E·XFL

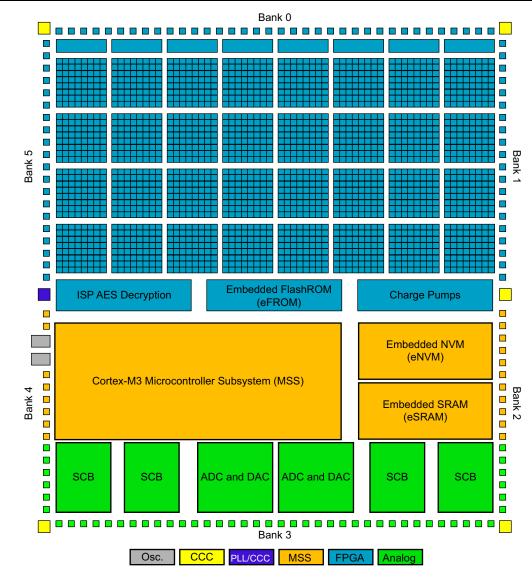
Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central


Details

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	256KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	100MHz
Primary Attributes	ProASIC®3 FPGA, 200K Gates, 4608 D-Flip-Flops
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f200m3f-1pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: Architecture for A2F200

Microsemi.

SmartFusion DC and Switching Characteristics

Table 2-2 • Analog Maximum Ratings

Parameter	Conditions	Min.	Max.	Units
ABPS[n] pad voltage (relative to ground)	GDEC[1:0] = 00 (±15.36 V range)			
	Absolute maximum	-11.5	14.4	V
	Recommended	-11	14	V
	GDEC[1:0] = 01 (±10.24 V range)	-11.5	12	V
	GDEC[1:0] = 10 (±5.12 V range)	-6	6	V
	GDEC[1:0] = 11 (±2.56 V range)	-3	3	V
CM[n] pad voltage relative to ground)	CMB_DI_ON = 0 (ADC isolated) COMP_EN = 0 (comparator off, for the associated even-numbered comparator)			
	Absolute maximum	-0.3	14.4	V
	Recommended	-0.3	14	V
	CMB_DI_ON = 0 (ADC isolated) COMP_EN = 1 (comparator on)	-0.3	3	V
	TMB_DI_ON = 1 (direct ADC in)	-0.3	3	V
TM[n] pad voltage (relative to ground)	TMB_DI_ON = 0 (ADC isolated) COMP_EN = 1(comparator on)	-0.3	3	V
	TMB_DI_ON = 1 (direct ADC in)	-0.3	3	V
ADC[n] pad voltage (relative to ground)		-0.3	3.6	V

Timing Characteristics

Table 2-44 • 2.5 V LVCMOS High Slew

Worst Commercial-Case Conditions: $T_J = 85^{\circ}C$, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 2.3 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.55	8.10	0.04	1.23	0.39	7.37	8.10	2.54	2.17	9.43	10.15	ns
	–1	0.46	6.75	0.03	1.03	0.32	6.14	6.75	2.12	1.81	7.85	8.46	ns
8 mA	Std.	0.55	4.85	0.04	1.23	0.39	4.76	4.85	2.90	2.83	6.82	6.91	ns
	-1	0.46	4.04	0.03	1.03	0.32	3.97	4.04	2.42	2.36	5.68	5.76	ns
12 mA	Std.	0.60	3.28	0.04	1.23	0.39	3.46	3.23	3.15	3.24	5.52	5.29	ns
	-1	0.50	2.73	0.03	1.03	0.32	2.88	2.69	2.62	2.70	4.60	4.41	ns
16 mA	Std.	0.60	3.09	0.04	1.23	0.39	3.27	2.88	3.20	3.35	5.33	4.94	ns
	-1	0.50	2.57	0.03	1.03	0.32	2.72	2.40	2.67	2.79	4.44	4.12	ns
24 mA	Std.	0.60	2.95	0.04	1.23	0.39	3.01	2.31	3.27	3.76	5.07	4.37	ns
	-1	0.50	2.46	0.03	1.03	0.32	2.51	1.93	2.73	3.13	4.22	3.64	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-45 • 2.5 V LVCMOS Low Slew

Worst Commercial-Case Conditions: $T_J = 85^{\circ}C$, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 2.3 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.55	10.50	0.04	1.23	0.39	10.69	10.50	2.54	2.07	12.75	12.56	ns
	-1	0.46	8.75	0.03	1.03	0.32	8.91	8.75	2.12	1.73	10.62	10.47	ns
8 mA	Std.	0.55	7.61	0.04	1.23	0.39	7.46	7.19	2.81	2.66	9.52	9.25	ns
	-1	0.46	6.34	0.03	1.03	0.32	6.22	5.99	2.34	2.22	7.93	7.71	ns
12 mA	Std.	0.60	5.92	0.04	1.23	0.39	5.79	5.45	3.04	3.06	7.85	7.51	ns
	-1	0.50	4.93	0.03	1.03	0.32	4.83	4.54	2.53	2.55	6.54	6.26	ns
16 mA	Std.	0.60	5.53	0.04	1.23	0.39	5.40	5.09	3.09	3.16	7.46	7.14	ns
	-1	0.50	4.61	0.03	1.03	0.32	4.50	4.24	2.58	2.64	6.22	5.95	ns
24 mA	Std.	0.60	5.18	0.04	1.23	0.39	5.28	5.14	3.27	3.64	7.34	7.20	ns
	-1	0.50	4.32	0.03	1.03	0.32	4.40	4.29	2.72	3.03	6.11	6.00	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-46 • 2.5 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to MSS I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
8 mA	Std.	0.22	2.35	0.09	1.18	1.39	0.22	2.40	2.18	2.19	2.32	ns
	-1	0.18	1.96	0.07	0.99	1.16	0.18	2.00	1.82	1.82	1.93	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	IIL	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA		Max. mA ¹		μA²	μA²
2 mA	-0.3	0.35 * VCCxxxxIOBx	0.65 * VCCxxxxIOBx	1.575	0.25* VCCxxxxIOBx	0.75 * VCCxxxxIOBx	2	2	16	13	15	15
4 mA	_ 0.3	0.35* VCCxxxxIOBx	0.65 * VCCxxxxIOBx	1.575	0.25* VCCxxxxIOBx	0.75 * VCCxxxxIOBx	4	4	33	25	15	15
6 mA	_ 0.3	0.35 * VCCxxxxIOBx	0.65 * VCCxxxxIOBx	1.575	0.25* VCCxxxxIOBx	0.75 * VCCxxxxIOBx	6	6	39	32	15	15
8 mA	_ 0.3	0.35 * VCCxxxxIOBx	0.65 * VCCxxxxIOBx	1.575	0.25* VCC	0.75 * VCCxxxxIOBx	8	8	55	66	15	15
12 mA	_ 0.3	0.35 * VCCxxxxIOBx	0.65 * VCCxxxxIOBx	1.575	0.25 * VCCxxxxIOBx	0.75 * VCCxxxxIOBx	12	12	55	66	15	15

Table 2-53 • Minimum and Maximum DC Input and Output Levels Applicable to FPGA I/O Banks

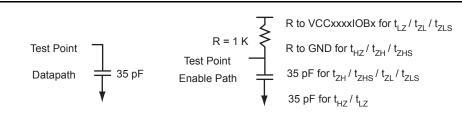
Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Table 2-54 • Minimum and Maximum DC Input and Output Levels Applicable to MSS I/O Banks


1.5 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	Ι _{ΙL}	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA		Max. mA ¹		μA²	μ Α 2
2 mA	-0.3	0.35 * VCCxxxxIOBx	0.65 * VCCxxxxIOBx	1.575	0.25 * VCCxxxxIOBx	0.75 * VCCxxxxIOBx	2	2	16	13	15	15

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

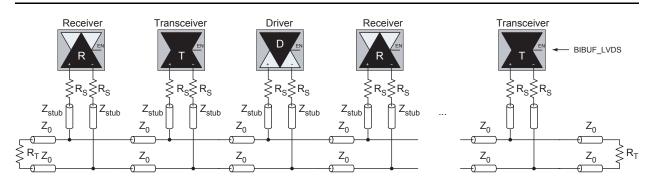
3. Software default selection highlighted in gray.

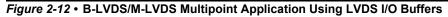
Figure 2-9 • AC Loading

Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

* Measuring point = $V_{trip.}$ See Table 2-22 on page 2-24 for a complete table of trip points.

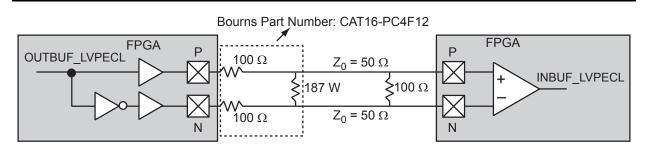


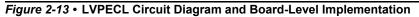

SmartFusion DC and Switching Characteristics

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. SoC Products Group LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using SoC Products Group LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-12. The input and output buffer delays are available in the LVDS section in Table 2-65.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case commercial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").





LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Timing Characteristics

Table 2-80 • A2F500 Global Resource

Worst Commercial-Case Conditions: T_J = 85°C, VCC = 1.425 V

		-	·1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.54	1.73	1.84	2.08	ns
t _{RCKH}	Input High Delay for Global Clock	1.53	1.76	1.84	2.12	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		1.00		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.23		0.28	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-81 • A2F200 Global Resource

Worst Commercial-Case Conditions: T_J = 85°C, VCC = 1.425 V

		-	·1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.74	0.99	0.88	1.19	ns
t _{RCKH}	Input High Delay for Global Clock	0.76	1.05	0.91	1.26	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		1.00		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.29		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

SmartFusion Customizable System-on-Chip (cSoC)

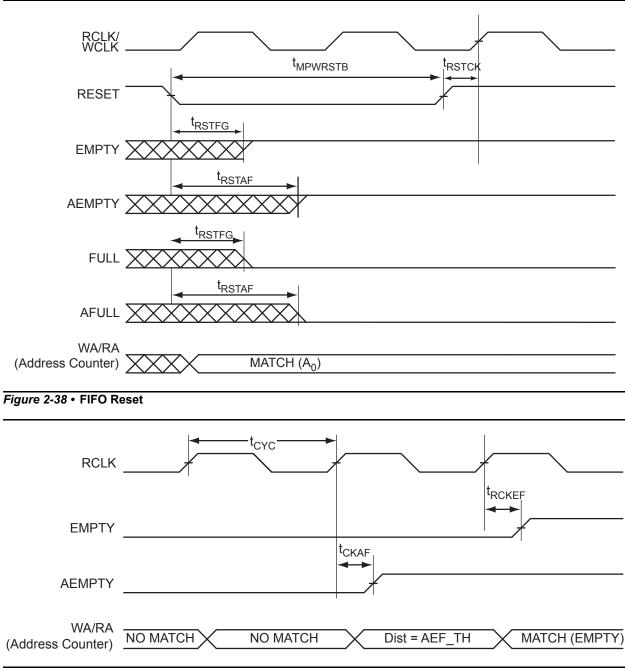


Figure 2-39 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Embedded Nonvolatile Memory Block (eNVM)

Electrical Characteristics

Table 2-90 describes the eNVM maximum performance.

Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: T_J = 85°C, VCC = 1.425 V

		A2F	060	A2F	200	A2F	500	
Parameter	Description	-1	Std.	-1	Std.	-1	Std.	Units
	Maximum frequency for clock for the control logic – 5 cycles (5:1:1:1*)	50	50	50	50	50	50	MHz
	Maximum frequency for clock for the control logic – 6 cycles (6:1:1:1*)	100	80	100	80	100	80	MHz

Note: *6:1:1:1 indicates 6 cycles for the first access and 1 each for the next three accesses. 5:1:1:1 indicates 5 cycles for the first access and 1 each for the next three accesses.

Note: *Moving from 5:1:1:1 mode to 6:1:1:1 mode results in throughput change that is dependent on the system functionality. When the Cortex-M3 code is executed from eNVM - with sequential firmware (sequential address reads), the throughput reduction can be around 10%.

Embedded FlashROM (eFROM)

Electrical Characteristics

Table 2-91 describes the eFROM maximum performance

Parameter	Description	-1	Std.	Units
t _{CK2Q}	Clock to out per configuration*	28.68	32.98	ns
F _{max}	Maximum Clock frequency	15.00	15.00	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-19 for more details.

Timing Characteristics

Table 2-92 • JTAG 1532

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Parameter	er Description		Std.	Units
t _{DISU}	Test Data Input Setup Time	0.67	0.77	ns
t _{DIHD}	Test Data Input Hold Time	1.33	1.53	ns
t _{TMSSU}	Test Mode Select Setup Time	0.67	0.77	ns
t _{TMDHD}	Test Mode Select Hold Time	1.33	1.53	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	9.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Temperature Monitor

Unless otherwise noted, temperature monitor performance is specified with a 2N3904 diode-connected bipolar transistor from National Semiconductor or Infineon Technologies, nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 62.5 Ksps. After digital compensation. Unless otherwise noted, the specifications pertain to conditions where the SmartFusion cSoC and the sensing diode are at the same temperature.

Table 2-94 • Temperature Monitor Performance Specifications

Specification	Test Conditions	Min.	Typical	Max.	Units
Input diode temperature range		-55		150	°C
		233.2		378.15	K
Temperature sensitivity			2.5		mV/K
Intercept	Extrapolated to 0K		0		V
Input referred temperature offset error	At 25°C (298.15K)		±1	1.5	°C
Gain error	Slope of BFSL vs. 2.5 mV/K		±1	2.5	% nom.
Overall accuracy	Peak error from ideal transfer function		±2	±3	°C
Input referred noise	At 25°C (298.15K) – no output averaging		4		°C rms
Output current	Idle mode		100		μA
	Final measurement phases		10		μA
Analog settling time	Measured to 0.1% of final value, (with ADC load)				
	From TM_STB (High)	5			μs
	From ADC_START (High)	5		105	μs
AT parasitic capacitance				500	pF
Power supply rejection ratio	DC (0–10 KHz)	1.2	0.7		°C/V
Input referred temperature sensitivity error	Variation due to device temperature (–40°C to +100°C). External temperature sensor held constant.		0.005	0.008	°C/°C
Temperature monitor (TM)	VCC33A		200		μA
operational power supply current requirements (per temperature	VCC33AP		150		μA
monitor instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: All results are based on averaging over 64 samples.

Compile and Debug

Microsemi's SoftConsole is a free Eclipse-based IDE that enables the rapid production of C and C++ executables for Microsemi FPGA and cSoCs using Cortex-M3, Cortex-M1 and Core8051s. For SmartFusion support, SoftConsole includes the GNU C/C++ compiler and GDB debugger. Additional examples can be found on the SoftConsole page:

- Using UART with SmartFusion: SoftConsole Standalone Flow Tutorial
 - Design Files
- Displaying POT Level with LEDs: Libero SoC and SoftConsole Flow Tutorial for SmartFusion
 - Design Files

IAR Embedded Workbench[®] for ARM/Cortex is an integrated development environment for building and debugging embedded ARM applications using assembler, C and C++. It includes a project manager, editor, build and debugger tools with support for RTOS-aware debugging on hardware or in a simulator.

- Designing SmartFusion cSoC with IAR Systems
- IAR Embedded Workbench IDE User Guide for ARM
- Download Evaluation or Kickstart version of IAR Embedded Workbench for ARM

Keil's Microcontroller Development Kit comes in two editions: MDK-ARM and MDK Basic. Both editions feature μ Vision[®], the ARM Compiler, MicroLib, and RTX, but the MDK Basic edition is limited to 256K so that small applications are more affordable.

- Designing SmartFusion cSoC with Keil
- Using Keil µVision and Microsemi SmartFusion cSoC
 - Programming file for use with this tutorial
- Keil Microcontroller Development Kit for ARM Product Manuals
- Download Evaluation version of Keil MDK-ARM

COMPLIANT RRM® Cortex® Hicrocontroller Software Interface Standard	Microsemi.	An ARM [®] Company	SYSTEMS
Software IDE	SoftConsole	Vision IDE	Embedded Workbench
Website	www.microsemi.com/soc	www.keil.com	www.iar.com
Free versions from SoC Products Group	Free with Libero SoC	32 K code limited	32 K code limited
Available from Vendor	N/A	Full version	Full version
Compiler	GNU GCC	RealView C/C++	IAR ARM Compiler
Debugger	GDB debug	Vision Debugger	C-SPY Debugger
Instruction Set Simulator	No	Vision Simulator	Yes
Debug Hardware	FlashPro4	ULINK2 or ULINK-ME	J-LINK or J-LINK Lite

Operating Systems

FreeRTOS[™] is a portable, open source, royalty free, mini real-time kernel (a free-to-download and freeto-deploy RTOS that can be used in commercial applications without any requirement to expose your proprietary source code). FreeRTOS is scalable and designed specifically for small embedded systems. This FreeRTOS version ported by Microsemi is 6.0.1. For more information, visit the FreeRTOS website: www.freertos.org

- SmartFusion Webserver Demo Using uIP and FreeRTOS
- SmartFusion cSoC: Running Webserver, TFTP on IwIP TCP/IP Stack Application Note

Pin Descriptions

Name	Туре	Description
VCC15A	Supply	Clean analog 1.5 V supply to the analog circuitry. Always power this pin.
VCC15ADC0	Supply	Analog 1.5 V supply to the first ADC. Always power this pin.
VCC15ADC1	Supply	Analog 1.5 V supply to the second ADC. Always power this pin.
VCC15ADC2	Supply	Analog 1.5 V supply to the third ADC. Always power this pin.
VCC33A	Supply	Clean 3.3 V analog supply to the analog circuitry. VCC33A is also used to feed the 1.5 V voltage regulator for designs that do not provide an external supply to VCC. Refer to the Voltage Regulator (VR), Power Supply Monitor (PSM), and Power Modes section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> for more information.
VCC33ADC0	Supply	Analog 3.3 V supply to the first ADC. If unused, Microsemi recommends connecting this pin to a 3.3 V supply. $^{\rm 1}$
VCC33ADC1	Supply	Analog 3.3 V supply to the second ADC. If unused, Microsemi recommends connecting this pin to a 3.3 V supply. $^{\rm 1}$
VCC33ADC2	Supply	Analog 3.3 V supply to the third ADC. If unused, Microsemi recommends connecting this pin to a 3.3 V supply. ¹
VCC33AP	Supply	Analog clean 3.3 V supply to the charge pump. To avoid high current draw, VCC33AP should be powered up simultaneously with or after VCC33A. Can be pulled down if unused. ¹
VCC33N	Supply	-3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to GND. Analog charge pump capacitors are not needed if none of the analog SCB features are used and none of the SDDs are used. In that case it should be left unconnected.
VCC33SDD0	Supply	Analog 3.3 V supply to the first sigma-delta DAC
VCC33SDD1	Supply	Common analog 3.3 V supply to the second and third sigma-delta DACs
VCCENVM	Supply	Digital 1.5 V power supply to the embedded nonvolatile memory blocks. To avoid high current draw, VCC should be powered up before or simultaneously with VCCENVM.
VCCESRAM	Supply	Digital 1.5 V power supply to the embedded SRAM blocks. Available only on the 208PQFP package. It should be connected to VCC (in other packages, it is internally connected to VCC).
VCCFPGAIOB0	Supply	Digital supply to the FPGA fabric I/O bank 0 (north FPGA I/O bank) for the output buffers and I/O logic.
		Each bank can have a separate VCCFPGAIO connection. All I/Os in a bank will run off the same VCCFPGAIO supply. VCCFPGAIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCFPGAIO pins tied to GND.
VCCFPGAIOB1	Supply	Digital supply to the FPGA fabric I/O bank 1 (east FPGA I/O bank) for the output buffers and I/O logic. Each bank can have a separate VCCFPGAIO connection. All I/Os in a bank will run off the same VCCFPGAIO supply. VCCFPGAIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCFPGAIO pins tied to GND.

Notes:

1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33ADCx, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL.

2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.

3. For more details on VCCPLLx capacitor recommendations, refer to the application note AC359, SmartFusion cSoC Board Design Guidelines, the "PLL Power Supply Decoupling Scheme" section.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
SDD2	ADC2_CH15								SDD2_OUT
TM0	ADC0_CH4	Yes		CM0_L	TM0_IO	CMP0_N			
TM1	ADC0_CH8	Yes		CM1_L	TM1_IO	CMP2_N			
TM2	ADC1_CH4	Yes		CM2_L	TM2_IO	CMP4_N			
TM3	ADC1_CH8	Yes		CM3_L	TM3_IO	CMP6_N			
TM4	ADC2_CH4	Yes		CM4_L	TM4_IO	CMP8_N			

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

- 3. TMx_IO: Temperature monitor channel x.
- 4. CMPx_P/N: Comparator channel x, positive/negative input.
- 5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

	TQ144	
Pin Number	A2F060 Function	
37	VCC33AP	
38	VCC33N	
39	SDD0	
40	GNDA	
41	GNDAQ	
42	GNDAQ	
43	ADC0	
44	ADC1	
45	ADC2	
46	ADC3	
47	ADC4	
48	ADC5	
49	ADC6	
50	ADC7	
51	ADC8	
52	ADC9	
53	ADC10	
54	NC	
55	NC	
56	NC	
57	GND15ADC0	
58	VCC15ADC0	
59	GND33ADC0	
60	VCC33ADC0	
61	GND33ADC0	
62	VAREF0	
63	ABPS0	
64	ABPS1	
65	CM0	
66	TM0	
67	GNDTM0	
68	GNDAQ	
69	GNDA	
70	GNDVAREF	
71	VAREFOUT	
72	PU_N	

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	CS288					
No.	A2F060 Function	A2F200 Function	A2F500 Function			
F12	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO14NDB0V0			
F13	GND	GND	GND			
F14	GCB1/IO19PPB0V0	GCC1/IO26PPB1V0	GCC1/IO35PPB1V0			
F15	GNDQ	GNDQ	GNDQ			
F16	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1			
F17	GCB0/IO19NPB0V0	IO24NDB1V0	IO33NDB1V0			
F19	IO23NDB1V0	GDB1/IO30PDB1V0	GDB1/IO39PDB1V0			
F21	GCA2/IO21PDB1V0	GDB0/IO30NDB1V0	GDB0/IO39NDB1V0			
G1	IO41NDB5V0	IO67NDB5V0	IO84NDB5V0			
G3	GFC2/IO41PDB5V0	GFC2/IO67PDB5V0	GFC2/IO84PDB5V0			
G5	NC	GFB1/IO65PDB5V0	GFB1/IO82PDB5V0			
G6	EMC_DB[10]/IO43NDB5V0	EMC_DB[10]/IO69NDB5V0	EMC_DB[10]/IO86NDB5V0			
G9	NC	GFC0/IO66NPB5V0	GFC0/IO83NPB5V0			
G13	GCA0/IO20NPB0V0	GCC0/IO26NPB1V0	GCC0/IO35NPB1V0			
G16	NC	GDA0/IO31NDB1V0	GDA0/IO40NDB1V0			
G17	IO22NPB1V0	GDC1/IO29PDB1V0	GDC1/IO38PDB1V0			
G19	GCC2/IO23PDB1V0	GDC0/IO29NDB1V0	GDC0/IO38NDB1V0			
G21	GND	GND	GND			
H1	EMC_DB[9]/IO40PPB5V0	EMC_DB[9]/GEC1/IO63PPB5V0	EMC_DB[9]/GEC1/IO80PPB5V0			
H3	GND	GND	GND			
H5	NC	GFB0/IO65NDB5V0	GFB0/IO82NDB5V0			
H6	EMC_DB[7]/IO39PDB5V0	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0			
H8	GND	GND	GND			
H9	VCC	VCC	VCC			
H10	GND	GND	GND			
H11	VCC	VCC	VCC			
H12	GND	GND	GND			
H13	VCC	VCC	VCC			
H14	GND	GND	GND			
H16	NC	GDA1/IO31PDB1V0	GDA1/IO40PDB1V0			
H17	NC	GDC2/IO32PPB1V0	GDC2/IO41PPB1V0			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	PQ208	3
Pin Number	A2F200	A2F500
1	VCCPLL	VCCPLL0
2	VCOMPLA	VCOMPLA0
3	GNDQ	GNDQ
4	EMC_DB[15]/GAA2/IO71PDB5V0	GAA2/IO88PDB5V0
5	EMC_DB[14]/GAB2/IO71NDB5V0	GAB2/IO88NDB5V0
6	EMC_DB[13]/GAC2/IO70PDB5V0	GAC2/IO87PDB5V0
7	EMC_DB[12]/IO70NDB5V0	IO87NDB5V0
8	VCC	VCC
9	GND	GND
10	VCCFPGAIOB5	VCCFPGAIOB5
11	EMC_DB[11]/IO69PDB5V0	IO86PDB5V0
12	EMC_DB[10]/IO69NDB5V0	IO86NDB5V0
13	GFA2/IO68PSB5V0	GFA2/IO85PSB5V0
14	GFA1/IO64PDB5V0	GFA1/IO81PDB5V0
15	GFA0/IO64NDB5V0	GFA0/IO81NDB5V0
16	EMC_DB[9]/GEC1/IO63PDB5V0	GEC1/IO80PDB5V0
17	EMC_DB[8]/GEC0/IO63NDB5V0	GEC0/IO80NDB5V0
18	EMC_DB[7]/GEB1/IO62PDB5V0	GEB1/IO79PDB5V0
19	EMC_DB[6]/GEB0/IO62NDB5V0	GEB0/IO79NDB5V0
20	EMC_DB[5]/GEA1/IO61PDB5V0	GEA1/IO78PDB5V0
21	EMC_DB[4]/GEA0/IO61NDB5V0	GEA0/IO78NDB5V0
22	VCC	VCC
23	GND	GND
24	VCCFPGAIOB5	VCCFPGAIOB5
25	EMC_DB[3]/GEC2/IO60PDB5V0	GEC2/IO77PDB5V0
26	EMC_DB[2]/IO60NDB5V0	IO77NDB5V0
27	EMC_DB[1]/GEB2/IO59PDB5V0	GEB2/IO76PDB5V0
28	EMC_DB[0]/GEA2/IO59NDB5V0	GEA2/IO76NDB5V0
29	VCC	VCC
30	GND	GND
31	GNDRCOSC	GNDRCOSC

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

	PQ208			
Pin Number	A2F200	A2F500		
94	ABPS5	ABPS5		
95	ABPS4	ABPS4		
96	GNDAQ	GNDAQ		
97	GNDA	GNDA		
98	NC	NC		
99	GNDVAREF	GNDVAREF		
100	VAREFOUT	VAREFOUT		
101	PU_N	PU_N		
102	VCC33A	VCC33A		
103	PTEM	PTEM		
104	PTBASE	PTBASE		
105	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16		
106	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17		
107	SPI_0_CLK/GPIO_18	SPI_0_CLK/GPIO_18		
108	SPI_0_SS/GPIO_19	SPI_0_SS/GPIO_19		
109	UART_0_RXD/GPIO_21	UART_0_RXD/GPIO_21		
110	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20		
111	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29		
112	UART_1_TXD/GPIO_28	UART_1_TXD/GPIO_28		
113	VCC	VCC		
114	VCCMSSIOB2	VCCMSSIOB2		
115	GND	GND		
116	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30		
117	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31		
118	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22		
119	I2C_0_SCL/GPIO_23	I2C_0_SCL/GPIO_23		
120	GNDENVM	GNDENVM		
121	VCCENVM	VCCENVM		
122	JTAGSEL	JTAGSEL		
123	ТСК	тск		
124	TDI	TDI		

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

SmartFusion Customizable System-on-Chip (cSoC)

Pin		FG256	
No.	A2F060 Function	A2F200 Function	A2F500 Function
H13	TDO	TDO	TDO
H14	TDI	TDI	TDI
H15	JTAGSEL	JTAGSEL	JTAGSEL
H16	GND	GND	GND
J1	EMC_DB[4]/IO38NPB5V0	EMC_DB[4]/GEA0/IO61NPB5V0	EMC_DB[4]/GEA0/IO78NPB5V0
J2	EMC_DB[3]/IO37PDB5V0	EMC_DB[3]/GEC2/IO60PDB5V0	EMC_DB[3]/GEC2/IO77PDB5V0
J3	EMC_DB[2]/IO37NDB5V0	EMC_DB[2]/IO60NDB5V0	EMC_DB[2]/IO77NDB5V0
J4	GNDRCOSC	GNDRCOSC	GNDRCOSC
J5	NC	GNDQ	GNDQ
J6	GND	GND	GND
J7	VCC	VCC	VCC
J8	GND	GND	GND
J9	VCC	VCC	VCC
J10	GND	GND	GND
J11	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
J12	I2C_0_SCL/GPIO_23	I2C_0_SCL/GPIO_23	I2C_0_SCL/GPIO_23
J13	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22
J14	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31
J15	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
J16	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30
K1	GPIO_1/IO32RSB4V0	MAC_MDIO/IO49RSB4V0	MAC_MDIO/IO58RSB4V0
K2	GPIO_0/IO33RSB4V0	MAC_MDC/IO48RSB4V0	MAC_MDC/IO57RSB4V0
K3	VCCMSSIOB4	VCCMSSIOB4	VCCMSSIOB4
K4	MSS_RESET_N	MSS_RESET_N	MSS_RESET_N
K5	VCCRCOSC	VCCRCOSC	VCCRCOSC
K6	VCCMSSIOB4	VCCMSSIOB4	VCCMSSIOB4
K7	GND	GND	GND
K8	VCC	VCC	VCC
K9	GND	GND	GND
K10	VCC	VCC	VCC
K11	GND	GND	GND
Notes		•	<i>,</i>

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Pin Number	FG484	
	A2F200 Function	A2F500 Function
F17	NC	IO25PPB1V0
F18	VCCFPGAIOB1	VCCFPGAIOB1
F19	IO23NDB1V0	IO28NDB1V0
F20	NC	IO31PDB1V0
F21	NC	IO31NDB1V0
F22	IO22PDB1V0	IO32PDB1V0
G1	GND	GND
G2	GFB0/IO65NPB5V0	GFB0/IO82NPB5V0
G3	EMC_DB[9]/GEC1/IO63PDB5V0	EMC_DB[9]/GEC1/IO80PDB5V0
G4	GFC1/IO66PPB5V0	GFC1/IO83PPB5V0
G5	EMC_DB[11]/IO69PPB5V0	EMC_DB[11]/IO86PPB5V0
G6	GNDQ	GNDQ
G7	NC	NC
G8	GND	GND
G9	VCCFPGAIOB0	VCCFPGAIOB0
G10	GND	GND
G11	VCCFPGAIOB0	VCCFPGAIOB0
G12	GND	GND
G13	VCCFPGAIOB0	VCCFPGAIOB0
G14	GND	GND
G15	VCCFPGAIOB0	VCCFPGAIOB0
G16	GNDQ	GNDQ
G17	NC	IO26PDB1V0
G18	NC	IO26NDB1V0
G19	GCA2/IO23PDB1V0	GCA2/IO28PDB1V0 *
G20	IO24NDB1V0	IO33NDB1V0
G21	GCB2/IO24PDB1V0	GCB2/IO33PDB1V0
G22	GND	GND
H1	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0
H2	VCCFPGAIOB5	VCCFPGAIOB5
H3	EMC_DB[8]/GEC0/IO63NDB5V0	EMC_DB[8]/GEC0/IO80NDB5V0
H4	GND	GND
H5	GFC0/IO66NPB5V0	GFC0/IO83NPB5V0
H6	GFA1/IO64PDB5V0	GFA1/IO81PDB5V0

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "SmartFusion cSoC Device Status" table on page III, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi SoC Products Group Safety Critical, Life Support, and High-Reliability Applications Policy

The SoC Products Group products described in this advance status document may not have completed the SoC Products Group's qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the SoC Products Group's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available on the SoC Products Group website at:

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131372. Microsemi SoC Products Group also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local SoC Products Group sales office for additional reliability information.