

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	256KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	100MHz
Primary Attributes	ProASIC®3 FPGA, 200K Gates, 4608 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f200m3f-1fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

static Microsemi.

SmartFusion DC and Switching Characteristics

Calculating Power Dissipation

Quiescent Supply Current

Table 2-8 • Power Supplies Configuration

Modes and Power Supplies	VCCCxxxxIOBx VCCFPGAIOBx VCCMSSIOBx	VCC33A / VCC33ADCx VCC33AP / VCC33SDDx VCCMAINXTAL / VCCLPXTAL	VCC / VCC15A / VCC15ADCx VCCPLLx, VCCENVM, VCCESRAM	Ироват	vccrcosc	VJTAG	VPP	eNVM (reset/off)	LPXTAL (enable/disable)	MAINXTAL (enable/disable)
Time Keeping mode	0 V	0 V	0 V	3.3 V	0 V	0 V	0 V	Off	Enable	Disable
Standby mode	On*	3.3 V	1.5 V	N/A	3.3 V	N/A	N/A	Reset	Enable	Disable
SoC mode	On*	3.3 V	1.5 V	N/A	3.3 V	N/A	N/A	On	Enable	Enable

Note: *On means proper voltage is applied. Refer to Table 2-3 on page 2-3 for recommended operating conditions.

Table 2-9 • Quiescent Supply Current Characterist	tics
---	------

		A2F	060	A2F	200	A2F500		
Parameter	Modes	1.5 V Domain	3.3 V Domain	1.5 V Domain	3.3 V Domain	1.5 V Domain	3.3 V Domain	
IDC1	SoC mode	3 mA	2 mA	7 mA	4 mA	16.5 mA	4 mA	
IDC2	Standby mode	3 mA	2 mA	7 mA	4 mA	16.5 mA	4 mA	
IDC3	Time Keeping mode	N/A	10 µA	N/A	10 µA	N/A	10 µA	

Power per I/O Pin

 Table 2-10 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

 Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

	VCCFPGAIOBx (V)	Static Power PDC7 (mW)	Dynamic Power PAC9 (µW/MHz)
Single-Ended			1
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	17.55
2.5 V LVCMOS	2.5	_	5.97
1.8 V LVCMOS	1.8	_	2.88
1.5 V LVCMOS (JESD8-11)	1.5	_	2.33
3.3 V PCI	3.3	_	19.21
3.3 V PCI-X	3.3	-	19.21
Differential			
LVDS	2.5	2.26	0.82
LVPECL	3.3	5.72	1.16

		Power Supp	ly		Device		
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F500	Units
PAC24	Current Monitor Power Contribution	See Table 2-93 on page 2-78	-		1.03		mW
PAC25	ABPS Power Contribution	See Table 2-96 on page 2-82	_		0.70		mW
PAC26	Sigma-Delta DAC Power Contribution ²	See Table 2-98 on page 2-85	_		0.58		mW
PAC27	Comparator Power Contribution	See Table 2-97 on page 2-84	-		1.02		mW
PAC28	Voltage Regulator Power Contribution ³	See Table 2-99 on page 2-87	_		36.30		mW

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs

Notes:

1. For a different use of MSS peripherals and resources, refer to SmartPower.

2. Assumes Input = Half Scale Operation mode.

3. Assumes 100 mA load on 1.5 V domain.

Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs

		Power Supp	ly	y Device			
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F200	Units
PDC1	Core static power contribution in SoC mode	VCC	1.5 V	11.10	23.70	37.95	mW
PDC2	Device static power contribution in Standby Mode	See Table 2-8 on page 2-10	-	11.10	23.70	37.95	mW
PDC3	Device static power contribution in Time Keeping mode	See Table 2-8 on page 2-10	3.3 V	33.00	33.00	33.00	μW
PDC7	Static contribution per input pin (standard dependent contribution)	VCCxxxxIOBx/VCC	See Tabl	e 2-10 and	d Table 2-	11 on page	e 2-11.
PDC8	Static contribution per output pin (standard dependent contribution)	VCCxxxxIOBx/VCC	See Tabl	e 2-12 and	d Table 2-	13 on pag	e 2-11.
PDC9	Static contribution per PLL	VCC	1.5 V	2.55	2.55	2.55	mW

Table 2-16 • eNVM Dynamic Power Consumption

Parameter	Description	Condition	Min.	Тур.	Max.	Units	
eNVM System	eNVM array operating power	Idle		795		μA	
		Read operation	See	Table 2-1	Table 2-14 on page 2-12.		
		Erase		900		μA	
		Write		900		μA	
PNVMCTRL	eNVM controller operating power			20		µW/MHz	

 $P_{PLL} = 0 W$

Embedded Nonvolatile Memory Dynamic Contribution—Penvm

SoC Mode

The eNVM dynamic power consumption is a piecewise linear function of frequency.

 P_{eNVM} = $\mathsf{N}_{eNVM\text{-}BLOCKS}$ * β_4 * P_{AC15} * $\mathsf{F}_{READ\text{-}eNVM}$ when $\mathsf{F}_{READ\text{-}eNVM}$ \leq 33 MHz,

 $P_{eNVM} = N_{eNVM-BLOCKS} * \beta_4 * (P_{AC16} + P_{AC17} * F_{READ-eNVM}) \text{ when } F_{READ-eNVM} > 33 \text{ MHz}$ Where:

 $N_{eNVM-BLOCKS}$ is the number of eNVM blocks used in the design.

 β_4 is the eNVM enable rate for read operations. Default is 0 (eNVM mainly in idle state). $F_{READ-eNVM}$ is the eNVM read clock frequency.

Standby Mode and Time Keeping Mode

 $P_{eNVM} = 0 W$

Main Crystal Oscillator Dynamic Contribution—P_{XTL-OSC}

SoC Mode

 $P_{\text{XTL-OSC}} = P_{\text{AC18}}$

Standby Mode

 $P_{XTL-OSC} = 0 W$

Time Keeping Mode

 $P_{XTL-OSC} = 0 W$

Low Power Oscillator Crystal Dynamic Contribution—P_{LPXTAL-OSC}

Operating, Standby, and Time Keeping Mode

 $P_{LPXTAL-OSC} = P_{AC21}$

RC Oscillator Dynamic Contribution—**P**_{RC-OSC}

SoC Mode

 $P_{RC-OSC} = P_{AC19A} + P_{AC19B}$

Standby Mode and Time Keeping Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—PAB

SoC Mode

```
 P_{AB} = P_{AC23} * N_{TM} + P_{AC24} * N_{CM} + P_{AC25} * N_{ABPS} + P_{AC26} * N_{SDD} + P_{AC27} * N_{COMP} + P_{ADC} * N_{ADC} + P_{VR}
```

Where:

- N_{CM} is the number of current monitor blocks
- N_{TM} is the number of temperature monitor blocks
- N_{SDD} is the number of sigma-delta DAC blocks
- NABPS is the number of ABPS blocks
- N_{ADC} is the number of ADC blocks

N_{COMP} is the number of comparator blocks

P_{VR}= P_{AC28}

 $P_{ADC} = P_{AC20A} + P_{AC20B}$

User I/O Characteristics

Timing Model

Figure 2-2 • Timing Model Operating Conditions: –1 Speed, Commercial Temperature Range (T_J = 85°C), Worst Case VCC = 1.425 V

Microsemi Š,

SmartFusion DC and Switching Characteristics

Table 2-52 • 1.8 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 1.7 V Applicable to MSS I/O Banks

	ppiloubio		Banko						
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	tz
4 mA	Std.	0.22	2.77	0.09	1.09	1.64	0.22	2.82	2.

ngth	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}
١	Std.	0.22	2.77	0.09	1.09	1.64	0.22	2.82	2.72	2.21
	-1	0.18	2.31	0.07	0.91	1.37	0.18	2.35	2.27	1.84

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Units

ns

ns

t_{HZ}

2.25

1.87

SmartFusion DC and Switching Characteristics

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by SoC Products Group Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-11. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, SmartFusion cSoCs also support bus LVDS structure and multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-11 • LVDS Circuit Diagram and Board-Level Implementation

SmartFusion DC and Switching Characteristics

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. SoC Products Group LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using SoC Products Group LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-12. The input and output buffer delays are available in the LVDS section in Table 2-65.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case commercial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

SmartFusion DC and Switching Characteristics

Figure 2-20 • Input DDR Timing Diagram

Timing Characteristics

Table 2-75 • Input DDR Propagation Delays Worst Commercial-Case Conditions: T_J = 85°C, Worst Case VCC = 1.425 V

Parameter	Description	-1	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.39	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.28	ns
t _{DDRISUD}	Data Setup for Input DDR	0.29	ns
t _{DDRIHD}	Data Hold for Input DDR	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.58	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.47	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery time for Input DDR	0.23	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.36	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	350	MHz

Note: For derating values at specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

Global Resource Characteristics

A2F200 Clock Tree Topology

Clock delays are device-specific. Figure 2-27 is an example of a global tree used for clock routing. The global tree presented in Figure 2-27 is driven by a CCC located on the west side of the A2F200 device. It is used to drive all D-flip-flops in the device.

Figure 2-27 • Example of Global Tree Use in an A2F200 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-63. Table 2-80 through Table 2-82 on page 2-61 present minimum and maximum global clock delays for the SmartFusion cSoCs. Minimum and maximum delays are measured with minimum and maximum loading.

Voltage Regulator

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output voltage	T _J = 25°C		1.425	1.5	1.575	V
V _{OS}	Output offset voltage	T _J = 25°C			11		mV
ICC33A	Operation current	T _J = 25°C	I _{LOAD} = 1 mA		3.4		mA
			I _{LOAD} = 100 mA		11		mA
			I _{LOAD} = 0.5 A		21		mA
ΔV _{OUT}	Load regulation	T _J = 25°C	I _{LOAD} = 1 mA to 0.5 A		5.8		mV
ΔV _{OUT} L	Line regulation	T _J = 25°C	VCC33A = 2.97 V to 3.63 V I _{LOAD} = 1 mA		5.3		mV/V
			VCC33A = 2.97 V to 3.63 V I _{LOAD} = 100 mA		5.3		mV/V
			VCC33A = 2.97 V to 3.63 V I _{LOAD} = 500mA		5.3		mV/V
	Dropout voltage ¹	T _J = 25°C	I _{LOAD} = 1 mA		0.63		V
			I _{LOAD} = 100 mA		0.84		V
			I _{LOAD} = 0.5 A		1.35		V
I _{PTBASE}	PTBase current	T _J = 25°C	I _{LOAD} = 1 mA		48		μA
			I _{LOAD} = 100 mA		736		μA
			I _{LOAD} = 0.5 A		12		mA
	Startup time ²	T _J = 25°C			200		μs

Table 2-99 • Voltage Regulator

Notes:

1. Dropout voltage is defined as the minimum VCC33A voltage. The parameter is specified with respect to the output voltage. The specification represents the minimum input-to-output differential voltage required to maintain regulation.

2. Assumes 10 µF.

Re-Programming the eNVM Blocks Using the Cortex-M3

In this mode the Cortex-M3 is executing the eNVM programming algorithm from eSRAM. Since individual pages (132 bytes) of the eNVM can be write-protected, the programming algorithm software can be protected from inadvertent erasure. When reprogramming the eNVM, both MSS I/Os and FPGA I/Os are available as interfaces for sourcing the new eNVM image. The SoC Products Group provides working example projects for SoftConsole, IAR, and Keil development environments. These can be downloaded via the SoC Products Group Firmware Catalog.

Alternately, the eNVM can be reprogrammed by the Cortex-M3 via the IAP driver. This is necessary when using an encrypted image.

Secure Programming

For background, refer to the "Security in Low Power Flash Devices" chapter of the *Fusion FPGA Fabric User's Guide* on the SoC Products Group website. SmartFusion ISP behaves identically to Fusion ISP. IAP of SmartFusion cSoCs is accomplished by using the IAP driver. Only the FPGA fabric and the eNVM can be reprogrammed with the protection of security measures by using the IAP driver.

Typical Programming and Erase Times

Table 4-3 documents the typical programming and erase times for two components of SmartFusion cSoCs, FPGA fabric and eNVM, using the SoC Products Group's FlashPro hardware and software. These times will be different for other ISP and IAP methods. The **Program** action in FlashPro software includes erase, program, and verify to complete.

The typical programming (including erase) time per page of the eNVM is 8 ms.

	FPGA	Fabric (se	conds)	eN	VM (secon	ds)	Flash	onds)	
	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500
Erase	21	21	21	N/A	N/A	N/A	21	21	21
Program	28	35	48	18	39	71	22	22	22
Verify	2	6	12	9	18	37	1	1	1

Table 4-3 • Typical Programming and Erase Times

References

User's Guides

DirectC User's Guide

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132588 In-System Programming (ISP) of Microsemi's Low-Power Flash Devices Using FlashPro4/3/3X http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129973 Programming Flash Devices HandBook

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129930

Application Notes on IAP Programming Technique

SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming Interface App Note

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129818 SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface App Note http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823

Special Function Pins

Name	Туре	Polarity/Bus Size	Description
NC			No connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.
DC			Do not connect. This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
LPXIN	In	1	Low power 32 KHz crystal oscillator. Input from the 32 KHz oscillator. Pin for connecting a low power 32 KHz watch crystal. If not used, the LPXIN pin can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> .
LPXOUT	In	1	Low power 32 KHz crystal oscillator. Output to the 32 KHz oscillator. Pin for connecting a low power 32 KHz watch crystal. If not used, the LPXOUT pin can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On- Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .
MAINXIN	In	1	Main crystal oscillator circuit. Input to the crystal oscillator circuit. Pin for connecting an external crystal, ceramic resonator, or RC network. When using an external crystal or ceramic oscillator, external capacitors are also recommended. Refer to documentation from the crystal oscillator manufacturer for proper capacitor value. If an external RC network or clock input is used, the RC components are connected to the MAINXIN pin, with MAINXOUT left floating. When the main crystal oscillator is not being used, MAINXIN and MAINXOUT pins can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .
MAINXOUT	Out	1	Main crystal oscillator circuit. Output from the crystal oscillator circuit. Pin for connecting external crystal or ceramic resonator. When using an external crystal or ceramic oscillator, external capacitors are also recommended. Refer to documentation from the crystal oscillator manufacturer for proper capacitor value. If an external RC network or clock input is used, the RC components are connected to the MAINXIN pin, with MAINXOUT left floating. When the main crystal oscillator is not being used, MAINXIN and MAINXOUT pins can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .

Analog Front-End (AFE)

			Associated With	
Name	Туре	Description	ADC/SDD	SCB
ABPS0	In	SCB 0 / active bipolar prescaler input 1. See the Active Bipolar Prescaler (ABPS) section in the <i>SmartFusion</i> <i>Programmable Analog User's Guide</i> .	ADC0	SCB0
ABPS1	In	SCB 0 / active bipolar prescaler Input 2	ADC0	SCB0
ABPS2	In	SCB 1 / active bipolar prescaler Input 1	ADC0	SCB1
ABPS3	In	SCB 1 / active bipolar prescaler Input 2	ADC0	SCB1
ABPS4	In	SCB 2 / active bipolar prescaler Input 1	ADC1	SCB2
ABPS5	In	SCB 2 / active bipolar prescaler Input 2	ADC1	SCB2
ABPS6	In	SCB 3 / active bipolar prescaler Input 1	ADC1	SCB3
ABPS7	In	SCB 3 / active bipolar prescaler input 2	ADC1	SCB3
ABPS8	In	SCB 4 / active bipolar prescaler input 1	ADC2	SCB4
ABPS9	In	SCB 4 / active bipolar prescaler input 2	ADC2	SCB4
ADC0	In	ADC 0 direct input 0 / FPGA Input. See the "Sigma-Delta Digital-to-Analog Converter (DAC)" section in the <i>SmartFusion Programmable Analog User's Guide</i> .	ADC0	SCB0
ADC1	In	ADC 0 direct input 1 / FPGA input	ADC0	SCB0
ADC2	In	ADC 0 direct input 2 / FPGA input	ADC0	SCB1
ADC3	In	ADC 0 direct input 3 / FPGA input	ADC0	SCB1
ADC4	In	ADC 1 direct input 0 / FPGA input	ADC1	SCB2
ADC5	In	ADC 1 direct input 1 / FPGA input	ADC1	SCB2
ADC6	In	ADC 1 direct input 2 / FPGA input	ADC1	SCB3
ADC7	In	ADC 1 direct input 3 / FPGA input	ADC1	SCB3
ADC8	In	ADC 2 direct input 0 / FPGA input	ADC2	SCB4
ADC9	In	ADC 2 direct input 1 / FPGA input	ADC2	SCB4
ADC10	In	ADC 2 direct input 2 / FPGA input	ADC2	N/A
ADC11	In	ADC 2 direct input 3 / FPGA input	ADC2	N/A
CM0	In	SCB 0 / high side of current monitor / comparator Positive input. See the Current Monitor section in the <i>SmartFusion</i> <i>Programmable Analog User's Guide</i> .	ADC0	SCB0
CM1	In	SCB 1 / high side of current monitor / comparator. Positive input.	ADC0	SCB1
CM2	In	SCB 2 / high side of current monitor / comparator. Positive input.	ADC1	SCB2
CM3	In	SCB 3 / high side of current monitor / comparator. Positive input.	ADC1	SCB3
CM4	In	SCB 4 / high side of current monitor / comparator. Positive input.	ADC2	SCB4

Note: Unused analog inputs should be grounded. This aids in shielding and prevents an undesired coupling path.

Analog Front-End Pin-Level Function Multiplexing

Table 5-2 describes the relationships between the various internal signals found in the analog front-end (AFE) and how they are multiplexed onto the external package pins. Note that, in general, only one function is available for those pads that have numerous functions listed. The exclusion to this rule is when a comparator is used; the ADC can still convert either input side of the comparator.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
ABPS0	ADC0_CH1		ABPS0_IN						
ABPS1	ADC0_CH2		ABPS1_IN						
ABPS2	ADC0_CH5		ABPS2_IN						
ABPS3	ADC0_CH6		ABPS3_IN						
ABPS4	ADC1_CH1		ABPS4_IN						
ABPS5	ADC1_CH2		ABPS5_IN						
ABPS6	ADC1_CH5		ABPS6_IN						
ABPS7	ADC1_CH6		ABPS7_IN						
ABPS8	ADC2_CH1		ABPS8_IN						
ABPS9	ADC2_CH2		ABPS9_IN						
ADC0	ADC0_CH9	Yes				CMP1_P	LVTTL0_IN		
ADC1	ADC0_CH10	Yes				CMP1_N	LVTTL1_IN	SDDM0_OUT	
ADC2	ADC0_CH11	Yes				CMP3_P	LVTTL2_IN		
ADC3	ADC0_CH12	Yes				CMP3_N	LVTTL3_IN	SDDM1_OUT	
ADC4	ADC1_CH9	Yes				CMP5_P	LVTTL4_IN		
ADC5	ADC1_CH10	Yes				CMP5_N	LVTTL5_IN	SDDM2_OUT	
ADC6	ADC1_CH11	Yes				CMP7_P	LVTTL6_IN		
ADC7	ADC1_CH12	Yes				CMP7_N	LVTTL7_IN	SDDM3_OUT	
ADC8	ADC2_CH9	Yes				CMP9_P	LVTTL8_IN		
ADC9	ADC2_CH10	Yes				CMP9_N	LVTTL9_IN	SDDM4_OUT	
ADC10	ADC2_CH11	Yes					LVTTL10_IN		
ADC11	ADC2_CH12	Yes					LVTTL11_IN		
CM0	ADC0_CH3	Yes		CM0_H		CMP0_P			
CM1	ADC0_CH7	Yes		CM1_H		CMP2_P			
CM2	ADC1_CH3	Yes		CM2_H		CMP4_P			
CM3	ADC1_CH7	Yes		CM3_H		CMP6_P			
CM4	ADC2_CH3	Yes		CM4_H		CMP8_P			
SDD0	ADC0_CH15								SDD0_OUT
SDD1	ADC1_CH15								SDD1_OUT

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

3. TMx_IO: Temperature monitor channel x.

4. CMPx_P/N: Comparator channel x, positive/negative input.

5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

stanti 🖌 🔨 🔨 🔨

SmartFusion Customizable System-on-Chip (cSoC)

Pin		CS288	
No.	A2F060 Function	A2F200 Function	A2F500 Function
K17	GNDLPXTAL	GNDLPXTAL	GNDLPXTAL
K19	GNDMAINXTAL	GNDMAINXTAL	GNDMAINXTAL
K21	MAINXIN	MAINXIN	MAINXIN
L1	GNDRCOSC	GNDRCOSC	GNDRCOSC
L3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
L5	EMC_DB[2]/IO37NPB5V0	EMC_DB[2]/IO60NPB5V0	EMC_DB[2]/IO77NPB5V0
L6	NC	GNDQ	GNDQ
L8	VCC	VCC	VCC
L9	GND	GND	GND
L10	VCC	VCC	VCC
L12	VCC	VCC	VCC
L13	GND	GND	GND
L14	VCC	VCC	VCC
L16	VCCLPXTAL	VCCLPXTAL	VCCLPXTAL
L17	VDDBAT	VDDBAT	VDDBAT
L19	LPXIN	LPXIN	LPXIN
L21	MAINXOUT	MAINXOUT	MAINXOUT
M1	VCCRCOSC	VCCRCOSC	VCCRCOSC
M3	MSS_RESET_N	MSS_RESET_N	MSS_RESET_N
M5	GPIO_5/IO28RSB4V0	GPIO_5/IO42RSB4V0	GPIO_5/IO51RSB4V0
M6	GND	GND	GND
M8	GND	GND	GND
M9	VCC	VCC	VCC
M10	GND	GND	GND
M11	VCC	VCC	VCC
M12	GND	GND	GND
M13	VCC	VCC	VCC
M14	GND	GND	GND
M16	TMS	TMS	TMS
M17	VJTAG	VJTAG	VJTAG
M19	TDO	TDO	TDO

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

SmartFusion Customizable System-on-Chip (cSoC)

Pin		CS288	
No.	A2F060 Function	A2F200 Function	A2F500 Function
P19	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
P21	GND	GND	GND
R1	GPIO_2/IO31RSB4V0	MAC_MDIO/IO49RSB4V0	MAC_MDIO/IO58RSB4V0
R3	GPIO_1/IO32RSB4V0	MAC_TXEN/IO52RSB4V0	MAC_TXEN/IO61RSB4V0
R5	GPIO_3/IO30RSB4V0	MAC_TXD[0]/IO56RSB4V0	MAC_TXD[0]/IO65RSB4V0
R6	GPIO_10/IO35RSB4V0	MAC_CRSDV/IO51RSB4V0	MAC_CRSDV/IO60RSB4V0
R9	GNDA	GNDA	GNDA
R13	GNDA	GNDA	GNDA
R16	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29
R17	UART_1_TXD/GPIO_28	UART_1_TXD/GPIO_28	UART_1_TXD/GPIO_28
R19	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22
R21	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30
T1	GND	GND	GND
Т3	NC	MAC_TXD[1]/IO55RSB4V0	MAC_TXD[1]/IO64RSB4V0
T5	NC	MAC_RXD[1]/IO53RSB4V0	MAC_RXD[1]/IO62RSB4V0
Т6	GPIO_11/IO34RSB4V0	MAC_RXER/IO50RSB4V0	MAC_RXER/IO59RSB4V0
T7	NC	CM1	CM1
Т8	NC	ADC1	ADC1
Т9	NC	GND33ADC0	GND33ADC0
T10	NC	VCC15ADC0	VCC15ADC0
T11	GND33ADC0	GND33ADC1	GND33ADC1
T12	VAREF0	VAREF1	VAREF1
T13	ADC7	ADC4	ADC4
T14	TM0	TM3	TM3
T15	SPI_1_SS/GPIO_27	SPI_1_SS/GPIO_27	SPI_1_SS/GPIO_27
T16	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
T17	UART_0_RXD/GPIO_21	UART_0_RXD/GPIO_21	UART_0_RXD/GPIO_21
T19	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20
T21	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31
U1	NC	MAC_RXD[0]/IO54RSB4V0	MAC_RXD[0]/IO63RSB4V0
U3	VCCMSSIOB4	VCCMSSIOB4	VCCMSSIOB4

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🔨 Microsemi

Pin		FG256	
No.	A2F060 Function	A2F200 Function	A2F500 Function
F14	IO21NDB1V0	GCB0/IO27NDB1V0	GCB0/IO34NDB1V0
F15	GND	GND	GND
F16	VCCENVM	VCCENVM	VCCENVM
G1	EMC_DB[8]/IO40NDB5V0	EMC_DB[8]/GEC0/IO63NDB5V0	EMC_DB[8]/GEC0/IO80NDB5V0
G2	EMC_DB[7]/IO39PDB5V0	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0
G3	EMC_DB[6]/IO39NDB5V0	EMC_DB[6]/GEB0/IO62NDB5V0	EMC_DB[6]/GEB0/IO79NDB5V0
G4	GFC2/IO41PDB5V0	GFC2/IO67PDB5V0	GFC2/IO84PDB5V0
G5	IO41NDB5V0	IO67NDB5V0	IO84NDB5V0
G6	GND	GND	GND
G7	VCC	VCC	VCC
G8	GND	GND	GND
G9	VCC	VCC	VCC
G10	GND	GND	GND
G11	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1
G12	VPP	VPP	VPP
G13	TRSTB	TRSTB	TRSTB
G14	TMS	TMS	TMS
G15	ТСК	ТСК	ТСК
G16	GNDENVM	GNDENVM	GNDENVM
H1	GND	GND	GND
H2	EMC_DB[5]/IO38PPB5V0	EMC_DB[5]/GEA1/IO61PPB5V0	EMC_DB[5]/GEA1/IO78PPB5V0
H3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
H4	EMC_DB[1]/IO36PDB5V0	EMC_DB[1]/GEB2/IO59PDB5V0	EMC_DB[1]/GEB2/IO76PDB5V0
H5	EMC_DB[0]/IO36NDB5V0	EMC_DB[0]/GEA2/IO59NDB5V0	EMC_DB[0]/GEA2/IO76NDB5V0
H6	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
H7	GND	GND	GND
H8	VCC	VCC	VCC
H9	GND	GND	GND
H10	VCC	VCC	VCC
H11	GND	GND	GND
H12	VJTAG	VJTAG	VJTAG

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484		
Pin Number	A2F200 Function	A2F500 Function	
E5	NC	NC	
E6	GNDQ	GNDQ	
E7	VCCFPGAIOB0	VCCFPGAIOB0	
E8	NC	IO00PPB0V0	
E9	NC	NC	
E10	VCCFPGAIOB0	VCCFPGAIOB0	
E11	EMC_AB[4]/IO06NDB0V0	EMC_AB[4]/IO10NDB0V0	
E12	EMC_AB[5]/IO06PDB0V0	EMC_AB[5]/IO10PDB0V0	
E13	VCCFPGAIOB0	VCCFPGAIOB0	
E14	GBC0/IO17NPB0V0	GBC0/IO22NPB0V0	
E15	NC	NC	
E16	VCCFPGAIOB0	VCCFPGAIOB0	
E17	NC	VCOMPLA1	
E18	NC	IO25NPB1V0	
E19	GND	GND	
E20	NC	NC	
E21	VCCFPGAIOB1	VCCFPGAIOB1	
E22	IO22NDB1V0	IO32NDB1V0	
F1	GFB1/IO65PPB5V0	GFB1/IO82PPB5V0	
F2	IO67NPB5V0	IO84NPB5V0	
F3	GFB2/IO68NDB5V0	GFB2/IO85NDB5V0	
F4	EMC_DB[10]/IO69NPB5V0	EMC_DB[10]/IO86NPB5V0	
F5	VCCFPGAIOB5	VCCFPGAIOB5	
F6	VCCPLL	VCCPLL0	
F7	VCOMPLA	VCOMPLA0	
F8	NC	NC	
F9	NC	NC	
F10	NC	NC	
F11	NC	NC	
F12	NC	NC	
F13	EMC_AB[20]/IO14NDB0V0	EMC_AB[20]/IO21NDB0V0	
F14	EMC_AB[21]/IO14PDB0V0	EMC_AB[21]/IO21PDB0V0	
F15	GNDQ	GNDQ	
F16	NC	VCCPLL1	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Datasheet Information

Revision	Changes	Page
Revision 9 (continued)	The following note was added to Table 2-86 • SmartFusion CCC/PLL Specification in regard to delay increments in programmable delay blocks (SAR 34816):	2-63
	"When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to SmartGen online help for more information."	
	Figure 2-36 • FIFO Read and Figure 2-37 • FIFO Write have been added (SAR 34851).	2-72
	Information regarding the MSS resetting itself after IAP of the FPGA fabric was added to the "Reprogramming the FPGA Fabric Using the Cortex-M3" section (SAR 37970).	4-8
	Instructions for unused VCC33ADCx pins were revised in "Supply Pins" (SAR 41137).	5-1
	Libero IDE was changed to Libero SoC throughout the document (SAR 40264).	N/A
Revision 8 (March 2012)	In the "Analog Front-End (AFE)" section, the resolution for the first-order sigma delta DAC was corrected from 12-bit to "8-bit, 16-bit, or 24-bit." The same correction was made in the "SmartFusion cSoC Family Product Table" (SAR 36541).	I, II
	The "SmartFusion cSoC Family Product Table" was revised to break out the features by package as well as device.	П
	The table now indicates that only one SPI is available for the PQ208 package in A2F200 and A2F500, and in the TQ144 package for A2F060 (SAR 33477).	
	The EMC address bus size has been corrected to 26 bits (SAR 35664).	
	The "SmartFusion cSoC Device Status" table was revised to change the CS288 package for A2F200 and A2F500 from preliminary to production status (SAR 37811).	Ш
	TQ144 package information for A2F060 was added to the "Package I/Os: MSS + FPGA I/Os" table, "SmartFusion cSoC Device Status" table, "Product Ordering Codes", and "Temperature Grade Offerings" table (SAR 36246).	III, VI
	Table 1 • SmartFusion cSoC Package Sizes Dimensions is new (SAR 31178).	Ш
	The Halogen-Free Packaging code (H) was removed from the "Product Ordering Codes" table (SAR 34017).	VI
	The "Specifying I/O States During Programming" section is new (SAR 34836).	1-3
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Dynamic Contribution—P _{CLOCK} " section, was corrected to the "Device Architecture" chapter in the <i>SmartFusion FPGA Fabric User's Guide</i> (SAR 34742).	2-15
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34891).	2-30, 2-24
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34799): "It uses a 5 V–tolerant input buffer and push-pull output buffer."	2-32
	In the SRAM "Timing Characteristics" tables, reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34874).	2-69
	The note for Table 2-93 • Current Monitor Performance Specification was modified to include the statement that the restriction on the TM pad being no greater than 10 mV above the CM pad.is applicable only if current monitor is used (SAR 26373).	2-78
	The unit "FR" in Table 2-96 • ABPS Performance Specifications and Table 2-98 • Analog Sigma-Delta DAC, used to designate full-scale error, was changed to "FS" and clarified with a table note (SAR 35342).	2-82, 2-85

Datasheet Information

Revision	Changes	Page
Revision 7 (continued)	The following sentence was removed from the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" section because it is incorrect (SAR 31047):	2-4
	"The many different supplies can power up in any sequence with minimized current spikes or surges."	
	Table 2-8 • Quiescent Supply Current Characteristics was divided into two tables: one for power supplies configurations and one for quiescent supply current. SoC mode was added to both tables (SAR 26378) and VCOMPLAx was removed from Table 2-8 • Power Supplies Configuration (SAR 29591). Quiescent supply current values were updated in Table 2-9 • Quiescent Supply Current Characteristics (SAR 33067).	2-10
	The "Total Static Power Consumption— P_{STAT} " section was revised: " $N_{eNVM-BLOCKS}$ * P_{DC4} " was removed from the equation for P_{STAT} (SAR 33067).	2-14
	Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs and Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs were revised to reflect updates in the SmartFusion power calculator (SARs 26405, 33067).	2-12, 2-13
	Table 2-82 • A2F060 Global Resource is new (SAR 33132).	2-61
	Output duty cycle was corrected to 50% in Table 2-83 • Electrical Characteristics of the RC Oscillator. It was incorrectly noted as 1% previously. Operating current for 3.3 domain was added (SAR 32940).	2-61
	Table 2-86 • SmartFusion CCC/PLL Specification was revised to add information and measurements regarding CCC output peak-to-peak period jitter (SAR 32996).	2-63
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-38 • FIFO Reset, and the FIFO "Timing Waveforms" tables were revised to ensure consistency with the software names (SAR 29991).	2-66 to 2-75
	Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$, VCC = 1.425 V was revised to correct the maximum frequencies (SAR 32410).	2-76
	Table 2-97 • Comparator Performance Specifications was moved to the "SmartFusion DC and Switching Characteristics" section from the SmartFusion Programmable Analog User's Guide because the information is extracted from characterization (SAR 24298).	2-84
	The hysteresis section in Table 2-97 • Comparator Performance Specifications was revised (SAR 33158).	2-84
	The "SmartFusion Development Tools" was extensively updated (SAR 33216).	3-1
	The text following Table 4-2 • JTAG Pin Descriptions was updated to add information on control of the JTAGSEL pin. Manual jumpers on the evaluation and development kits allow manual selection of this function for J-Link and ULINK debuggers (SAR 25592).	4-7