are disabled, and leakage currents are reduced as appropriate. User firmware can dynamically control subsystem power by setting and clearing bits in the active configuration template. The CPU can disable itself, in which case the CPU is automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always returned to active, and the CPU is automatically enabled, regardless of its template settings. Active mode is the default global power mode upon boot.

#### 6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate active mode, fewer subsystems are enabled, to reduce power consumption. One possible configuration is to turn off the CPU and flash, and run peripherals at full speed.

#### 6.2.1.3 Sleep Mode

Sleep mode reduces power consumption when a resume time of 15  $\mu$ s is acceptable. The wake time is used to ensure that the regulator outputs are stable enough to directly enter active mode.

## 6.2.1.4 Hibernate Mode

In hibernate mode nearly all of the internal functions are disabled. Internal voltages are reduced to the minimal level to keep vital systems alive. Configuration state is preserved in hibernate mode and SRAM memory is retained. GPIOs configured as digital outputs maintain their previous values and external GPIO pin interrupt settings are preserved. The device can only return from hibernate mode in response to an external I/O interrupt. The resume time from hibernate mode is less than 100 µs.

To achieve an extremely low current, the hibernate regulator has limited capacity. This limits the frequency of any signal present on the input pins - no GPIO should toggle at a rate greater than 10 kHz while in hibernate mode. If pins must be toggled at a high rate while in a low power mode, use sleep mode instead.

## 6.2.1.5 Wakeup Events

Wakeup events are configurable and can come from an interrupt or device reset. A wakeup event restores the system to active mode. Firmware enabled interrupt sources include internally generated interrupts, power supervisor, central timewheel, and I/O interrupts. Internal interrupt sources can come from a variety of peripherals, such as analog comparators and UDBs. The central timewheel provides periodic interrupts to allow the system to wake up, poll peripherals, or perform real-time functions. Reset event sources include the external reset I/O pin (XRES), WDT, and precision reset (PRES).

#### 6.2.2 Boost Converter

Applications that use a supply voltage of less than 1.71 V, such as solar panels or single cell battery supplies, may use the on-chip boost converter to generate a minimum of 1.8 V supply voltage. The boost converter may also be used in any system that requires a higher operating voltage than the supply provides such as driving 5.0 V LCD glass in a 3.3 V system. With the addition of an inductor, Schottky diode, and capacitors, it produces a selectable output voltage sourcing enough current to operate the PSoC and other on-board components.

The boost converter accepts an input voltage  $V_{BAT}$  from 0.5 V to 3.6 V, and can start up with  $V_{BAT}$  as low as 0.5 V. The converter provides a user configurable output voltage of 1.8 to 5.0 V ( $V_{OUT}$ ) in 100 mV increments.  $V_{BAT}$  is typically less than  $V_{OUT}$ ; if  $V_{BAT}$  is greater than or equal to  $V_{OUT}$ , then  $V_{OUT}$  will be slightly less than  $V_{BAT}$  due to resistive losses in the boost converter. The block can deliver up to 50 mA ( $I_{BOOST}$ ) depending on configuration to both the PSoC device and external components. The sum of all current sinks in the design including the PSoC device, PSoC I/O pin loads, and external component loads must be less than the  $I_{BOOST}$  specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB, VBOOST, and IND. The boosted output voltage is sensed at the VBOOST pin and must be connected directly to the chip's supply inputs; VDDA, VDDD, and VDDIO if used to power the PSoC device.

The boost converter requires four components in addition to those required in a non-boost design, as shown in Figure 6-6 on page 34. A 22  $\mu$ F capacitor (C<sub>BAT</sub>) is required close to the VBAT pin to provide local bulk storage of the battery voltage and provide regulator stability. A diode between the battery and VBAT pin should not be used for reverse polarity protection because the diodes forward voltage drop reduces the V<sub>BAT</sub> voltage. Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH, or 22 µH is required. The inductor value can be optimized to increase the boost converter efficiency based on input voltage, output voltage, temperature, and current. Inductor size is determined by following the design guidance in this chapter and electrical specifications. The inductor must be placed within 1 cm of the VBAT and IND pins and have a minimum saturation current of 750 mA. Between the IND and VBOOST pins a Schottky diode must be placed within 1 cm of the pins. The Schottky diode shall have a forward current rating of at least 1.0 A and a reverse voltage of at least 20 V. A 22 µF bulk capacitor (CBOOST) must be connected close to VBOOST to provide regulator output stability. It is important to sum the total capacitance connected to the VBOOST pin and ensure the maximum C<sub>BOOST</sub> specification is not exceeded. All capacitors



# 6.4 I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and digital I/O capability. All I/Os have a large number of drive modes, which are set at POR. PSoC also provides up to four individual I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB provide a third type. Both General Purpose I/O (GPIO) and Special I/O (SIO) provide similar digital functionality. The primary differences are their analog capability and drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as limited GPIO capability.

All I/O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all I/O pins can generate an interrupt. The flexible and advanced capabilities of the PSoC I/O, combined with any signal to any pin routability, greatly simplify circuit design and board layout. All GPIO pins can be used for analog input, CapSense<sup>[17]</sup>, and LCD segment drive, while SIO pins are used for voltages in excess of VDDA and for programmable output voltages.

- Features supported by both GPIO and SIO:
  - □ User programmable port reset state
  - □ Separate I/O supplies and voltages for up to four groups of I/O
  - Digital peripherals use DSI to connect the pins
  - Input or output or both for CPU and DMA
  - Eight drive modes
  - Every pin can be an interrupt source configured as rising edge, falling edge or both edges. If required, level sensitive interrupts are supported through the DSI

- Dedicated port interrupt vector for each port
- □ Slew rate controlled digital output drive mode
- Access port control and configuration registers on either port basis or pin basis
- Separate port read (PS) and write (DR) data registers to avoid read modify write errors
- Special functionality on a pin by pin basis
- Additional features only provided on the GPIO pins:
- □ LCD segment drive on LCD equipped devices □ CapSense<sup>[17]</sup>
- Analog input and output capability
- □ Continuous 100 µA clamp current capability
- □ Standard drive strength down to 1.7 V
- Additional features only provided on SIO pins:
  - B Higher drive strength than GPIO
  - Hot swap capability (5 V tolerance at any operating V<sub>DD</sub>)
  - Programmable and regulated high input and output drive levels down to 1.2 V
  - No analog input, CapSense, or LCD capability
  - □ Over voltage tolerance up to 5.5 V
  - □ SIO can act as a general purpose analog comparator
- USBIO features:
  - □ Full speed USB 2.0 compliant I/O
  - Highest drive strength for general purpose use
  - Input, output, or both for CPU and DMA
  - Input, output, or both for digital peripherals
  - Digital output (CMOS) drive mode
  - Each pin can be an interrupt source configured as rising edge, falling edge, or both edges



The same opamps and block interfaces are also connectable to an array of resistors which allows the construction of a variety of continuous time functions.

The opamp and resistor array is programmable to perform various analog functions including

- Naked operational amplifier Continuous mode
- Unity-gain buffer Continuous mode
- Programmable gain amplifier (PGA) Continuous mode
- Transimpedance amplifier (TIA) Continuous mode
- Up/down mixer Continuous mode
- Sample and hold mixer (NRZ S/H) Switched cap mode
- First order analog to digital modulator Switched cap mode

#### 8.5.1 Naked Opamp

The Naked Opamp presents both inputs and the output for connection to internal or external signals. The opamp has a unity gain bandwidth greater than 6.0 MHz and output drive current up to 650  $\mu$ A. This is sufficient for buffering internal signals (such as DAC outputs) and driving external loads greater than 7.5 k $\Omega$ .

#### 8.5.2 Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly connected to the inverting input for a gain of 1.00. It has a -3 dB bandwidth greater than 6.0 MHz.

#### 8.5.3 PGA

The PGA amplifies an external or internal signal. The PGA can be configured to operate in inverting mode or noninverting mode. The PGA function may be configured for both positive and negative gains as high as 50 and 49 respectively. The gain is adjusted by changing the values of R1 and R2 as illustrated in Figure 8-8 on page 62. The schematic in Figure 8-8 on page 62 shows the configuration and possible resistor settings for the PGA. The gain is switched from inverting and non inverting by changing the shared select value of the both the input muxes. The bandwidth for each gain case is listed in Table 8-3.

#### Table 8-3. Bandwidth

| Gain | Bandwidth |
|------|-----------|
| 1    | 6.0 MHz   |
| 24   | 340 kHz   |
| 48   | 220 kHz   |
| 50   | 215 kHz   |

#### Figure 8-8. PGA Resistor Settings



The PGA is used in applications where the input signal may not be large enough to achieve the desired resolution in the ADC, or dynamic range of another SC/CT block such as a mixer. The gain is adjustable at runtime, including changing the gain of the PGA prior to each ADC sample.

#### 8.5.4 TIA

The Transimpedance Amplifier (TIA) converts an internal or external current to an output voltage. The TIA uses an internal feedback resistor in a continuous time configuration to convert input current to output voltage. For an input current I<sub>in</sub>, the output voltage is V<sub>REF</sub> - I<sub>in</sub> x R<sub>fb</sub>, where V<sub>REF</sub> is the value placed on the non inverting input. The feedback resistor Rfb is programmable between 20 K $\Omega$  and 1 M $\Omega$  through a configuration register. Table 8-4 shows the possible values of Rfb and associated configuration settings.

#### Table 8-4. Feedback Resistor Settings

| Configuration Word | Nominal $R_{fb}(K\Omega)$ |
|--------------------|---------------------------|
| 000b               | 20                        |
| 001b               | 30                        |
| 010b               | 40                        |
| 011b               | 60                        |
| 100b               | 120                       |
| 101b               | 250                       |
| 110b               | 500                       |
| 111b               | 1000                      |

#### Figure 8-9. Continuous Time TIA Schematic



The TIA configuration is used for applications where an external sensor's output is current as a function of some type of stimulus such as temperature, light, magnetic flux etc. In a common application, the voltage DAC output can be connected to the V<sub>REF</sub> TIA input to allow calibration of the external sensor bias current by adjusting the voltage DAC output voltage.

## 8.6 LCD Direct Drive

The PSoC Liquid Crystal Display (LCD) driver system is a highly configurable peripheral designed to allow PSoC to directly drive a broad range of LCD glass. All voltages are generated on chip, eliminating the need for external components. With a high multiplex ratio of up to 1/16, the CY8C36 family LCD driver system can drive a maximum of 736 segments. The PSoC LCD driver module was also designed with the conservative power budget of portable devices in mind, enabling different LCD drive modes and power down modes to conserve power.



PSoC Creator provides an LCD segment drive component. The component wizard provides easy and flexible configuration of LCD resources. You can specify pins for segments and commons along with other options. The software configures the device to meet the required specifications. This is possible because of the programmability inherent to PSoC devices.

Key features of the PSoC LCD segment system are:

- LCD panel direct driving
- Type A (standard) and Type B (low-power) waveform support
- Wide operating voltage range support (2 V to 5 V) for LCD panels
- Static, 1/2, 1/3, 1/4, 1/5 bias voltage levels
- Internal bias voltage generation through internal resistor ladder
- Up to 62 total common and segment outputs
- Up to 1/16 multiplex for a maximum of 16 backplane/common outputs
- Up to 62 front plane/segment outputs for direct drive
- Drives up to 736 total segments (16 backplane × 46 front plane)
- Up to 64 levels of software controlled contrast
- Ability to move display data from memory buffer to LCD driver through DMA (without CPU intervention)
- Adjustable LCD refresh rate from 10 Hz to 150 Hz
- Ability to invert LCD display for negative image
- Three LCD driver drive modes, allowing power optimization

#### Figure 8-10. LCD System



#### 8.6.1 LCD Segment Pin Driver

Each GPIO pin contains an LCD driver circuit. The LCD driver buffers the appropriate output of the LCD DAC to directly drive the glass of the LCD. A register setting determines whether the pin is a common or segment. The pin's LCD driver then selects one of the six bias voltages to drive the I/O pin, as appropriate for the display data.

#### 8.6.2 Display Data Flow

The LCD segment driver system reads display data and generates the proper output voltages to the LCD glass to produce the desired image. Display data resides in a memory buffer in the system SRAM. Each time you need to change the common and segment driver voltages, the next set of pixel data moves from the memory buffer into the Port Data Registers through DMA.

#### 8.6.3 UDB and LCD Segment Control

A UDB is configured to generate the global LCD control signals and clocking. This set of signals is routed to each LCD pin driver through a set of dedicated LCD global routing channels. In addition to generating the global LCD control signals, the UDB also produces a DMA request to initiate the transfer of the next frame of LCD data.

#### 8.6.4 LCD DAC

The LCD DAC generates the contrast control and bias voltage for the LCD system. The LCD DAC produces up to five LCD drive voltages plus ground, based on the selected bias ratio. The bias voltages are driven out to GPIO pins on a dedicated LCD bias bus, as required.

#### 8.7 CapSense

The CapSense system provides a versatile and efficient means for measuring capacitance in applications such as touch sense buttons, sliders, and proximity detection. The CapSense system uses a configuration of system resources, including a few hardware functions primarily targeted for CapSense. Specific resource usage is detailed in the CapSense component in PSoC Creator. A capacitive sensing method using a Delta-Sigma Modulator (CSD) is used. It provides capacitance sensing using a switched capacitor technique with a delta-sigma modulator to convert the sensing current to a digital code.

#### 8.8 Temp Sensor

Die temperature is used to establish programming parameters for writing flash. Die temperature is measured using a dedicated sensor based on a forward biased transistor. The temperature sensor has its own auxiliary ADC.



# 9.2 Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG interface. It requires only two pins instead of the four or five needed by JTAG. SWD provides all of the programming and debugging features of JTAG at the same speed. SWD does not provide access to scan chains or device chaining. The SWD clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) or the USBIO D+ and D– pins. The USBIO pins are useful for in system programming of USB solutions that would otherwise require a separate programming connector. One pin is used for the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This only happens if, within 8  $\mu$ s (key window) after reset, that pin pair

(JTAG or USB) receives a predetermined acquire sequence of 1s and 0s. If the NVL latches are set for SWD (see Section 5.5), this sequence need not be applied to the JTAG pin pair. The acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash memory.

The SWD interface can be enabled from the JTAG interface or disabled, allowing its pins to be used as GPIO. Unlike JTAG, the SWD interface can always be reacquired on any device during the key window. It can then be used to reenable the JTAG interface, if desired. When using SWD or JTAG pins as standard GPIO, make sure that the GPIO functionality and PCB circuits do not interfere with SWD or JTAG use.



#### Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

<sup>1</sup> The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming should be the same. XRES pin (XRES\_N or P1[2]) is powered by V<sub>DDI01</sub>. The USB SWD pins are powered by V<sub>DDD</sub>. So for Programming using the USB SWD pins with XRES pin, the V<sub>DDD</sub>, V<sub>DDI01</sub> of PSoC 3 should be at the same voltage level as Host V<sub>DD</sub>. Rest of PSoC 3 voltage domains (V<sub>DDA</sub>, V<sub>DDI00</sub>, V<sub>DDI02</sub>, V<sub>DDI03</sub>) need not be at the same voltage level as host Programmer. The Port 1 SWD pins are powered by V<sub>DDI01</sub>. So V<sub>DDI01</sub> of PSoC 3 should be at same voltage level as host Programmer. The Port 1 SWD pins are powered by V<sub>DDI01</sub>. So V<sub>DDI01</sub> of PSoC 3 voltage domains (V<sub>DDA</sub>, V<sub>DDI02</sub>, V<sub>DDI03</sub>) need not be at the same voltage level as host Programming. Rest of PSoC 3 voltage domains (V<sub>DDA</sub>, V<sub>DDI00</sub>, V<sub>DDI02</sub>, V<sub>DDI02</sub>, V<sub>DDI01</sub>. So V<sub>DDI01</sub> of PSoC 3 voltage domains (V<sub>DDA</sub>, V<sub>DDI00</sub>, V<sub>DDI02</sub>, V<sub>DDI03</sub>) need not be at the same voltage level as host Programming. Rest of PSoC 3 voltage domains (V<sub>DDD</sub>, V<sub>DDA</sub>, V<sub>DDI00</sub>, V<sub>DDI02</sub>, V<sub>DDI03</sub>) need not be at the same voltage level as host Programmer.

<sup>2</sup> Vdda must be greater than or equal to all other power supplies (Vddd, Vddio's) in PSoC 3.

- <sup>3</sup> For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have the capability to toggle power (Vddd, Vdda, All Vddio's) to PSoC 3. This may typically require external interface circuitry to toggle power which will depend on the programming setup. The power supplies can be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other supplies.
- <sup>4</sup> P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48pin devices, but use dedicated XRES pin for rest of devices.



# **11.2 Device Level Specifications**

Specifications are valid for –40  $^{\circ}C \le T_A \le 85 ~^{\circ}C$  and  $T_J \le 100 ~^{\circ}C$ , except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.2.1 Device Level Specifications

# Table 11-2. DC Specifications

| Parameter                           | Description                                                                           | Conditions                                                                                           |             | Min       | Typ <sup>[29]</sup> | Max                                                                        | Units |
|-------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|-----------|---------------------|----------------------------------------------------------------------------|-------|
| V <sub>DDA</sub>                    | Analog supply voltage and input to analog core regulator                              | Analog core regulato                                                                                 | or enabled  | 1.8       | -                   | 5.5                                                                        | V     |
| V <sub>DDA</sub>                    | Analog supply voltage, analog regulator<br>bypassed                                   | Analog core regulator disabled                                                                       |             | 1.71      | 1.8                 | 1.89                                                                       | V     |
| V <sub>DDD</sub>                    | Digital supply voltage relative to $V_{SSD}$                                          | Digital core regulator                                                                               | enabled     | 1.8<br>_  | -                   | V <sub>DDA</sub> <sup>[25]</sup><br>V <sub>DDA</sub> + 0.1 <sup>[31]</sup> | V     |
| V <sub>DDD</sub>                    | Digital supply voltage, digital regulator<br>bypassed                                 | Digital core regulator                                                                               | disabled    | 1.71      | 1.8                 | 1.89                                                                       | V     |
| V <sub>DDIO</sub> <sup>[26]</sup>   | I/O supply voltage relative to V <sub>SSIO</sub>                                      |                                                                                                      |             | 1.71<br>- | -                   | V <sub>DDA</sub> <sup>[25]</sup><br>V <sub>DDA</sub> + 0.1 <sup>[31]</sup> | V     |
| V <sub>CCA</sub>                    | Direct analog core voltage input (Analog regulator bypass)                            | Analog core regulato                                                                                 | or disabled | 1.71      | 1.8                 | 1.89                                                                       | V     |
| V <sub>CCD</sub>                    | Direct digital core voltage input (Digital regulator bypass)                          | Digital core regulator                                                                               | disabled    | 1.71      | 1.8                 | 1.89                                                                       | V     |
| I <sub>DD</sub> <sup>[27, 28]</sup> | Active Mode                                                                           |                                                                                                      |             |           |                     |                                                                            |       |
|                                     | Only IMO and CPU clock enabled. CPU                                                   | V <sub>DDX</sub> = 2.7 V – 5.5 V;<br>F <sub>CPU</sub> = 6 MHz <sup>[30]</sup>                        | T = -40 °C  | -         | 1.2                 | 2.9                                                                        | mA    |
|                                     | executing simple loop from instruction                                                |                                                                                                      | T = 25 °C   | -         | 1.2                 | 3.1                                                                        |       |
|                                     | builet.                                                                               |                                                                                                      | T = 85 °C   | I         | 4.9                 | 7.7                                                                        |       |
|                                     | IMO enabled, bus clock and CPU clock<br>enabled. CPU executing program from<br>flash. | $V_{DDX} = 2.7 V - 5.5 V; T = F_{CPU} = 3 \text{ MHz}^{[30]} T = T = T = T = T = T = T = T = T = T $ | T = -40 °C  | I         | 1.3                 | 2.9                                                                        |       |
|                                     |                                                                                       |                                                                                                      | T = 25 °C   | _         | 1.6                 | 3.2                                                                        |       |
|                                     |                                                                                       |                                                                                                      | T = 85 °C   | 1         | 4.8                 | 7.5                                                                        |       |
|                                     |                                                                                       | $V_{DDX} = 2.7 V - 5.5 V; T = -40$                                                                   | T = -40 °C  | 1         | 2.1                 | 3.7                                                                        |       |
|                                     |                                                                                       | F <sub>CPU</sub> = 6 MHz                                                                             | T = 25 °C   | _         | 2.3                 | 3.9                                                                        |       |
|                                     |                                                                                       |                                                                                                      | T = 85 °C   | 1         | 5.6                 | 8.5                                                                        |       |
|                                     |                                                                                       | $V_{DDX} = 2.7 V - 5.5 V;$ 1                                                                         | T = -40 °C  | Ι         | 3.5                 | 5.2                                                                        |       |
|                                     |                                                                                       | $F_{CPU} = 12 \text{ MHz}^{130}$                                                                     | T = 25 °C   | I         | 3.8                 | 5.5                                                                        |       |
|                                     |                                                                                       | Т                                                                                                    | T = 85 °C   | 1         | 7.1                 | 9.8                                                                        |       |
|                                     |                                                                                       | $V_{DDX} = 2.7 V - 5.5 V;$                                                                           | T = -40 °C  | Ι         | 6.3                 | 8.1                                                                        |       |
|                                     |                                                                                       | F <sub>CPU</sub> = 24 MHz <sup>[30]</sup>                                                            | T = 25 °C   | I         | 6.6                 | 8.3                                                                        |       |
|                                     |                                                                                       |                                                                                                      | T = 85 °C   | Ι         | 10                  | 13                                                                         |       |
|                                     |                                                                                       | $V_{DDX} = 2.7 V - 5.5 V;$                                                                           | T = -40 °C  | _         | 11.5                | 13.5                                                                       | 1     |
|                                     |                                                                                       | $F_{CPU} = 48 \text{ MHz}^{130}$                                                                     | T = 25 °C   | -         | 12                  | 14                                                                         |       |
|                                     |                                                                                       |                                                                                                      | T = 85 °C   | _         | 15.5                | 18.5                                                                       |       |
|                                     |                                                                                       | $V_{DDX} = 2.7 V - 5.5 V;$                                                                           | T = -40 °C  | _         | 16                  | 18                                                                         |       |
|                                     |                                                                                       | F <sub>CPU</sub> = 62 MHz                                                                            | T = 25 °C   | _         | 16                  | 18                                                                         |       |
|                                     |                                                                                       |                                                                                                      | T = 85 °C   | -         | 19.5                | 23                                                                         |       |

#### Notes

Notes
25. The power supplies can be brought up in any sequence however once stable V<sub>DDA</sub> must be greater than or equal to all other supplies.
26. The V<sub>DDIO</sub> supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin ≤ V<sub>DDIO</sub> ≤ V<sub>DDA</sub>.
27. Total current for all power domains: digital (l<sub>DDD</sub>), analog (l<sub>DDA</sub>), and I/Os (l<sub>DDIO0, 1, 2, 3</sub>). Boost not included. All I/Os floating.
28. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find the CPU current at the frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

29. V<sub>DDX</sub> = 3.3 V.

30. Based on device characterization (Not production tested).

31. Guaranteed by design, not production tested.



# 

15

loh, mA

20

25

30

#### Figure 11-15. GPIO Output High Voltage and Current Figure 11-16. GPIO Output Low Voltage and Current



# Table 11-10. GPIO AC Specifications

5

10

0

0

| Parameter                                                                                              | Description                                                                             | Conditions                            | Min | Тур | Max | Units |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----|-----|-----|-------|
| TriseF                                                                                                 | Rise time in Fast Strong Mode <sup>[45]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | _   | -   | 6   | ns    |
| TfallF                                                                                                 | Fall time in Fast Strong Mode <sup>[45]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | _   | -   | 6   | ns    |
| TriseS                                                                                                 | Rise time in Slow Strong Mode <sup>[45]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | _   | -   | 60  | ns    |
| TfallS                                                                                                 | Fall time in Slow Strong Mode <sup>[45]</sup>                                           | 3.3 V V <sub>DDIO</sub> Cload = 25 pF | _   | -   | 60  | ns    |
| Fgpioout                                                                                               | GPIO output operating frequency                                                         |                                       | _   | -   | -   | -     |
|                                                                                                        | 2.7 V $\leq$ V <sub>DDIO</sub> $\leq$ 5.5 V, fast strong drive mode                     | 90/10% V <sub>DDIO</sub> into 25 pF   | -   | _   | 33  | MHz   |
|                                                                                                        | $1.71 \text{ V} \leq \text{V}_{\text{DDIO}} < 2.7 \text{ V}$ , fast strong drive mode   | 90/10% V <sub>DDIO</sub> into 25 pF   | -   | _   | 20  | MHz   |
|                                                                                                        | $3.3 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 5.5 \text{ V}$ , slow strong drive mode | 90/10% V <sub>DDIO</sub> into 25 pF   | -   | -   | 7   | MHz   |
| Parameter         TriseF         TfallF         TriseS         TfallS         Fgpioout         Fgpioin | $1.71 \text{ V} \leq \text{V}_{\text{DDIO}} < 3.3 \text{ V}$ , slow strong drive mode   | 90/10% V <sub>DDIO</sub> into 25 pF   | -   | _   | 3.5 | MHz   |
| Egnioin                                                                                                | GPIO input operating frequency                                                          |                                       |     |     |     |       |
| gpiolit                                                                                                | $1.71 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 5.5 \text{ V}$                         | 90/10% V <sub>DDIO</sub>              | -   | -   | 33  | MHz   |

<sup>45.</sup> Based on device characterization (Not production tested).



Figure 11-24. USBIO Output Rise and Fall Times, GPIO Mode,  $V_{DDD} = 3.3 V$ , 25 pF Load



Table 11-16. USB Driver AC Specifications

| Parameter | Description                     | Conditions                                                                           | Min | Тур | Max  | Units |
|-----------|---------------------------------|--------------------------------------------------------------------------------------|-----|-----|------|-------|
| Tr        | Transition rise time            |                                                                                      | -   | -   | 20   | ns    |
| Tf        | Transition fall time            |                                                                                      | -   | -   | 20   | ns    |
| TR        | Rise/fall time matching         | V <sub>USB_5</sub> , V <sub>USB_3.3</sub> , see USB DC<br>Specifications on page 107 | 90% | _   | 111% |       |
| Vcrs      | Output signal crossover voltage |                                                                                      | 1.3 | -   | 2    | V     |



# 11.4.4 XRES

# Table 11-17. XRES DC Specifications

| Parameter       | Description                                                                 | Conditions | Min                   | Тур | Max                        | Units |
|-----------------|-----------------------------------------------------------------------------|------------|-----------------------|-----|----------------------------|-------|
| V <sub>IH</sub> | Input voltage high threshold                                                |            | $0.7 \times V_{DDIO}$ | -   | -                          | V     |
| V <sub>IL</sub> | Input voltage low threshold                                                 |            | _                     | _   | 0.3 ×<br>V <sub>DDIO</sub> | V     |
| Rpullup         | Pull-up resistor                                                            |            | 3.5                   | 5.6 | 8.5                        | kΩ    |
| C <sub>IN</sub> | Input capacitance <sup>[50]</sup>                                           |            | _                     | 3   | _                          | pF    |
| V <sub>H</sub>  | Input voltage hysteresis<br>(Schmitt–Trigger) <sup>[50]</sup>               |            | -                     | 100 | -                          | mV    |
| ldiode          | Current through protection diode to $V_{\mbox{DDIO}}$ and $V_{\mbox{SSIO}}$ |            | -                     | _   | 100                        | μA    |

### Table 11-18. XRES AC Specifications

| Parameter          | Description       | Conditions | Min | Тур | Max | Units |
|--------------------|-------------------|------------|-----|-----|-----|-------|
| T <sub>RESET</sub> | Reset pulse width |            | 1   | -   | -   | μs    |

# 11.5 Analog Peripherals

Specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C and T<sub>J</sub>  $\leq$  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

## 11.5.1 Opamp

#### Table 11-19. Opamp DC Specifications

| Parameter         | Description                                 | Conditions                                                                                               | Min                     | Тур  | Max                     | Units |
|-------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|------|-------------------------|-------|
| V <sub>IOFF</sub> | Input offset voltage                        |                                                                                                          | _                       | _    | 2                       | mV    |
| V <sub>OS</sub>   | Input offset voltage                        |                                                                                                          | -                       | -    | 2.5                     | mV    |
|                   |                                             | Operating temperature –40 °C to 70 °C                                                                    | -                       | -    | 2                       | mV    |
| TCV <sub>OS</sub> | Input offset voltage drift with temperature | Power mode = high                                                                                        | _                       | -    | ±30                     | µV/°C |
| Ge1               | Gain error, unity gain buffer mode          | Rload = 1 kΩ                                                                                             | -                       | -    | ±0.1                    | %     |
| C <sub>IN</sub>   | Input capacitance                           | Routing from pin                                                                                         | _                       | _    | 18                      | pF    |
| V <sub>O</sub>    | Output voltage range                        | 1 mA, source or sink, power mode<br>= high                                                               | V <sub>SSA</sub> + 0.05 | -    | V <sub>DDA</sub> – 0.05 | V     |
| I <sub>OUT</sub>  | Output current capability, source or sink   | $V_{SSA}$ + 500 mV $\leq$ Vout $\leq$ V <sub>DDA</sub><br>-500 mV, V <sub>DDA</sub> > 2.7 V              | 25                      | -    | -                       | mA    |
|                   |                                             | $V_{SSA}$ + 500 mV $\leq$ Vout $\leq$ V <sub>DDA</sub><br>-500 mV, 1.7 V = V <sub>DDA</sub> $\leq$ 2.7 V | 16                      | -    | _                       | mA    |
| I <sub>DD</sub>   | Quiescent current                           | Power mode = min                                                                                         | -                       | 250  | 400                     | uA    |
|                   |                                             | Power mode = low                                                                                         | _                       | 250  | 400                     | uA    |
|                   |                                             | Power mode = med                                                                                         | -                       | 330  | 950                     | uA    |
|                   |                                             | Power mode = high                                                                                        | -                       | 1000 | 2500                    | uA    |
| CMRR              | Common mode rejection ratio                 |                                                                                                          | 80                      | -    | -                       | dB    |
| PSRR              | Power supply rejection ratio                | $V_{DDA} \ge 2.7 V$                                                                                      | 85                      | -    | -                       | dB    |
|                   |                                             | V <sub>DDA</sub> < 2.7 V                                                                                 | 70                      | -    | _                       | dB    |
| I <sub>IB</sub>   | Input bias current <sup>[50]</sup>          | 25 °C                                                                                                    | _                       | 10   | _                       | pА    |

#### Note

50. Based on device characterization (Not production tested).



## 11.5.3 Voltage Reference

#### Table 11-24. Voltage Reference Specifications

See also ADC external reference specifications in Section 11.5.2.

| Parameter                        | Description                                              | Conditions                                                        |        | Min              | Тур   | Max              | Units   |
|----------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|--------|------------------|-------|------------------|---------|
| V <sub>REF</sub> <sup>[56]</sup> | Precision reference voltage                              | Initial trimming, 25 °C                                           |        | 1.023<br>(–0.1%) | 1.024 | 1.025<br>(+0.1%) | V       |
|                                  | After typical PCB assembly,                              | Typical (non-optimized) board<br>layout and 250 °C solder reflow. | –40 °C | _                | ±0.5  | _                | %       |
|                                  | post reflow layout and                                   |                                                                   | 25 °C  | _                | ±0.2  | _                | %       |
|                                  |                                                          | assembly to improve performance                                   | 85 °C  | -                | ±0.2  | -                | %       |
|                                  | Temperature drift <sup>[57]</sup>                        | Box method                                                        |        | -                | _     | 30               | ppm/°C  |
|                                  | Long term drift                                          |                                                                   |        | -                | 100   | _                | ppm/khr |
|                                  | Thermal cycling drift<br>(stability) <sup>[57, 58]</sup> |                                                                   |        | -                | 100   | _                | ppm     |

# Figure 11-34. Voltage Reference vs. Temperature and $\mathrm{V}_{\mathrm{CCA}}$



#### Figure 11-35. Voltage Reference Long-Term Drift



# 11.5.4 Analog Globals

#### Table 11-25. Analog Globals Specifications

| Parameter | Description                                                                           | Conditions             | Min | Тур  | Max  | Units |
|-----------|---------------------------------------------------------------------------------------|------------------------|-----|------|------|-------|
| Rppag     | Resistance pin-to-pin through<br>P2[4], AGL0, DSM INP, AGL1,<br>P2[5] <sup>[59]</sup> | V <sub>DDA</sub> = 3 V | -   | 1472 | 2200 | Ω     |
| Rppmuxbus | Resistance pin-to-pin through<br>P2[3], amuxbusL, P2[4] <sup>[59]</sup>               | V <sub>DDA</sub> = 3 V | _   | 706  | 1100 | Ω     |

#### Notes

56.  $V_{\mathsf{REF}}$  is measured after packaging, and thus accounts for substrate and die attach stresses.

57. Based on device characterization (Not production tested). 58. After eight full cycles between –40 °C and 100 °C.

- 59. The resistance of the analog global and analog mux bus is high if V<sub>DDA</sub> ≤ 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog mux bus under these conditions is not recommended.



#### Table 11-31. VDAC AC Specifications

| Parameter        | Description                            | Conditions                                                      | Min | Тур  | Max  | Units     |
|------------------|----------------------------------------|-----------------------------------------------------------------|-----|------|------|-----------|
| F <sub>DAC</sub> | Update rate                            | 1 V scale                                                       | -   | -    | 1000 | ksps      |
|                  |                                        | 4 V scale                                                       | -   | -    | 250  | ksps      |
| TsettleP         | Settling time to 0.1%, step 25% to 75% | 1 V scale, Cload = 15 pF                                        | -   | 0.45 | 1    | μs        |
|                  |                                        | 4 V scale, Cload = 15 pF                                        | -   | 0.8  | 3.2  | μs        |
| TsettleN         | Settling time to 0.1%, step 75% to 25% | 1 V scale, Cload = 15 pF                                        | _   | 0.45 | 1    | μs        |
|                  |                                        | 4 V scale, Cload = 15 pF                                        | _   | 0.7  | 3    | μs        |
|                  | Voltage noise                          | Range = 1 V, High speed mode,<br>V <sub>DDA</sub> = 5 V, 10 kHz | _   | 750  | _    | nV/sqrtHz |

# Figure 11-58. VDAC Step Response, Codes 0x40 - 0xC0, 1 V Mode, High speed mode, $V_{DDA} = 5 V$







Figure 11-59. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V Mode, High speed mode,  $V_{DDA}$  = 5 V









# 11.6.6 Digital Filter Block

# Table 11-51. DFB DC Specifications

| Parameter | Description           | Conditions                     | Min | Тур  | Max  | Units |
|-----------|-----------------------|--------------------------------|-----|------|------|-------|
|           | DFB operating current | 64-tap FIR at F <sub>DFB</sub> |     |      |      |       |
|           |                       | 500 kHz (6.7 ksps)             | -   | 0.16 | 0.27 | mA    |
|           |                       | 1 MHz (13.4 ksps)              | -   | 0.33 | 0.53 | mA    |
|           |                       | 10 MHz (134 ksps)              | -   | 3.3  | 5.3  | mA    |
|           |                       | 48 MHz (644 ksps)              | -   | 15.7 | 25.5 | mA    |
|           |                       | 67 MHz (900 ksps)              | -   | 21.8 | 35.6 | mA    |

# Table 11-52. DFB AC Specifications

| Parameter        | Description             | Conditions | Min | Тур | Max   | Units |
|------------------|-------------------------|------------|-----|-----|-------|-------|
| F <sub>DFB</sub> | DFB operating frequency |            | DC  | -   | 67.01 | MHz   |

#### 11.6.7 USB

# Table 11-53. USB DC Specifications

| Parameter            | Description                                         | Conditions                                                                                          | Min  | Тур | Max  | Units |
|----------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|-----|------|-------|
| V <sub>USB_5</sub>   | Device supply (V <sub>DDD</sub> ) for USB operation | USB configured, USB regulator<br>enabled                                                            | 4.35 | -   | 5.25 | V     |
| V <sub>USB_3.3</sub> |                                                     | USB configured, USB regulator<br>bypassed                                                           | 3.15 | _   | 3.6  | V     |
| V <sub>USB_3</sub>   |                                                     | USB configured, USB regulator bypassed <sup>[66]</sup>                                              | 2.85 | -   | 3.6  | V     |
| IUSB_Configured      | Device supply current in device                     | V <sub>DDD</sub> = 5 V, F <sub>CPU</sub> = 1.5 MHz                                                  | I    | 10  | -    | mA    |
|                      | 24 MHz                                              | V <sub>DDD</sub> = 3.3 V, F <sub>CPU</sub> = 1.5 MHz                                                | Ι    | 8   | —    | mA    |
| IUSB_Suspended       | Device supply current in device sleep mode          | V <sub>DDD</sub> = 5 V, connected to USB<br>host, PICU configured to wake on<br>USB resume signal   | -    | 0.5 | -    | mA    |
|                      |                                                     | V <sub>DDD</sub> = 5 V, disconnected from<br>USB host                                               | -    | 0.3 | -    | mA    |
|                      |                                                     | V <sub>DDD</sub> = 3.3 V, connected to USB<br>host, PICU configured to wake on<br>USB resume signal | -    | 0.5 | -    | mA    |
|                      |                                                     | $V_{DDD}$ = 3.3 V, disconnected from USB host                                                       | _    | 0.3 | _    | mA    |



# 13. Packaging

# Table 13-1. Package Characteristics

| Parameter       | Description                          | Conditions | Min | Тур   | Max | Units   |
|-----------------|--------------------------------------|------------|-----|-------|-----|---------|
| T <sub>A</sub>  | Operating ambient temperature        |            | -40 | 25.00 | 85  | °C      |
| TJ              | Operating junction temperature       |            | -40 | -     | 100 | °C      |
| T <sub>JA</sub> | Package $\theta_{JA}$ (48-pin SSOP)  |            | -   | 49    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (48-pin QFN)   |            | -   | 14    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (68-pin QFN)   |            | -   | 15    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (100-pin TQFP) |            | -   | 34    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (48-pin SSOP)  |            | -   | 24    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (48-pin QFN)   |            | -   | 15    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (68-pin QFN)   |            | -   | 13    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (100-pin TQFP) |            | -   | 10    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (72-pin CSP)   |            | -   | 18    | -   | °C/Watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (72-pin CSP)   |            | _   | 0.13  | _   | °C/Watt |

# Table 13-2. Solder Reflow Peak Temperature

| Package      | Maximum Peak<br>Temperature | Maximum Time at Peak<br>Temperature |  |
|--------------|-----------------------------|-------------------------------------|--|
| 48-pin SSOP  | 260 °C                      | 30 seconds                          |  |
| 48-pin QFN   | 260 °C                      | 30 seconds                          |  |
| 68-pin QFN   | 260 °C                      | 30 seconds                          |  |
| 100-pin TQFP | 260 °C                      | 30 seconds                          |  |
| 72-pin CSP   | 260 °C                      | 30 seconds                          |  |

# Table 13-3. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

| Package      | MSL   |
|--------------|-------|
| 48-pin SSOP  | MSL 3 |
| 48-pin QFN   | MSL 3 |
| 68-pin QFN   | MSL 3 |
| 100-pin TQFP | MSL 3 |
| 72-pin CSP   | MSL 1 |



| Description Document | on Title: PS<br>It Number: ( | oC <sup>®</sup> 3: CY8C3<br>001-53413 | 6 Family Da        | atasheet Programmable System-on-Chip (PSoC <sup>®</sup> ) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|------------------------------|---------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revision             | ECN                          | Submission<br>Date                    | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *J                   | 3179219                      | 02/22/2011                            | MKEA               | Updated conditions for flash data retention time.<br>Updated 100-pin TQFP package spec.<br>Updated EEPROM AC specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *К                   | 3200146                      | 03/28/2011                            | MKEA               | Removed Preliminary status from the data sheet.<br>Updated JTAG ID<br>Deleted Cin_G1, ADC input capacitance from Delta-Sigma ADC DC spec table<br>Updated JTAG Interface AC Specifications and SWD Interface Specifications<br>tables<br>Updated USBIO DC specs<br>Added 0.01 to max speed<br>Updated Features on page 1<br>Added Section 5.5, Nonvolatile Latches<br>Updated Flash AC specs<br>Added CAN DC specs<br>Updated delta-sigma graphs, noise histogram figures and RMS Noise spec tables<br>Add reference to application note AN58304 in section 8.1<br>Updated 100-pin TQFP package spec<br>Added oscillator, I/O, VDAC, regulator graphs<br>Updated GPIO and SIO AC specs<br>Updated POR with Brown Out AC spec table<br>Updated IDAC graphs<br>Added DMA timing diagram, interrupt timing and interrupt vector, I2C timing<br>diagrams<br>Updated opamp graphs and PGA graphs<br>Added full chip performance graphs<br>Changed MHzECO range.<br>Added "Solder Reflow Peak Temperature" table. |
| *L                   | 3259185                      | 05/17/2011                            | MKEA               | Added JTAG and SWD interface connection diagrams<br>Updated $T_{JA}$ and $T_{JC}$ values in Table 13-1<br>Changed typ and max values for the TCVos parameter in Opamp DC<br>specifications table.<br>Updated Clocking subsystem diagram.<br>Changed VSSD to VSSB in the PSoC Power System diagram<br>Updated Ordering information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Description Title: PSoC <sup>®</sup> 3: CY8C36 Family Datasheet Programmable System-on-Chip (PSoC <sup>®</sup> ) (continued) Document Number: 001-53413 |         |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Revision                                                                                                                                                | ECN     | Submission<br>Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| *N                                                                                                                                                      | 3645908 | 06/14/2012         | MKEA               | Added paragraph clarifying that to achieve low hibernate current, you must limit the frequency of IO input signals.<br>Revised description of IPOR and clarified PRES term.<br>Changed footnote to state that all GPIO input voltages - not just analog voltages - must be less than Vddio.<br>Updated 100-TGFP package drawing<br>Clarified description of opamp lout spec<br>Changed "compliant with I2C" to "compatible with I2C"<br>Updated 48-QFN package drawing<br>Changed reset status register description text to clarify that not all reset sources<br>are in the register<br>Updated example PCB layout figure<br>Removed text stating that FTW is a wakeup source<br>Changed supply ramp rate spec from 1 V/ns to 0.066 V/μs<br>Added "based on char" footnote to voltage monitors response time spec<br>Changed analog global spec descriptions and values<br>Added spec for ESD <sub>HBM</sub> for when Vssa and Vssd are separate<br>Added a statement about support for JTAG programmers and file formats<br>Changed comparator specs and conditions<br>Added text describing flash cache, and updated related text<br>Changed comparator specs and conditions<br>Added text describing flash cache, and updated related text<br>Changed comparator specs and conditions<br>Added text on adjustability of buzz frequency<br>Updated terminology for 'master" and "system" clock<br>Deleted the text "debug operations are possible while the device is reset"<br>Deleted and updated text regarding SIO performance under certain power ramp<br>conditions<br>Changed DAC high and low speed/power mode descriptions and conditions<br>Changed DAC high and low speed/power mode descriptions and conditions<br>Changed supply ramp rate spec from 1 V/ns to 0.066 V/μs<br>Changed text about usage in externally regulated mode<br>Updated text about usage conditions<br>Added text about usage conditions<br>Changed supply ramp rate spec from 1 V/ns to 0.066 V/μs<br>Changed supply ramp rate spec from 1 V/ns to 0.066 V/μs<br>Changed text describing SIO modes for overvoltage tolerance<br>Added chip Idd specs for active and low-power modes, for multiple voltage,<br>temperature and usage conditions<br>Added text ab |  |  |  |
| *0                                                                                                                                                      | 3648803 | 06/18/2012         | WKA/<br>MKEA       | No changes. EROS update.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |



| Description Title: PSoC <sup>®</sup> 3: CY8C36 Family Datasheet Programmable System-on-Chip (PSoC <sup>®</sup> ) (continued) Document Number: 001-53413 |         |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Revision                                                                                                                                                | ECN     | Submission<br>Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| *T                                                                                                                                                      | 4188568 | 11/14/2013         | MKEA               | Added SIO Comparator Specifications.<br>Corrected typo in the $V_{REF}$ parameter in the Voltage Reference Specifications.<br>Added CSP information in Packaging and Ordering Information sections.<br>Updated delta-sigma $V_{OS}$ spec conditions.                                                                                                                                                                                                                          |  |  |
| *U                                                                                                                                                      | 4385782 | 05/21/2014         | MKEA               | Updated General Description and Features.<br>Added More Information and PSoC Creator sections.<br>Updated 100-pin TQFP package diagram.                                                                                                                                                                                                                                                                                                                                       |  |  |
| *V                                                                                                                                                      | 4708125 | 03/31/2015         | MKEA               | Added INL4 and DNL4 specs in VDAC DC Specifications.<br>Updated Figure 6-11.<br>Added second note after Figure 6-4.<br>Added a reference to Fig 6-1 in Section 6.1.1 and Section 6.1.2.<br>Updated Section 6.2.2.<br>Added Section 7.8.1.<br>Updated Boost specifications.                                                                                                                                                                                                    |  |  |
| *W                                                                                                                                                      | 4807497 | 06/23/2015         | MKEA               | Added reference to code examples in More Information.<br>Updated typ value of TWRITE from 2 to 10 in EEPROM AC specs table.<br>Changed "Device supply for USB operation" to "Device supply (VDDD) for USB<br>operation" in USB DC Specifications.<br>Clarified power supply sequencing and margin for VDDA and VDDD.<br>Updated Serial Wire Debug Interface with limitations of debugging on Port 15.<br>Updated Section 11.7.5.<br>Updated Delta-sigma ADC DC Specifications |  |  |
| *X                                                                                                                                                      | 4932879 | 09/24/2015         | MKEA               | Changed the Regulator Output Capacitor min and max from "-" to 0.9 and 1.1,<br>respectively.<br>Added reference to AN54439 in Section 11.9.3.<br>Added MHz ECO DC specs table.<br>Removed references to IPOR rearm issues in Section 6.3.1.1.<br>Table 6-1: Changed DSI Fmax to 33 MHz.<br>Figure 6-1: Changed External I/O or DSI to 0-33 MHz.<br>Table 11-10: Changed Fgpioin Max to 33 MHz.<br>Table 11-12: Changed Fsioin Max to 33 MHz.                                  |  |  |
| *Y                                                                                                                                                      | 5322536 | 06/27/2016         | MKEA               | Updated More Information.<br>Corrected typos in External Electrical Connections.<br>Added links to CAD Libraries in Section 2.                                                                                                                                                                                                                                                                                                                                                |  |  |