

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

EXFL

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	256KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	100MHz
Primary Attributes	ProASIC®3 FPGA, 200K Gates, 4608 D-Flip-Flops
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f200m3f-1fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SmartFusion DC and Switching Characteristics

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs/CCCs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- The number of eNVM blocks used in the design
- The analog block used in the design, including the temperature monitor, current monitor, ABPS, sigma-delta DAC, comparator, low power crystal oscillator, RC oscillator and the main crystal oscillator
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-17 on page 2-18.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-18 on page 2-18.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-18 on page 2-18.
- Read rate to the eNVM blocks

The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

SoC Mode, Standby Mode, and Time Keeping Mode.

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

SoC Mode

 $\mathsf{P}_{\mathsf{STAT}} = \mathsf{P}_{\mathsf{DC1}} + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{P}_{\mathsf{DC7}}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{P}_{\mathsf{DC8}}) + (\mathsf{N}_{\mathsf{PLLS}} * \mathsf{P}_{\mathsf{DC9}})$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

 $P_{STAT} = P_{DC2}$

Time Keeping Mode

 $P_{STAT} = P_{DC3}$

Total Dynamic Power Consumption—P_{DYN}

SoC Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{eNVM} + P_{XTL-OSC} + P_{RC-OSC} + P_{AB} + P_{LPXTAL-OSC} + P_{MSS}

Standby Mode

 $P_{DYN} = P_{RC-OSC} + P_{LPXTAL-OSC}$

Time Keeping Mode

 $P_{DYN} = P_{LPXTAL-OSC}$

Global Clock Dynamic Contribution—**P**_{CLOCK}

SoC Mode

 $P_{CLOCK} = (P_{AC1} + N_{SPINE} * P_{AC2} + N_{ROW} * PAC3 + N_{S-CELL} * P_{AC4}) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Device Architecture" chapter of the *SmartFusion FPGA Fabric User's Guide.*

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Device Architecture" chapter of the *SmartFusion FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Time Keeping Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

SoC Mode

 $P_{S-CELL} = N_{S-CELL} * (P_{AC5} + (\alpha_1 / 2) * P_{AC6}) * F_{CLK}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

 $P_{S-CELL} = 0 W$

Combinatorial Cells Dynamic Contribution—P_{C-CELL}

SoC Mode

 $P_{C-CELL} = N_{C-CELL} * (\alpha_1 / 2) * P_{AC7} * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

 $P_{C-CELL} = 0 W$

Routing Net Dynamic Contribution—P_{NET}

SoC Mode

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 / 2) * \mathsf{P}_{\mathsf{AC8}} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number VersaTiles used as sequential modules in the design.

 $N_{C\mbox{-}C\mbox{-}E\mbox{-}L\mbox{-}L}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the frequency of the clock driving the logic including these nets.

SmartFusion DC and Switching Characteristics

Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

SmartFusion DC and Switching Characteristics

Detailed I/O DC Characteristics

Table 2-26 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	V _{IN} = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	V _{IN} = 0, f = 1.0 MHz		8	pF

Table 2-27 • I/O Output Buffer Maximum Resistances¹ Applicable to FPGA I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R_{PULL} -UP (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

1. These maximum values are provided for information only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website (also generated by the SoC Products Group Libero SoC toolset).

2. R_(PULL-DOWN-MAX) = (V_{OLspec}) / I_{OLspec}

3. R_(PULL-UP-MAX) = (V_{CCImax} - V_{OHspec}) / I_{OHspec}

Timing Characteristics

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	7.20	0.04	0.97	0.39	7.34	6.18	2.52	2.46	9.39	8.23	ns
	-1	0.50	6.00	0.03	0.81	0.32	6.11	5.15	2.10	2.05	7.83	6.86	ns
8 mA	Std.	0.60	4.64	0.04	0.97	0.39	4.73	3.84	2.85	3.02	6.79	5.90	ns
	–1	0.50	3.87	0.03	0.81	0.32	3.94	3.20	2.37	2.52	5.65	4.91	ns
12 mA	Std.	0.60	3.37	0.04	0.97	0.39	3.43	2.67	3.07	3.39	5.49	4.73	ns
	-1	0.50	2.81	0.03	0.81	0.32	2.86	2.23	2.55	2.82	4.58	3.94	ns
16 mA	Std.	0.60	3.18	0.04	0.97	0.39	3.24	2.43	3.11	3.48	5.30	4.49	ns
	-1	0.50	2.65	0.03	0.81	0.32	2.70	2.03	2.59	2.90	4.42	3.74	ns
24 mA	Std.	0.60	2.93	0.04	0.97	0.39	2.99	2.03	3.17	3.83	5.05	4.09	ns
	-1	0.50	2.45	0.03	0.81	0.32	2.49	1.69	2.64	3.19	4.21	3.41	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	9.75	0.04	0.97	0.39	9.93	8.22	2.52	2.31	11.99	10.28	ns
	-1	0.50	8.12	0.03	0.81	0.32	8.27	6.85	2.10	1.93	9.99	8.57	ns
8 mA	Std.	0.60	6.96	0.04	0.97	0.39	7.09	5.85	2.84	2.87	9.15	7.91	ns
	-1	0.50	5.80	0.03	0.81	0.32	5.91	4.88	2.37	2.39	7.62	6.59	ns
12 mA	Std.	0.60	5.35	0.04	0.97	0.39	5.45	4.58	3.06	3.23	7.51	6.64	ns
	-1	0.50	4.46	0.03	0.81	0.32	4.54	3.82	2.55	2.69	6.26	5.53	ns
16 mA	Std.	0.60	5.01	0.04	0.97	0.39	5.10	4.30	3.11	3.32	7.16	6.36	ns
	-1	0.50	4.17	0.03	0.81	0.32	4.25	3.58	2.59	2.77	5.97	5.30	ns
24 mA	Std.	0.60	4.67	0.04	0.97	0.39	4.75	4.28	3.16	3.66	6.81	6.34	ns
	-1	0.50	3.89	0.03	0.81	0.32	3.96	3.57	2.64	3.05	5.68	5.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to MSS I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
8 mA	Std.	0.22	2.31	0.09	0.94	1.30	0.22	2.35	1.86	2.20	2.45	ns
	–1	0.18	1.92	0.07	0.78	1.09	0.18	1.96	1.55	1.83	2.04	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCFPGAIOBx	Supply voltage	2.375	2.5	2.625	V
VOL	Output low voltage	0.9	1.075	1.25	V
VOH	Output high voltage	1.25	1.425	1.6	V
I _{OL} ¹	Output lower current	0.65	0.91	1.16	mA
I _{OH} ¹	Output high current	0.65	0.91	1.16	mA
VI	Input voltage	0		2.925	V
I _{IH} ²	Input high leakage current			15	μA
I _{IL} ²	Input low leakage current			15	μA
V _{ODIFF}	Differential output voltage	250	350	450	mV
V _{OCM}	Output common mode voltage	1.125	1.25	1.375	V
V _{ICM}	Input common mode voltage	0.05	1.25	2.35	V
V _{IDIFF}	Input differential voltage	100	350		mV

Table 2-63 • LVDS	Minimum and	Maximum DC	Input and C	output Levels

Notes:

1. I_{OL}/I_{OH} defined by $V_{ODIFF}/(resistor network)$.

2. Currents are measured at 85°C junction temperature.

Table 2-64 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)
1.075	1.325	Cross point	-

* Measuring point = $V_{trip.}$ See Table 2-22 on page 2-24 for a complete table of trip points.

Timing Characteristics

Table 2-65 • LVDS

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCFPGAIOBx = 2.3 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.60	1.83	0.04	1.87	ns
-1	0.50	1.53	0.03	1.55	ns

Notes:

1. For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

2. The above mentioned timing parameters correspond to 24mA drive strength.

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCFPGAIOBx	Supply Voltage	3.	.0	3.3		3.6		V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-66 • Minimum and Maximum DC Input and Output Levels

Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)
1.64	1.94	Cross point	-

* Measuring point = $V_{trip.}$ See Table 2-22 on page 2-24 for a complete table of trip points.

Timing Characteristics

Table 2-68 • LVPECL

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCFPGAIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.60	1.76	0.04	1.76	ns
-1	0.50	1.46	0.03	1.46	ns

Notes:

1. For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

2. The above mentioned timing parameters correspond to 24mA drive strength.

Output Register

Figure 2-17 • Output Register Timing Diagram

Timing Characteristics

Table 2-72 • Output Data Register Propagation DelaysWorst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.60	0.72	ns
tosud	Data Setup Time for the Output Data Register	0.32	0.38	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.53	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.82	0.98	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.82	0.98	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.23	0.27	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.23	0.27	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.22	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.22	ns
t _{ОСКМРWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.36	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.32	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-86 • SmartFusion CCC/PLL Specification

Parameter	Minir	num	Тур	ical	Maxir	num	Un	its
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.	5			35	0	MHz	
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.	75			350) ¹	MI	Ηz
Delay Increments in Programmable Delay Blocks ^{2,3,4}			16	60			р	S
Number of Programmable Values in Each Programmable Delay Block					32	2		
Input Period Jitter					1.	5	n	S
Acquisition Time								
LockControl = 0					30	0	μ	S
LockControl = 1					6.	0	m	IS
Tracking Jitter ⁵								
LockControl = 0					1.	1.6 ns		S
LockControl = 1					0.	8	ns	
Output Duty Cycle	48	.5			5.1	5	%	
Delay Range in Block: Programmable Delay 1 ^{2,3}	0.	6			5.5	5.56 ns		s
Delay Range in Block: Programmable Delay 2 ^{2,3}	0.0	25			5.5	56	n	S
Delay Range in Block: Fixed Delay ^{2,3}			2	.2			n	S
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} ^{6,7}		Ma	iximum	Peak-to	-Peak F	Period J	itter	
	$\textbf{SSO} \leq \textbf{2} \qquad \textbf{SSO} \leq \textbf{4}$		SSO ≤ 8		SSO ≤ 16			
	FG/CS	PQ	FG/CS	PQ	FG/CS	PQ	FG/CS	PQ
0.75 MHz to 50 MHz	0.5%	1.6%	0.9%	1.6%	0.9%	1.6%	0.9%	1.8%
50 MHz to 250 MHz	1.75%	3.5%	9.3%	9.3%	9.3%	17.9%	10.0%	17.9%
250 MHz to 350 MHz	2.5%	5.2%	13.0%	13.0%	13.0%	25.0%	14.0%	25.0%

Notes:

- One of the CCC outputs (GLA0) is used as an MSS clock and is limited to 100 MHz (maximum) by software. Details regarding CCC/PLL are in the "PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators" chapter of the SmartFusion Microcontroller Subsystem User's Guide.
- 2. This delay is a function of voltage and temperature. See Table 2-7 on page 2-9 for deratings.

3. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 6. Measurement done with LVTTL 3.3 V 12 mA I/O drive strength and High slew rate. VCC/VCCPLL = 1.425 V, VCCI = 3.3V, 20 pF output load. All I/Os are placed outside of the PLL bank.
- 7. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out within ± 200 ps of each other.
- 8. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps.

FIFO

Figure 2-35 • FIFO Model

 Flash File System (RL-Flash) allows your embedded applications to create, save, read, and modify files in standard storage devices such as ROM, RAM, or FlashROM, using a standard serial peripheral interface (SPI). Many ARM-based microcontrollers have a practical requirement for a standard file system. With RL-FlashFS you can implement new features in embedded applications such as data logging, storing program state during standby modes, or storing firmware upgrades.

Micrium, in addition to $\mu C/OS-III^{(R)}$, offers the following support for SmartFusion cSoC:

- µC/TCP-IP[™] is a compact, reliable, and high-performance stack built from the ground up by Micrium and has the quality, scalability, and reliability that translates into a rapid configuration of network options, remarkable ease-of-use, and rapid time-to-market.
- µC/Probe[™] is one of the most useful tools in embedded systems design and puts you in the driver's seat, allowing you to take charge of virtually any variable, memory location, and I/O port in your embedded product, while your system is running.

References

PCB Files

A2F500 SmartFusion Development Kit PCB Files http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130770 A2F200 SmartFusion Development Kit PCB Files http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130773

Application Notes

SmartFusion cSoC Board Design Guidelines http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129815

Re-Programming the eNVM Blocks Using the Cortex-M3

In this mode the Cortex-M3 is executing the eNVM programming algorithm from eSRAM. Since individual pages (132 bytes) of the eNVM can be write-protected, the programming algorithm software can be protected from inadvertent erasure. When reprogramming the eNVM, both MSS I/Os and FPGA I/Os are available as interfaces for sourcing the new eNVM image. The SoC Products Group provides working example projects for SoftConsole, IAR, and Keil development environments. These can be downloaded via the SoC Products Group Firmware Catalog.

Alternately, the eNVM can be reprogrammed by the Cortex-M3 via the IAP driver. This is necessary when using an encrypted image.

Secure Programming

For background, refer to the "Security in Low Power Flash Devices" chapter of the *Fusion FPGA Fabric User's Guide* on the SoC Products Group website. SmartFusion ISP behaves identically to Fusion ISP. IAP of SmartFusion cSoCs is accomplished by using the IAP driver. Only the FPGA fabric and the eNVM can be reprogrammed with the protection of security measures by using the IAP driver.

Typical Programming and Erase Times

Table 4-3 documents the typical programming and erase times for two components of SmartFusion cSoCs, FPGA fabric and eNVM, using the SoC Products Group's FlashPro hardware and software. These times will be different for other ISP and IAP methods. The **Program** action in FlashPro software includes erase, program, and verify to complete.

The typical programming (including erase) time per page of the eNVM is 8 ms.

	FPGA Fabric (seconds)			eNVM (seconds)			FlashROM (seconds)		
	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500
Erase	21	21	21	N/A	N/A	N/A	21	21	21
Program	28	35	48	18	39	71	22	22	22
Verify	2	6	12	9	18	37	1	1	1

Table 4-3 • Typical Programming and Erase Times

References

User's Guides

DirectC User's Guide

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132588 In-System Programming (ISP) of Microsemi's Low-Power Flash Devices Using FlashPro4/3/3X http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129973 Programming Flash Devices HandBook

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129930

Application Notes on IAP Programming Technique

SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming Interface App Note

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129818 SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface App Note http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823

CS288 Pin A2F060 Function A2F200 Function A2E500 Eunction No. IO17NDB0V0 GBA2/IO20PDB1V0 GBA2/IO27PDB1V0 C21 EMC DB[14]/IO45NDB5V0 EMC DB[14]/GAB2/IO71NDB5V0 EMC DB[14]/GAB2/IO88NDB5V0 D1 D3 VCCFPGAIOB5 VCCFPGAIOB5 VCCFPGAIOB5 D19 GND GND GND VCCFPGAIOB1 D21 VCCFPGAIOB1 VCCFPGAIOB1 EMC DB[13]/GAC2/IO70PDB5V0 EMC DB[13]/GAC2/IO87PDB5V0 E1 EMC DB[13]/IO44PDB5V0 EMC DB[12]/IO44NDB5V0 EMC DB[12]/IO70NDB5V0 EMC DB[12]/IO87NDB5V0 E3 E5 GNDQ GNDQ GNDQ EMC BYTEN[0]/IO02NDB0V0 EMC BYTEN[0]/GAC0/IO02NDB0V0 EMC BYTEN[0]/GAC0/IO07NDB0V0 E6 EMC BYTEN[1]/IO02PDB0V0 EMC BYTEN[1]/GAC1/IO02PDB0V0 EMC BYTEN[1]/GAC1/IO07PDB0V0 E7 EMC OEN1 N/IO03PDB0V0 EMC OEN1 N/IO03PDB0V0 EMC OEN1 N/IO08PDB0V0 F8 EMC AB[3]/IO05PDB0V0 EMC AB[3]/IO05PDB0V0 EMC AB[3]/IO09PDB0V0 E9 E10 EMC AB[10]/IO09NDB0V0 EMC AB[10]/IO09NDB0V0 EMC AB[10]/IO11NDB0V0 EMC AB[7]/IO07PDB0V0 EMC AB[7]/IO07PDB0V0 EMC AB[7]/IO12PDB0V0 F11 E12 EMC AB[13]/IO10PDB0V0 EMC AB[13]/IO10PDB0V0 EMC AB[13]/IO14PDB0V0 E13 EMC AB[16]/IO12NDB0V0 EMC AB[16]/IO12NDB0V0 EMC AB[16]/IO17NDB0V0 E14 EMC AB[17]/IO12PDB0V0 EMC AB[17]/IO12PDB0V0 EMC AB[17]/IO17PDB0V0 E15 GCC0/IO18NPB0V0 GCB0/IO27NDB1V0 GCB0/IO34NDB1V0 E16 GCA1/IO20PPB0V0 GCB1/IO27PDB1V0 GCB1/IO34PDB1V0 E17 GCC1/IO18PPB0V0 GCB2/IO24PDB1V0 GCB2/IO33PDB1V0 GCA0/IO36NDB1V0 * E19 GCB2/IO22PPB1V0 GCA0/IO28NDB1V0 E21 IO21NDB1V0 GCA1/IO28PDB1V0 GCA1/IO36PDB1V0 * VCCFPGAIOB5 F1 VCCFPGAIOB5 VCCFPGAIOB5 F3 GFB2/IO42NDB5V0 GFB2/IO68NDB5V0 GFB2/IO85NDB5V0 F5 GFA2/IO42PDB5V0 GFA2/IO68PDB5V0 GFA2/IO85PDB5V0 F6 EMC DB[11]/IO43PDB5V0 EMC DB[11]/IO69PDB5V0 EMC DB[11]/IO86PDB5V0 F7 GND GND GND NC GFC1/IO66PPB5V0 GFC1/IO83PPB5V0 F8 F9 VCCFPGAIOB0 VCCFPGAIOB0 VCCFPGAIOB0 EMC AB[11]/IO09PDB0V0 F10 EMC AB[11]/IO09PDB0V0 EMC AB[11]/IO11PDB0V0 F11 EMC AB[6]/IO07NDB0V0 EMC AB[6]/IO07NDB0V0 EMC AB[6]/IO12NDB0V0

Notes:

🔨 🤄 Microsemi

Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	CS288						
No.	A2F060 Function	A2F200 Function	A2F500 Function				
W14	ADC5	CM2	CM2				
W15	NC	ABPS5	ABPS5				
W16	GNDAQ	GNDAQ	GNDAQ				
W17	NC	VCC33SDD1	VCC33SDD1				
W18	NC	GNDSDD1	GNDSDD1				
W19	PTBASE	PTBASE	PTBASE				
W21	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17				
Y1	VCC33AP	VCC33AP	VCC33AP				
Y21	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16				

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Pin Descriptions

🔨 Microsemi

Pin	FG256				
No.	A2F060 Function	A2F200 Function	A2F500 Function		
P10	TM0	TM3	ТМЗ		
P11	GNDA	GNDA	GNDA		
P12	VCCMAINXTAL	VCCMAINXTAL	VCCMAINXTAL		
P13	GNDLPXTAL	GNDLPXTAL	GNDLPXTAL		
P14	VDDBAT	VDDBAT	VDDBAT		
P15	PTEM	PTEM	PTEM		
P16	PTBASE	PTBASE	PTBASE		
R1	PCAP	PCAP	PCAP		
R2	SDD0	SDD0	SDD0		
R3	ADC0	ABPS0	ABPS0		
R4	ADC3	TM0	ТМО		
R5	NC	ABPS2	ABPS2		
R6	NC	ADC1	ADC1		
R7	NC	VCC33ADC0	VCC33ADC0		
R8	VCC15ADC0	VCC15ADC1	VCC15ADC1		
R9	ADC10	ADC7	ADC7		
R10	ABPS1	ABPS7	ABPS7		
R11	NC	ABPS4	ABPS4		
R12	MAINXIN	MAINXIN	MAINXIN		
R13	MAINXOUT	MAINXOUT	MAINXOUT		
R14	LPXIN	LPXIN	LPXIN		
R15	LPXOUT	LPXOUT	LPXOUT		
R16	VCC33A	VCC33A	VCC33A		
T1	NCAP	NCAP	NCAP		
T2	ADC1	ABPS1	ABPS1		
Т3	ADC2	CM0	CM0		
T4	NC	GNDTM0	GNDTM0		
T5	NC	ADC0	ADC0		
T6	NC	VAREF0	VAREF0		
Τ7	NC	GND33ADC0	GND33ADC0		
T8	GND15ADC0	GND15ADC1	GND15ADC1		
A.L. (

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

	FG484				
Pin Number	A2F200 Function	A2F500 Function			
AA13	NC	ADC10			
AA14	NC	ADC9			
AA15	NC	GND15ADC2			
AA16	MAINXIN	MAINXIN			
AA17	MAINXOUT	MAINXOUT			
AA18	LPXIN	LPXIN			
AA19	LPXOUT	LPXOUT			
AA20	NC	NC			
AA21	NC	NC			
AA22	SPI_1_CLK/GPIO_26	SPI_1_CLK/GPIO_26			
AB1	GND	GND			
AB2	GPIO_13/IO36RSB4V0	GPIO_13/IO45RSB4V0			
AB3	GPIO_14/IO35RSB4V0	GPIO_14/IO44RSB4V0			
AB4	GND	GND			
AB5	PCAP	PCAP			
AB6	NCAP	NCAP			
AB7	ABPS3	ABPS3			
AB8	ADC3	ADC3			
AB9	GND15ADC0	GND15ADC0			
AB10	VCC33ADC1	VCC33ADC1			
AB11	VAREF1	VAREF1			
AB12	TM2	TM2			
AB13	CM2	CM2			
AB14	ABPS4	ABPS4			
AB15	GNDAQ	GNDAQ			
AB16	GNDMAINXTAL	GNDMAINXTAL			
AB17	GNDLPXTAL	GNDLPXTAL			
AB18	VCCLPXTAL	VCCLPXTAL			
AB19	VDDBAT	VDDBAT			
AB20	PTBASE	PTBASE			
AB21	NC	NC			
AB22	GND	GND			
B1	EMC_DB[15]/GAA2/IO71PDB5V0	EMC_DB[15]/GAA2/IO88PDB5V0			
B2	GND	GND			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

	FG484				
Pin Number	A2F200 Function	A2F500 Function			
C15	EMC_AB[17]/IO12PDB0V0	EMC_AB[17]/IO17PDB0V0			
C16	EMC_AB[24]/IO16NDB0V0	EMC_AB[24]/IO20NDB0V0			
C17	EMC_AB[22]/IO15NDB0V0	EMC_AB[22]/IO19NDB0V0			
C18	EMC_AB[23]/IO15PDB0V0	EMC_AB[23]/IO19PDB0V0			
C19	GBA0/IO19NPB0V0	GBA0/IO23NPB0V0			
C20	NC	NC			
C21	GBC2/IO21PDB1V0	GBC2/IO30PDB1V0			
C22	GBB2/IO20NDB1V0	GBB2/IO27NDB1V0			
D1	GND	GND			
D2	EMC_DB[12]/IO70NDB5V0	EMC_DB[12]/IO87NDB5V0			
D3	EMC_DB[13]/GAC2/IO70PDB5V0	EMC_DB[13]/GAC2/IO87PDB5V0			
D4	NC	NC			
D5	NC	NC			
D6	GND	GND			
D7	NC	IO00NPB0V0			
D8	NC	IO03NPB0V0			
D9	GND	GND			
D10	EMC_OEN0_N/IO03NDB0V0	EMC_OEN0_N/IO08NDB0V0			
D11	EMC_AB[10]/IO09NDB0V0	EMC_AB[10]/IO11NDB0V0			
D12	EMC_AB[11]/IO09PDB0V0	EMC_AB[11]/IO11PDB0V0			
D13	EMC_AB[9]/IO08PDB0V0	EMC_AB[9]/IO13PDB0V0			
D14	GND	GND			
D15	GBC1/IO17PPB0V0	GBC1/IO22PPB0V0			
D16	EMC_AB[25]/IO16PDB0V0	EMC_AB[25]/IO20PDB0V0			
D17	GND	GND			
D18	GBA1/IO19PPB0V0	GBA1/IO23PPB0V0			
D19	NC	NC			
D20	NC	NC			
D21	IO21NDB1V0	IO30NDB1V0			
D22	GND	GND			
E1	GFC2/IO67PPB5V0	GFC2/IO84PPB5V0			
E2	VCCFPGAIOB5	VCCFPGAIOB5			
E3	GFA2/IO68PDB5V0	GFA2/IO85PDB5V0			
E4	GND	GND			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484				
Pin Number	A2F200 Function	A2F500 Function			
E5	NC	NC			
E6	GNDQ	GNDQ			
E7	VCCFPGAIOB0	VCCFPGAIOB0			
E8	NC	IO00PPB0V0			
E9	NC	NC			
E10	VCCFPGAIOB0	VCCFPGAIOB0			
E11	EMC_AB[4]/IO06NDB0V0	EMC_AB[4]/IO10NDB0V0			
E12	EMC_AB[5]/IO06PDB0V0	EMC_AB[5]/IO10PDB0V0			
E13	VCCFPGAIOB0	VCCFPGAIOB0			
E14	GBC0/IO17NPB0V0	GBC0/IO22NPB0V0			
E15	NC	NC			
E16	VCCFPGAIOB0	VCCFPGAIOB0			
E17	NC	VCOMPLA1			
E18	NC	IO25NPB1V0			
E19	GND	GND			
E20	NC	NC			
E21	VCCFPGAIOB1	VCCFPGAIOB1			
E22	IO22NDB1V0	IO32NDB1V0			
F1	GFB1/IO65PPB5V0	GFB1/IO82PPB5V0			
F2	IO67NPB5V0	IO84NPB5V0			
F3	GFB2/IO68NDB5V0	GFB2/IO85NDB5V0			
F4	EMC_DB[10]/IO69NPB5V0	EMC_DB[10]/IO86NPB5V0			
F5	VCCFPGAIOB5	VCCFPGAIOB5			
F6	VCCPLL	VCCPLL0			
F7	VCOMPLA	VCOMPLA0			
F8	NC	NC			
F9	NC	NC			
F10	NC	NC			
F11	NC	NC			
F12	NC	NC			
F13	EMC_AB[20]/IO14NDB0V0	EMC_AB[20]/IO21NDB0V0			
F14	EMC_AB[21]/IO14PDB0V0	EMC_AB[21]/IO21PDB0V0			
F15	GNDQ	GNDQ			
F16	NC	VCCPLL1			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Datasheet Information

Revision	Changes	Page
	The A2F060 device was added to product information tables.	N/A
	The "Product Ordering Codes" table was updated to removed Std. speed and add speed grade 1. Pre-production was removed from the application ordering code category.	VI
	The "SmartFusion cSoC Block Diagram" was revised.	IV
	The "Datasheet Categories" section was updated, referencing the "SmartFusion cSoC Block Diagram" table, which is new.	1-4, IV
	The "VCCI" parameter was renamed to "VCCxxxxIOBx."	N/A
	"Advanced I/Os" were renamed to "FPGA I/Os."	
	Generic pin names that represent multiple pins were standardized with a lower case x as a placeholder. For example, VAREFx designates VAREF0, VAREF1, and VAREF2.	
	Modes were renamed as follows:	
	Operating mode was renamed to SoC mode.	
	32KHz Active mode was renamed to Standby mode.	
	Battery mode was renamed to Time Keeping mode.	
	Table entries have been filled with values as data has become available.	
	Table 2-1 • Absolute Maximum Ratings, Table 2-2 • Analog Maximum Ratings, and Table 2-3 • Recommended Operating Conditions ^{5,6} were revised extensively.	2-1 through 2-3
	Device names were updated in Table 2-6 • Package Thermal Resistance.	2-7
	Table 2-8 • Power Supplies Configuration was revised extensively.	2-10
	Table 2-11 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings was revised extensively.	2-11
	Removed "Example of Power Calculation."	N/A
	Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs was revised extensively.	2-12
	Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs was revised extensively.	2-13
	The "Power Calculation Methodology" section was revised.	2-14
	Table 2-83 • Electrical Characteristics of the RC Oscillator was revised extensively.	2-61
	Table 2-85 • Electrical Characteristics of the Low Power Oscillator was revised extensively.	2-62
	The parameter t _{RSTBQ} was changed to T _{C2CWRH} in Table 2-87 • RAM4K9.	2-69
	The 12-bit mode row for integral non-linearity was removed from Table 2-95 • ADC Specifications. The typical value for 10-bit mode was revised. The table note was punctuated correctly to make it clear.	2-81
	Figure 37-34 • Write Access after Write onto Same Address, Figure 37-34 • Read Access after Write onto Same Address, and Figure 37-34 • Write Access after Read onto Same Address were deleted.	N/A
	Table 2-99 • Voltage Regulator was revised extensively.	2-87
	The "Serial Peripheral Interface (SPI) Characteristics" section and "Inter-Integrated Circuit (I ² C) Characteristics" section are new.	2-89, 2-91

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.