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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 2-6. 100-pin TQFP Part Pinout 

Notes
10. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
11. This feature on select devices only. See Ordering Information on page 120 for details.
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Table 2-1.  VDDIO and Port Pin Associations

VDDIO Port Pins

VDDIO0 P0[7:0], P4[7:0], P12[3:2]

VDDIO1 P1[7:0], P5[7:0], P12[7:6]

VDDIO2 P2[7:0], P6[7:0], P12[5:4], P15[5:4]

VDDIO3 P3[7:0], P12[1:0], P15[3:0]

VDDD P15[7:6] (USB D+, D-)
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4.4.2  DMA Features

 24 DMA channels

 Each channel has one or more transaction descriptors (TD) to 
configure channel behavior. Up to 128 total TDs can be defined

 TDs can be dynamically updated

 Eight levels of priority per channel

 Any digitally routable signal, the CPU, or another DMA channel, 
can trigger a transaction

 Each channel can generate up to two interrupts per transfer

 Transactions can be stalled or canceled

 Supports transaction size of infinite or 1 to 64 KB

 TDs may be nested and/or chained for complex transactions

4.4.3  Priority Levels

The CPU always has higher priority than the DMA controller 
when their accesses require the same bus resources. Due to the 
system architecture, the CPU can never starve the DMA. DMA 
channels of higher priority (lower priority number) may interrupt 
current DMA transfers. In the case of an interrupt, the current 
transfer is allowed to complete its current transaction. To ensure 
latency limits when multiple DMA accesses are requested 
simultaneously, a fairness algorithm guarantees an interleaved 
minimum percentage of bus bandwidth for priority levels 2 
through 7. Priority levels 0 and 1 do not take part in the fairness 
algorithm and may use 100% of the bus bandwidth. If a tie occurs 
on two DMA requests of the same priority level, a simple round 
robin method is used to evenly share the allocated bandwidth. 
The round robin allocation can be disabled for each DMA 
channel, allowing it to always be at the head of the line. Priority 
levels 2 to 7 are guaranteed the minimum bus bandwidth shown 
in Table 4-7 after the CPU and DMA priority levels 0 and 1 have 
satisfied their requirements. 

When the fairness algorithm is disabled, DMA access is granted 
based solely on the priority level; no bus bandwidth guarantees 
are made.

4.4.4  Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to 
chain multiple channels allow the creation of both simple and 
complex use cases. General use cases include, but are not 
limited to:

4.4.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a 
source and sink (peripherals or memory location). The basic 
timing diagrams of DMA read and write cycles shown in 
Figure 4-1. For more description on other transfer modes, refer 
to the Technical Reference Manual.

Figure 4-1. DMA Timing Diagram

4.4.4.2 Auto Repeat DMA

Auto repeat DMA is typically used when a static pattern is 
repetitively read from system memory and written to a peripheral. 
This is done with a single TD that chains to itself.

4.4.4.3 Ping Pong DMA

A ping pong DMA case uses double buffering to allow one buffer 
to be filled by one client while another client is consuming the 

data previously received in the other buffer. In its simplest form, 
this is done by chaining two TDs together so that each TD calls 
the opposite TD when complete.

4.4.4.4 Circular DMA

Circular DMA is similar to ping pong DMA except it contains more 
than two buffers. In this case there are multiple TDs; after the last 
TD is complete it chains back to the first TD.

Table 4-7.  Priority Levels

Priority Level % Bus Bandwidth

0 100.0

1 100.0

2 50.0

3 25.0

4 12.5

5 6.2

6 3.1

7 1.5
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Figure 4-2. Interrupt Processing Timing Diagram

Notes 

1: Interrupt triggered asynchronous to the clock

2: The PEND bit is set on next active clock edge to indicate the interrupt arrival

3: POST bit is set following the PEND bit

4: Interrupt request and the interrupt number sent to CPU core after evaluation priority (Takes 3 clocks)

5: ISR address is posted to CPU core for branching

6: CPU acknowledges the interrupt request

7: ISR address is read by CPU for branching

8, 9: PEND and POST bits are cleared respectively after receiving the IRA from core

10: IRA bit is cleared after completing the current instruction and starting the instruction execution from ISR location (Takes 7 cycles)

11: IRC is set to indicate the completion of ISR, Active int. status is restored with previous status
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Figure 4-3. Interrupt Structure
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Table 4-8.  Interrupt Vector Table

# Fixed Function DMA UDB
0 LVD phub_termout0[0] udb_intr[0]
1 Cache/ECC phub_termout0[1] udb_intr[1]
2 Reserved phub_termout0[2] udb_intr[2]
3 Sleep (Pwr Mgr) phub_termout0[3] udb_intr[3]
4 PICU[0] phub_termout0[4] udb_intr[4]
5 PICU[1] phub_termout0[5] udb_intr[5]
6 PICU[2] phub_termout0[6] udb_intr[6]
7 PICU[3] phub_termout0[7] udb_intr[7]
8 PICU[4] phub_termout0[8] udb_intr[8]
9 PICU[5] phub_termout0[9] udb_intr[9]
10 PICU[6] phub_termout0[10] udb_intr[10]
11 PICU[12] phub_termout0[11] udb_intr[11]
12 PICU[15] phub_termout0[12] udb_intr[12]
13 Comparators Combined phub_termout0[13] udb_intr[13]
14 Switched Caps Combined phub_termout0[14] udb_intr[14]
15 I2C phub_termout0[15] udb_intr[15]
16 CAN phub_termout1[0] udb_intr[16]
17 Timer/Counter0 phub_termout1[1] udb_intr[17]
18 Timer/Counter1 phub_termout1[2] udb_intr[18]
19 Timer/Counter2 phub_termout1[3] udb_intr[19]
20 Timer/Counter3 phub_termout1[4] udb_intr[20]
21 USB SOF Int phub_termout1[5] udb_intr[21]
22 USB Arb Int phub_termout1[6] udb_intr[22]
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5.7  Memory Map

The CY8C36 8051 memory map is very similar to the MCS-51 
memory map.

5.7.1  Code Space

The CY8C36 8051 code space is 64 KB. Only main flash exists 
in this space. See the “Flash Program Memory” section on 
page 23.

5.7.2  Internal Data Space

The CY8C36 8051 internal data space is 384 bytes, compressed 
within a 256-byte space. This space consists of 256 bytes of 
RAM (in addition to the SRAM mentioned in “Static RAM” on 
page 23) and a 128-byte space for Special Function Registers 
(SFRs). See Figure 5-2. The lowest 32 bytes are used for four 
banks of registers R0-R7. The next 16 bytes are bit-addressable.

Figure 5-2. 8051 Internal Data Space

In addition to the register or bit address modes used with the 
lower 48 bytes, the lower 128 bytes can be accessed with direct 
or indirect addressing. With direct addressing mode, the upper 
128 bytes map to the SFRs. With indirect addressing mode, the 
upper 128 bytes map to RAM. Stack operations use indirect 
addressing; the 8051 stack space is 256 bytes. See the 
“Addressing Modes” section on page 14.

5.7.3  SFRs

The special function register (SFR) space provides access to frequently accessed registers. The memory map for the SFR memory 
space is shown in Table 5-4. 

The CY8C36 family provides the standard set of registers found on industry standard 8051 devices. In addition, the CY8C36 devices 
add SFRs to provide direct access to the I/O ports on the device. The following sections describe the SFRs added to the CY8C36 
family.

Upper Core RAM Shared 
with Stack Space 

(indirect addressing)

SFR
Special Function Registers

(direct addressing)

Lower Core RAM Shared with Stack Space
(direct and indirect addressing)

Bit-Addressable Area

4 Banks, R0-R7 Each

0xFF

0x80

0x7F

0x30

0x2F

0x20

0x1F

0x00

Table 5-4.  SFR Map

Address 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0×F8 SFRPRT15DR SFRPRT15PS SFRPRT15SEL – – – – –

0×F0 B – SFRPRT12SEL – – – – –

0×E8 SFRPRT12DR SFRPRT12PS MXAX – – – – –

0×E0 ACC – – – – – – –

0×D8 SFRPRT6DR SFRPRT6PS SFRPRT6SEL – – – – –

0×D0 PSW – – – – – – –

0×C8 SFRPRT5DR SFRPRT5PS SFRPRT5SEL – – – – –

0×C0 SFRPRT4DR SFRPRT4PS SFRPRT4SEL – – – – –

0×B8 – – – – – – – –

0×B0 SFRPRT3DR SFRPRT3PS SFRPRT3SEL – – – – –

0×A8 IE – – – – – – –

0×A0 P2AX – SFRPRT1SEL – – – – –

0×98 SFRPRT2DR SFRPRT2PS SFRPRT2SEL – – – – –

0×90 SFRPRT1DR SFRPRT1PS – DPX0 – DPX1 – –

0×88 – SFRPRT0PS SFRPRT0SEL – – – – –

0×80 SFRPRT0DR SP DPL0 DPH0 DPL1 DPH1 DPS –
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Figure 8-1. Analog Subsystem Block Diagram

The PSoC Creator software program provides a user friendly 
interface to configure the analog connections between the GPIO 
and various analog resources and connections from one analog 
resource to another. PSoC Creator also provides component 
libraries that allow you to configure the various analog blocks to 
perform application specific functions (PGA, transimpedance 
amplifier, voltage DAC, current DAC, and so on). The tool also 
generates API interface libraries that allow you to write firmware 
that allows the communication between the analog peripheral 
and CPU/Memory.

8.1  Analog Routing

The CY8C36 family of devices has a flexible analog routing 
architecture that provides the capability to connect GPIOs and 
different analog blocks, and also route signals between different 
analog blocks. One of the strong points of this flexible routing 
architecture is that it allows dynamic routing of input and output 
connections to the different analog blocks. 

For information on how to make pin selections for optimal analog 
routing, refer to the application note, AN58304 - PSoC® 3 and 
PSoC® 5 - Pin Selection for Analog Designs.

8.1.1  Features

 Flexible, configurable analog routing architecture

 16 analog globals (AG) and two analog mux buses 
(AMUXBUS) to connect GPIOs and the analog blocks

 Each GPIO is connected to one analog global and one analog 
mux bus

 Eight analog local buses (abus) to route signals between the 
different analog blocks

Multiplexers and switches for input and output selection of the 
analog blocks

8.1.2  Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) 
provide analog connectivity between GPIOs and the various 
analog blocks. There are 16 AGs in the CY8C36 family. The 
analog routing architecture is divided into four quadrants as 
shown in Figure 8-2. Each quadrant has four analog globals 
(AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is 
connected to the corresponding AG through an analog switch. 
The analog mux bus is a shared routing resource that connects 
to every GPIO through an analog switch. There are two 
AMUXBUS routes in CY8C36, one in the left half (AMUXBUSL) 
and one in the right half (AMUXBUSR), as shown in Figure 8-2. 
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The same opamps and block interfaces are also connectable to 
an array of resistors which allows the construction of a variety of 
continuous time functions.

The opamp and resistor array is programmable to perform 
various analog functions including

 Naked operational amplifier – Continuous mode

 Unity-gain buffer – Continuous mode

 Programmable gain amplifier (PGA) – Continuous mode

 Transimpedance amplifier (TIA) – Continuous mode

 Up/down mixer – Continuous mode

 Sample and hold mixer (NRZ S/H) – Switched cap mode

 First order analog to digital modulator – Switched cap mode

8.5.1  Naked Opamp

The Naked Opamp presents both inputs and the output for 
connection to internal or external signals. The opamp has a unity 
gain bandwidth greater than 6.0 MHz and output drive current up 
to 650 µA. This is sufficient for buffering internal signals (such as 
DAC outputs) and driving external loads greater than 7.5 k.

8.5.2  Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly 
connected to the inverting input for a gain of 1.00. It has a –3 dB 
bandwidth greater than 6.0 MHz.

8.5.3  PGA

The PGA amplifies an external or internal signal. The PGA can 
be configured to operate in inverting mode or noninverting mode. 
The PGA function may be configured for both positive and 
negative gains as high as 50 and 49 respectively. The gain is 
adjusted by changing the values of R1 and R2 as illustrated in 
Figure 8-8 on page 62. The schematic in Figure 8-8 on page 62 
shows the configuration and possible resistor settings for the 
PGA. The gain is switched from inverting and non inverting by 
changing the shared select value of the both the input muxes. 
The bandwidth for each gain case is listed in Table 8-3.

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not 
be large enough to achieve the desired resolution in the ADC, or 
dynamic range of another SC/CT block such as a mixer. The gain 
is adjustable at runtime, including changing the gain of the PGA 
prior to each ADC sample.

8.5.4  TIA

The Transimpedance Amplifier (TIA) converts an internal or 
external current to an output voltage. The TIA uses an internal 
feedback resistor in a continuous time configuration to convert 
input current to output voltage. For an input current Iin, the output 
voltage is VREF - Iin x Rfb, where VREF is the value placed on the 
non inverting input. The feedback resistor Rfb is programmable 
between 20 K and 1 M through a configuration register. 
Table 8-4 shows the possible values of Rfb and associated 
configuration settings.

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external 
sensor's output is current as a function of some type of stimulus 
such as temperature, light, magnetic flux etc. In a common 
application, the voltage DAC output can be connected to the 
VREF TIA input to allow calibration of the external sensor bias 
current by adjusting the voltage DAC output voltage.

8.6  LCD Direct Drive

The PSoC Liquid Crystal Display (LCD) driver system is a highly 
configurable peripheral designed to allow PSoC to directly drive 
a broad range of LCD glass. All voltages are generated on chip, 
eliminating the need for external components. With a high 
multiplex ratio of up to 1/16, the CY8C36 family LCD driver 
system can drive a maximum of 736 segments. The PSoC LCD 
driver module was also designed with the conservative power 
budget of portable devices in mind, enabling different LCD drive 
modes and power down modes to conserve power.

Table 8-3.  Bandwidth

Gain Bandwidth

1 6.0 MHz

24 340 kHz

48 220 kHz

50 215 kHz

R1 R2

20 k to 980 k

S

20 k or 40 k
1

0

1

0

Vin

Vref

Vref

Vin

Table 8-4.  Feedback Resistor Settings

Configuration Word Nominal Rfb (K)

000b 20

001b 30

010b 40

011b 60

100b 120

101b 250

110b 500

111b 1000

Vref
Vout

I in

R fb
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9.1  JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five 
pins (the nTRST pin is optional). The JTAG interface is used for 
programming the flash memory, debugging, I/O scan chains, and 
JTAG device chaining.

PSoC 3 has certain timing requirements to be met for entering 
programming mode through the JTAG interface. Due to these 
timing requirements, not all standard JTAG programmers, or 
standard JTAG file formats such as SVF or STAPL, can support 

PSoC 3 programming. The list of programmers that support 
PSoC 3 programming is available at 
http://www.cypress.com/go/programming.

The JTAG clock frequency can be up to 14 MHz, or 1/3 of the 
CPU clock frequency for 8 and 16-bit transfers, or 1/5 of the CPU 
clock frequency for 32-bit transfers. By default, the JTAG pins are 
enabled on new devices but the JTAG interface can be disabled, 
allowing these pins to be used as GPIO instead.

Figure 9-1. JTAG Interface Connections between PSoC 3 and Programmer

TCK (P1[1]

TMS (P1[0])  5

GND

GND

TCK

TMS  5

XRES

Host Programmer  PSoC 3

TDO TDI (P1[4])

TDI TDO (P1[3])

nTRST 6 nTRST (P1[5]) 6

 
1 The voltage levels of Host Programmer and the PSoC 3 voltage domains involved in Programming should be same. The   
   Port 1 JTAG  pins, XRES pin (XRES_N or P1[2]) are powered by VDDIO1. So, VDDIO1 of PSoC 3 should be at same voltage  
   level as host VDD. Rest of PSoC 3 voltage domains ( VDDD, VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same voltage level as  
   host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 3.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 3. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

4  For JTAG Programming, Device reset can also be done without connecting to the XRES pin or Power cycle mode by  
   using the TMS,TCK,TDI, TDO pins of PSoC 3, and writing to a specific register. But this requires that the DPS setting in  
   NVL is not equal to “Debug Ports Disabled”.

5  By default, PSoC 3 is configured for 4-wire JTAG mode unless user changes the DPS setting. So the TMS pin is  
   unidirectional. But if the  DPS setting is changed to non-JTAG mode, the TMS pin in JTAG is bi-directional as the SWD  
   Protocol has to be used for acquiring the  PSoC 3 device initially. After switching from SWD to JTAG mode, the TMS pin 
   will be uni-directional. In such a case, unidirectional buffer should not be used on TMS line.

6  nTRST JTAG pin (P1[5]) cannot be used to reset the JTAG TAP controlller during first time programming of PSoC 3 as  
   the default setting is 4-wire JTAG (nTRST disabled). Use the TMS, TCK pins to do a reset of JTAG TAP controller.

7  If XRES pin is used by host, P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES 
   pin). For devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48-pin  
   devices, but use dedicated XRES pin for rest of devices.

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3, 4

VSSD, VSSA

XRES or P1[2] 4, 7

VDD

VDD

http://www.cypress.com/go/programming
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9.2  Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG 
interface. It requires only two pins instead of the four or five 
needed by JTAG. SWD provides all of the programming and 
debugging features of JTAG at the same speed. SWD does not 
provide access to scan chains or device chaining. The SWD 
clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) 
or the USBIO D+ and D– pins. The USBIO pins are useful for in 
system programming of USB solutions that would otherwise 
require a separate programming connector. One pin is used for 
the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This 
only happens if, within 8 μs (key window) after reset, that pin pair 

(JTAG or USB) receives a predetermined acquire sequence of 
1s and 0s. If the NVL latches are set for SWD (see Section 5.5), 
this sequence need not be applied to the JTAG pin pair. The 
acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash 
memory. 

The SWD interface can be enabled from the JTAG interface or 
disabled, allowing its pins to be used as GPIO. Unlike JTAG, the 
SWD interface can always be reacquired on any device during 
the key window. It can then be used to reenable the JTAG 
interface, if desired. When using SWD or JTAG pins as standard 
GPIO, make sure that the GPIO functionality and PCB circuits do 
not interfere with SWD or JTAG use.

Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

VSSD, VSSA

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3

SWDCK (P1[1] or P15[7])

SWDIO (P1[0] or P15[6])

XRES or P1[2]  3, 4

GND
GND

SWDCK

SWDIO

XRES

Host Programmer PSoC 3
VDD

1  The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming    
    should be the same. XRES pin (XRES_N or P1[2]) is  powered by VDDIO1. The USB SWD pins are 
    powered by VDDD.  So for Programming using the USB SWD pins with XRES pin, the VDDD, VDDIO1 of 
   PSoC 3 should be at the same voltage level as Host VDD. Rest of PSoC 3 voltage domains ( VDDA, VDDIO0,  
VDDIO2, VDDIO3) need not be at the same voltage level as host Programmer.   The Port 1 SWD pins are   

   powered by VDDIO1.  So VDDIO1 of PSoC 3 should be at same voltage level as host VDD for Port 1 SWD  
   programming. Rest of PSoC 3 voltage domains ( VDDD,  VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same  
   voltage level as host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 3.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 3. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

4  P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For  
   devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48-
   pin devices, but use dedicated XRES pin for rest of devices.

VDD
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9.3  Debug Features

Using the JTAG or SWD interface, the CY8C36 supports the 
following debug features:

 Halt and single-step the CPU

 View and change CPU and peripheral registers, and RAM 
addresses

 Eight program address breakpoints

One memory access breakpoint—break on reading or writing 
any memory address and data value

 Break on a sequence of breakpoints (non recursive)

 Debugging at the full speed of the CPU

 Compatible with PSoC Creator and MiniProg3 programmer and 
debugger

 Standard JTAG programming and debugging interfaces make 
CY8C36 compatible with other popular third-party tools (for 
example, ARM / Keil)

9.4  Trace Features

The CY8C36 supports the following trace features when using 
JTAG or SWD:

 Trace the 8051 program counter (PC), accumulator register 
(ACC), and one SFR / 8051 core RAM register

 Trace depth up to 1000 instructions if all registers are traced, 
or 2000 instructions if only the PC is traced (on devices that 
include trace memory)

 Program address trigger to start tracing

 Trace windowing, that is, only trace when the PC is within a 
given range

 Two modes for handling trace buffer full: continuous (overwriting 
the oldest trace data) or break when trace buffer is full

9.5  Single Wire Viewer Interface

The SWV interface is closely associated with SWD but can also 
be used independently. SWV data is output on the JTAG 
interface’s TDO pin. If using SWV, you must configure the device 
for SWD, not JTAG. SWV is not supported with the JTAG 
interface.

SWV is ideal for application debug where it is helpful for the 
firmware to output data similar to 'printf' debugging on PCs. The 
SWV is ideal for data monitoring, because it requires only a 
single pin and can output data in standard UART format or 
Manchester encoded format. For example, it can be used to tune 
a PID control loop in which the output and graphing of the three 
error terms greatly simplifies coefficient tuning.

The following features are supported in SWV:

 32 virtual channels, each 32 bits long

 Simple, efficient packing and serializing protocol

 Supports standard UART format (N81)

9.6  Programming Features

The JTAG and SWD interfaces provide full programming 
support. The entire device can be erased, programmed, and 
verified. You can increase flash protection levels to protect 
firmware IP. Flash protection can only be reset after a full device 
erase. Individual flash blocks can be erased, programmed, and 
verified, if block security settings permit. 

9.7  Device Security

PSoC 3 offers an advanced security feature called device 
security, which permanently disables all test, programming, and 
debug ports, protecting your application from external access. 
The device security is activated by programming a 32-bit key 
(0×50536F43) to a Write Once Latch (WOL).
The WOL is a type of nonvolatile latch (NVL). The cell itself is an 
NVL with additional logic wrapped around it. Each WOL device 
contains four bytes (32 bits) of data. The wrapper outputs a ‘1’ if 
a super-majority (28 of 32) of its bits match a pre-determined 
pattern (0×50536F43); it outputs a ‘0’ if this majority is not 
reached. When the output is 1, the Write Once NV latch locks the 
part out of Debug and Test modes; it also permanently gates off 
the ability to erase or alter the contents of the latch. Matching all 
bits is intentionally not required, so that single (or few) bit failures 
do not deassert the WOL output. The state of the NVL bits after 
wafer processing is truly random with no tendency toward 1 or 0.
The WOL only locks the part after the correct 32-bit key 
(0×50536F43) is loaded into the NVL's volatile memory, 
programmed into the NVL's nonvolatile cells, and the part is 
reset. The output of the WOL is only sampled on reset and used 
to disable the access. This precaution prevents anyone from 
reading, erasing, or altering the contents of the internal memory.
The user can write the key into the WOL to lock out external 
access only if no flash protection is set (see “Flash Security” on 
page 23). However, after setting the values in the WOL, a user 
still has access to the part until it is reset. Therefore, a user can 
write the key into the WOL, program the flash protection data, 
and then reset the part to lock it.
If the device is protected with a WOL setting, Cypress cannot 
perform failure analysis and, therefore, cannot accept RMAs 
from customers. The WOL can be read out through the SWD port 
to electrically identify protected parts. The user can write the key 
in WOL to lock out external access only if no flash protection is 
set. For more information on how to take full advantage of the 
security features in PSoC see the PSoC 3 TRM.
Disclaimer

Note the following details of the flash code protection features on 
Cypress devices. 
Cypress products meet the specifications contained in their 
particular Cypress data sheets. Cypress believes that its family 
of products is one of the most secure families of its kind on the 
market today, regardless of how they are used. There may be 
methods, unknown to Cypress, that can breach the code 
protection features. Any of these methods, to our knowledge, 
would be dishonest and possibly illegal. Neither Cypress nor any 
other semiconductor manufacturer can guarantee the security of 
their code. Code protection does not mean that we are 
guaranteeing the product as “unbreakable.” 
Cypress is willing to work with the customer who is concerned 
about the integrity of their code. Code protection is constantly 
evolving. We at Cypress are committed to continuously 
improving the code protection features of our products.
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Sleep Mode[32]

CPU = OFF
RTC = ON (= ECO32K ON, in low-power 
mode)
Sleep timer = ON (= ILO ON at 1 kHz)[33]

WDT = OFF
I2C Wake = OFF
Comparator = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
4.5 V - 5.5 V

T = –40 °C – 1.1 2.3 µA

T = 25 °C – 1.1 2.2

T = 85 °C – 15 30

VDD = VDDIO = 
2.7 V – 3.6 V

T = –40 °C – 1 2.2

T = 25 °C – 1 2.1

T = 85 °C – 12 28

VDD = VDDIO = 
1.71 V – 1.95 V[34]

T = 25 °C – 2.2 4.2

Comparator = ON
CPU = OFF
RTC = OFF
Sleep timer = OFF
WDT = OFF
I2C Wake = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
2.7 V – 3.6 V[35]

T = 25 °C – 2.2 2.7

I2C Wake = ON
CPU = OFF
RTC = OFF
Sleep timer = OFF
WDT = OFF
Comparator = OFF
POR = ON
Boost = OFF
SIO pins in single ended input, unregulated 
output mode

VDD = VDDIO = 
2.7 V – 3.6 V[35]

T = 25 °C – 2.2 2.8

Hibernate Mode[32]

Hibernate mode current
All regulators and oscillators off
SRAM retention
GPIO interrupts are active
Boost = OFF
SIO pins in single ended input, unregulated 
output
mode

VDD = VDDIO = 
4.5 V - 5.5 V

T = –40 °C – 0.2 1.5 µA

T = 25 °C – 0.5 1.5

T = 85 °C – 4.1 5.3

VDD = VDDIO = 
2.7 V – 3.6 V

T = –40 °C – 0.2 1.5

T = 25 °C – 0.2 1.5

T = 85 °C – 3.2 4.2

VDD = VDDIO = 
1.71 V – 1.95 V[34]

T = –40 °C – 0.2 1.5

T = 25 °C – 0.3 1.5

T = 85 °C – 3.3 4.3

IDDAR Analog current consumption while device 
is reset[36]

VDDA  3.6 V – 0.3 0.6 mA

VDDA  3.6 V – 1.4 3.3 mA

IDDDR Digital current consumption while device is 
reset[36]

VDDD  3.6 V – 1.1 3.1 mA

VDDD  3.6 V – 0.7 3.1 mA

Table 11-2.  DC Specifications (continued)

Parameter Description Conditions Min Typ[29] Max Units

Notes
32. If VCCD and VCCA are externally regulated, the voltage difference between VCCD and VCCA must be less than 50 mV.
33. Sleep timer generates periodic interrupts to wake up the CPU. This specification applies only to those times that the CPU is off.
34. Externally regulated mode.
35. Based on device characterization (not production tested).
36. Based on device characterization (not production tested). USBIO pins tied to ground (VSSD).
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Figure 11-4. FCPU vs. VDD

Table 11-3.  AC Specifications[37]

Parameter Description Conditions Min Typ Max Units

FCPU CPU frequency 1.71 V  VDDD  5.5 V DC – 67.01 MHz

FBUSCLK Bus frequency 1.71 V  VDDD  5.5 V DC – 67.01 MHz

Svdd VDD ramp rate – – 0.066 V/µs

TIO_INIT Time from VDDD/VDDA/VCCD/VCCA 
IPOR to I/O ports set to their reset 
states

– – 10 µs

TSTARTUP Time from VDDD/VDDA/VCCD/VCCA 
 PRES to CPU executing code at 
reset vector

VCCA/VDDA = regulated from 
VDDA/VDDD, no PLL used, fast IMO 
boot mode (48 MHz typ.)

– – 40 µs

VCCA/VCCD = regulated from 
VDDA/VDDD, no PLL used, slow 
IMO boot mode (12 MHz typ.)

– – 74 µs

TSLEEP Wakeup from sleep mode – 
Application of non–LVD interrupt to 
beginning of execution of next CPU 
instruction

– – 15 µs

THIBERNATE Wakeup from hibernate mode – 
Application of external interrupt to 
beginning of execution of next CPU 
instruction

– – 100 µs

Note
37. Based on device characterization (Not production tested).
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11.3.3  Inductive Boost Regulator

Unless otherwise specified, operating conditions are: VBAT = 0.5 V–3.6 V, VOUT = 1.8 V–5.0 V, IOUT = 0 mA–50 mA, 
LBOOST = 4.7 µH–22 µH, CBOOST = 22 µF || 3 × 1.0 µF || 3 × 0.1 µF, CBAT = 22 µF, IF = 1.0 A. Unless otherwise specified, all charts
and graphs show typical values.

Table 11-6.  Inductive Boost Regulator DC Specifications

Parameter Description Conditions Min Typ Max Units

VOUT Boost output voltage[38] vsel = 1.8 V in register BOOST_CR0 1.71 1.8 1.89 V

vsel = 1.9 V in register BOOST_CR0 1.81 1.90 2.00 V

vsel = 2.0 V in register BOOST_CR0 1.90 2.00 2.10 V

vsel = 2.4 V in register BOOST_CR0 2.16 2.40 2.64 V

vsel = 2.7 V in register BOOST_CR0 2.43 2.70 2.97 V

vsel = 3.0 V in register BOOST_CR0 2.70 3.00 3.30 V

vsel = 3.3 V in register BOOST_CR0 2.97 3.30 3.63 V

vsel = 3.6 V in register BOOST_CR0 3.24 3.60 3.96 V

vsel = 5.0 V in register BOOST_CR0 4.50 5.00 5.50 V

VBAT Input voltage to boost[39] IOUT = 0 mA–5 mA vsel = 1.8 V–2.0 V, 
TA = 0 °C–70 °C

0.5 – 0.8 V

IOUT = 0 mA–15 mA vsel = 1.8 V–5.0 V[40], 
TA = –10 °C–85 °C

1.6 – 3.6 V

IOUT = 0 mA–25 mA vsel = 1.8 V–2.7 V, 
TA = –10 °C–85 °C

0.8 – 1.6 V

IOUT = 0 mA–50 mA vsel = 1.8 V–3.3 V[40], 
TA = –40 °C–85 °C

1.8 – 2.5 V

vsel = 1.8 V–3.3 V[40], 
TA = –10 °C–85 °C

1.3 – 2.5 V

vsel = 2.5 V–5.0 V[40], 
TA = –10 °C–85 °C

2.5 – 3.6 V

IOUT Output current TA = 0 °C–70 °C VBAT = 0.5 V–0.8 V 0 – 5 mA

TA = –10 °C–85 °C VBAT = 1.6 V–3.6 V 0 – 15 mA

VBAT = 0.8 V–1.6 V 0 – 25 mA

VBAT = 1.3 V–2.5 V 0 – 50 mA

VBAT = 2.5 V–3.6 V 0 – 50 mA

TA = –40 °C–85 °C VBAT = 1.8 V–2.5 V 0 – 50 mA

ILPK Inductor peak current – – 700 mA

IQ Quiescent current Boost active mode – 250 – µA

Boost sleep mode, IOUT < 1 µA – 25 – µA

RegLOAD Load regulation – – 10 %

RegLINE Line regulation – – 10 %

Notes
38. Listed vsel options are characterized. Additional vsel options are valid and guaranteed by design.
39. The boost will start at all valid VBAT conditions including down to VBAT = 0.5 V. 
40. If VBAT is greater than or equal to VOUT boost setting, then VOUT will be less than VBAT due to resistive losses in the boost circuit.
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Figure 11-17. SIO Output High Voltage and Current, 
Unregulated Mode

Figure 11-18. SIO Output Low Voltage and Current, 
Unregulated Mode

Figure 11-19. SIO Output High Voltage and Current, Regulat-
ed Mode

Note
48. Based on device characterization (Not production tested).

Table 11-12.  SIO AC Specifications

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in Fast Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.3 V – – 12 ns

TfallF Fall time in Fast Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.3 V – – 12 ns

TriseS Rise time in Slow Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.0 V – – 75 ns

TfallS Fall time in Slow Strong Mode 
(90/10%)[48]

Cload = 25 pF, VDDIO = 3.0 V – – 60 ns
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Table 11-22.  Delta-sigma ADC AC Specifications
Parameter Description Conditions Min Typ Max Units

Startup time – – 4 Samples

THD Total harmonic distortion[55] Buffer gain = 1, 12-bit, 
Range = ±1.024 V

– – 0.0032 %

12-Bit Resolution Mode

SR12 Sample rate, continuous, high power[55] Range = ±1.024 V, unbuffered 4 – 192 ksps

BW12 Input bandwidth at max sample rate[55] Range = ±1.024 V, unbuffered – 44 – kHz

SINAD12int Signal to noise ratio, 12-bit, internal reference[55] Range = ±1.024 V, unbuffered 66 – – dB

8-Bit Resolution Mode

SR8 Sample rate, continuous, high power[55] Range = ±1.024 V, unbuffered 8 – 384 ksps

BW8 Input bandwidth at max sample rate[55] Range = ±1.024 V, unbuffered – 88 – kHz

SINAD8int Signal to noise ratio, 8-bit, internal reference[55] Range = ±1.024 V, unbuffered 43 – – dB

Table 11-23.  Delta-sigma ADC Sample Rates, Range = ±1.024 V

Resolution, 
Bits

Continuous Multi-Sample

Min Max Min Max

8 8000 384000 1911 91701

9 6400 307200 1543 74024

10 5566 267130 1348 64673

11 4741 227555 1154 55351

12 4000 192000 978 46900

Note
55. Based on device characterization (Not production tested).

Figure 11-33. Delta-sigma ADC IDD vs sps, Range = ±1.024 V, 
Continuous Sample Mode, Input Buffer Bypassed
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11.6  Digital Peripherals

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, 
except where noted.

11.6.1  Timer

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode. Timers can also be implemented in UDBs; for 
more information, see the Timer component data sheet in PSoC Creator.  

11.6.2  Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in 
UDBs; for more information, see the Counter component data sheet in PSoC Creator.

Table 11-41.  Timer DC Specifications

Parameter Description Conditions Min Typ Max Units

Block current consumption 16-bit timer, at listed input clock 
frequency

– – – µA

3 MHz – 15 – µA

12 MHz – 60 – µA

48 MHz – 260 – µA

67 MHz – 350 – µA

Table 11-42.  Timer AC Specifications

Parameter Description Conditions Min Typ Max Units

Operating frequency DC – 67.01 MHz

Capture pulse width (Internal) 15 – – ns

Capture pulse width (external) 30 – – ns

Timer resolution 15 – – ns

Enable pulse width 15 – – ns

Enable pulse width (external) 30 – – ns

Reset pulse width 15 – – ns

Reset pulse width (external) 30 – – ns

Table 11-43.  Counter DC Specifications

Parameter Description Conditions Min Typ Max Units

Block current consumption 16–bit counter, at listed input clock 
frequency

– – – µA

3 MHz – 15 – µA

12 MHz – 60 – µA

48 MHz – 260 – µA

67 MHz – 350 – µA

Table 11-44.  Counter AC Specifications

Parameter Description Conditions Min Typ Max Units

Operating frequency DC – 67.01 MHz

Capture pulse 15 – – ns

Resolution 15 – – ns

Pulse width 15 – – ns

Pulse width (external) 30 – – ns

Enable pulse width 15 – – ns

Enable pulse width (external) 30 – – ns

Reset pulse width 15 – – ns

Reset pulse width (external) 30 – – ns
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11.7.5  External Memory Interface 

Figure 11-66. Asynchronous Write and Read Cycle Timing, No Wait States

Tbus_clock

Bus Clock

EM_Addr

EM_CE

EM_WE

EM_OE

EM_Data

Write Cycle Read Cycle

Minimum of 4 bus clock cycles between successive EMIF accesses

Trd_setup Trd_hold

Twr_setup

Notes
68. Based on device characterization (Not production tested).
69. EMIF signal timings are limited by GPIO frequency limitations. See “GPIO” section on page 80.
70. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

Table 11-63.  Asynchronous Write and Read Timing Specifications[68]

Parameter Description Conditions Min Typ Max Units

Fbus_clock Bus clock frequency[69] – – 33 MHz

Tbus_clock Bus clock period[70] 30.3 – – ns

Twr_Setup Time from EM_data valid to rising 
edge of EM_WE and EM_CE

Tbus_clock – 10 – – ns

Trd_setup Time that EM_data must be valid 
before rising edge of EM_OE

5 – – ns

Trd_hold Time that EM_data must be valid 
after rising edge of EM_OE

5 – – ns
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11.8.3   Interrupt Controller

11.8.4  JTAG Interface

Figure 11-68. JTAG Interface Timing

Table 11-69.  Interrupt Controller AC Specifications

Parameter Description Conditions Min Typ Max Units

Delay from interrupt signal input to ISR 
code execution from ISR code

Includes worse case completion of 
longest instruction DIV with 6 
cycles 

– – 25 Tcy CPU

Table 11-70.  JTAG Interface AC Specifications[75]

Parameter Description Conditions Min Typ Max Units

f_TCK TCK frequency 3.3 V  VDDD  5 V – – 14[76] MHz

1.71 V  VDDD < 3.3 V – – 7[76] MHz

T_TDI_setup TDI setup before TCK high (T/10) – 5 – – ns

T_TMS_setup TMS setup before TCK high T/4 – –

T_TDI_hold TDI, TMS hold after TCK high T = 1/f_TCK max T/4 – –

T_TDO_valid TCK low to TDO valid T = 1/f_TCK max – – 2T/5

T_TDO_hold TDO hold after TCK high T = 1/f_TCK max T/4 – –

TDI

TCK

T_TDI_setup

TDO

(1/f_TCK)

T_TDI_hold

T_TDO_valid T_TDO_hold

TMS

T_TMS_setup T_TMS_hold

Notes
75. Based on device characterization (Not production tested).
76. f_TCK must also be no more than 1/3 CPU clock frequency.
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13.  Packaging

Table 13-1.  Package Characteristics

Parameter Description Conditions Min Typ Max Units

TA Operating ambient temperature –40 25.00 85 °C

TJ Operating junction temperature –40 – 100 °C

TJA Package JA (48-pin SSOP) – 49 – °C/Watt

TJA Package JA (48-pin QFN) – 14 – °C/Watt

TJA Package JA (68-pin QFN) – 15 – °C/Watt

TJA Package JA (100-pin TQFP) – 34 – °C/Watt

TJC Package JC (48-pin SSOP) – 24 – °C/Watt

TJC Package JC (48-pin QFN) – 15 – °C/Watt

TJC Package JC (68-pin QFN) – 13 – °C/Watt

TJC Package JC (100-pin TQFP) – 10 – °C/Watt

TJA Package JA (72-pin CSP) – 18 – °C/Watt

TJC Package JC (72-pin CSP) – 0.13 – °C/Watt

Table 13-2.  Solder Reflow Peak Temperature

Package Maximum Peak 
Temperature 

Maximum Time at Peak 
Temperature

48-pin SSOP 260 °C 30 seconds

48-pin QFN 260 °C 30 seconds

68-pin QFN 260 °C 30 seconds

100-pin TQFP 260 °C 30 seconds

72-pin CSP 260 °C 30 seconds

Table 13-3.  Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package MSL 

48-pin SSOP MSL 3

48-pin QFN MSL 3 

68-pin QFN MSL 3

100-pin TQFP MSL 3

72-pin CSP MSL 1
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Figure 13-5. WLCSP Package (4.25 × 4.98 × 0.60 mm)
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1. JEDEC Publication 95; Design Guide 4.18
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