E·XFL

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Detalls	
Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	256KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	100MHz
Primary Attributes	ProASIC®3 FPGA, 200K Gates, 4608 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f200m3f-1pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Standby Mode and Time Keeping Mode

 $P_{NET} = 0 W$

I/O Input Buffer Dynamic Contribution—PINPUTS

SoC Mode

 $\mathsf{P}_{\mathsf{INPUTS}}$ = $\mathsf{N}_{\mathsf{INPUTS}}$ * $(\alpha_2$ / 2) * $\mathsf{P}_{\mathsf{AC9}}$ * $\mathsf{F}_{\mathsf{CLK}}$ Where:

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

P_{INPUTS} = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

SoC Mode

 $\mathsf{P}_{OUTPUTS} = \mathsf{N}_{OUTPUTS} * (\alpha_2 / 2) * \beta_1 * \mathsf{P}_{AC10} * \mathsf{F}_{CLK}$ Where:

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-17 on page 2-18.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-18 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

P_{OUTPUTS} = 0 W

FPGA Fabric SRAM Dynamic Contribution—P_{MEMORY}

SoC Mode

 $P_{MEMORY} = (N_{BLOCKS} * P_{AC11} * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * P_{AC12} * \beta_3 * F_{WRITE-CLOCK})$ Where:

N_{BLOCKS} is the number of RAM blocks used in the design.

 $F_{READ-CLOCK}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 2-18 on page 2-18.

 β_3 the RAM enable rate for write operations—guidelines are provided in Table 2-18 on page 2-18. F_{WRITE-CLOCK} is the memory write clock frequency.

Standby Mode and Time Keeping Mode

P_{MEMORY} = 0 W

PLL/CCC Dynamic Contribution—P_{PLL}

SoC Mode

P_{PLL} = P_{AC13} * F_{CLKOUT}

F_{CLKIN} is the input clock frequency.

F_{CLKOUT} is the output clock frequency.¹

Standby Mode and Time Keeping Mode

^{1.} The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

User I/O Characteristics

Timing Model

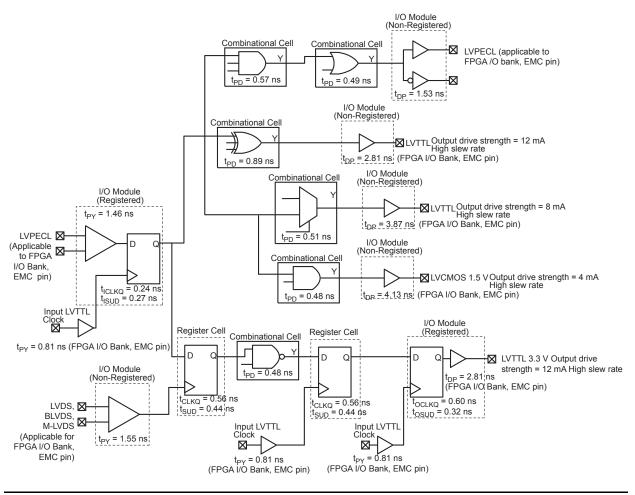


Figure 2-2 • Timing Model Operating Conditions: –1 Speed, Commercial Temperature Range (T_J = 85°C), Worst Case VCC = 1.425 V

SmartFusion Customizable System-on-Chip (cSoC)

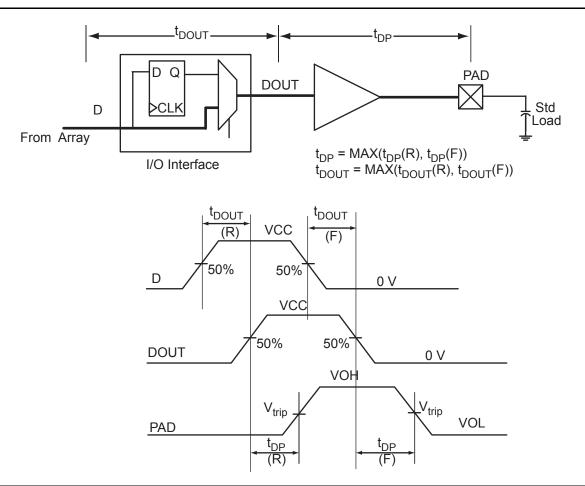


Figure 2-4 • Output Buffer Model and Delays (example)

SmartFusion DC and Switching Characteristics

Detailed I/O DC Characteristics

Table 2-26 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	V _{IN} = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	V _{IN} = 0, f = 1.0 MHz		8	pF

Table 2-27 • I/O Output Buffer Maximum Resistances¹ Applicable to FPGA I/O Banks

Standard	Drive Strength	$R_{PULL-DOWN}$ $(\Omega)^2$	${\sf R}_{\sf PULL-UP} \ (\Omega)^3$
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

1. These maximum values are provided for information only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website (also generated by the SoC Products Group Libero SoC toolset).

2. R_(PULL-DOWN-MAX) = (V_{OLspec}) / I_{OLspec}

3. R_(PULL-UP-MAX) = (V_{CCImax} - V_{OHspec}) / I_{OHspec}

Timing Characteristics

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	7.20	0.04	0.97	0.39	7.34	6.18	2.52	2.46	9.39	8.23	ns
	-1	0.50	6.00	0.03	0.81	0.32	6.11	5.15	2.10	2.05	7.83	6.86	ns
8 mA	Std.	0.60	4.64	0.04	0.97	0.39	4.73	3.84	2.85	3.02	6.79	5.90	ns
	-1	0.50	3.87	0.03	0.81	0.32	3.94	3.20	2.37	2.52	5.65	4.91	ns
12 mA	Std.	0.60	3.37	0.04	0.97	0.39	3.43	2.67	3.07	3.39	5.49	4.73	ns
	-1	0.50	2.81	0.03	0.81	0.32	2.86	2.23	2.55	2.82	4.58	3.94	ns
16 mA	Std.	0.60	3.18	0.04	0.97	0.39	3.24	2.43	3.11	3.48	5.30	4.49	ns
	-1	0.50	2.65	0.03	0.81	0.32	2.70	2.03	2.59	2.90	4.42	3.74	ns
24 mA	Std.	0.60	2.93	0.04	0.97	0.39	2.99	2.03	3.17	3.83	5.05	4.09	ns
	-1	0.50	2.45	0.03	0.81	0.32	2.49	1.69	2.64	3.19	4.21	3.41	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	9.75	0.04	0.97	0.39	9.93	8.22	2.52	2.31	11.99	10.28	ns
	-1	0.50	8.12	0.03	0.81	0.32	8.27	6.85	2.10	1.93	9.99	8.57	ns
8 mA	Std.	0.60	6.96	0.04	0.97	0.39	7.09	5.85	2.84	2.87	9.15	7.91	ns
	-1	0.50	5.80	0.03	0.81	0.32	5.91	4.88	2.37	2.39	7.62	6.59	ns
12 mA	Std.	0.60	5.35	0.04	0.97	0.39	5.45	4.58	3.06	3.23	7.51	6.64	ns
	-1	0.50	4.46	0.03	0.81	0.32	4.54	3.82	2.55	2.69	6.26	5.53	ns
16 mA	Std.	0.60	5.01	0.04	0.97	0.39	5.10	4.30	3.11	3.32	7.16	6.36	ns
	-1	0.50	4.17	0.03	0.81	0.32	4.25	3.58	2.59	2.77	5.97	5.30	ns
24 mA	Std.	0.60	4.67	0.04	0.97	0.39	4.75	4.28	3.16	3.66	6.81	6.34	ns
	-1	0.50	3.89	0.03	0.81	0.32	3.96	3.57	2.64	3.05	5.68	5.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to MSS I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
8 mA	Std.	0.22	2.31	0.09	0.94	1.30	0.22	2.35	1.86	2.20	2.45	ns
	-1	0.18	1.92	0.07	0.78	1.09	0.18	1.96	1.55	1.83	2.04	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Timing Characteristics

Table 2-44 • 2.5 V LVCMOS High Slew

Worst Commercial-Case Conditions: $T_J = 85^{\circ}C$, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 2.3 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.55	8.10	0.04	1.23	0.39	7.37	8.10	2.54	2.17	9.43	10.15	ns
	–1	0.46	6.75	0.03	1.03	0.32	6.14	6.75	2.12	1.81	7.85	8.46	ns
8 mA	Std.	0.55	4.85	0.04	1.23	0.39	4.76	4.85	2.90	2.83	6.82	6.91	ns
	–1	0.46	4.04	0.03	1.03	0.32	3.97	4.04	2.42	2.36	5.68	5.76	ns
12 mA	Std.	0.60	3.28	0.04	1.23	0.39	3.46	3.23	3.15	3.24	5.52	5.29	ns
	-1	0.50	2.73	0.03	1.03	0.32	2.88	2.69	2.62	2.70	4.60	4.41	ns
16 mA	Std.	0.60	3.09	0.04	1.23	0.39	3.27	2.88	3.20	3.35	5.33	4.94	ns
	-1	0.50	2.57	0.03	1.03	0.32	2.72	2.40	2.67	2.79	4.44	4.12	ns
24 mA	Std.	0.60	2.95	0.04	1.23	0.39	3.01	2.31	3.27	3.76	5.07	4.37	ns
	-1	0.50	2.46	0.03	1.03	0.32	2.51	1.93	2.73	3.13	4.22	3.64	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-45 • 2.5 V LVCMOS Low Slew

Worst Commercial-Case Conditions: $T_J = 85^{\circ}C$, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 2.3 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.55	10.50	0.04	1.23	0.39	10.69	10.50	2.54	2.07	12.75	12.56	ns
	-1	0.46	8.75	0.03	1.03	0.32	8.91	8.75	2.12	1.73	10.62	10.47	ns
8 mA	Std.	0.55	7.61	0.04	1.23	0.39	7.46	7.19	2.81	2.66	9.52	9.25	ns
	-1	0.46	6.34	0.03	1.03	0.32	6.22	5.99	2.34	2.22	7.93	7.71	ns
12 mA	Std.	0.60	5.92	0.04	1.23	0.39	5.79	5.45	3.04	3.06	7.85	7.51	ns
	-1	0.50	4.93	0.03	1.03	0.32	4.83	4.54	2.53	2.55	6.54	6.26	ns
16 mA	Std.	0.60	5.53	0.04	1.23	0.39	5.40	5.09	3.09	3.16	7.46	7.14	ns
	-1	0.50	4.61	0.03	1.03	0.32	4.50	4.24	2.58	2.64	6.22	5.95	ns
24 mA	Std.	0.60	5.18	0.04	1.23	0.39	5.28	5.14	3.27	3.64	7.34	7.20	ns
	-1	0.50	4.32	0.03	1.03	0.32	4.40	4.29	2.72	3.03	6.11	6.00	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-46 • 2.5 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to MSS I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
8 mA	Std.	0.22	2.35	0.09	1.18	1.39	0.22	2.40	2.18	2.19	2.32	ns
	-1	0.18	1.96	0.07	0.99	1.16	0.18	2.00	1.82	1.82	1.93	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

SmartFusion DC and Switching Characteristics

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by SoC Products Group Designer software when the user instantiates a differential I/O macro in the design.

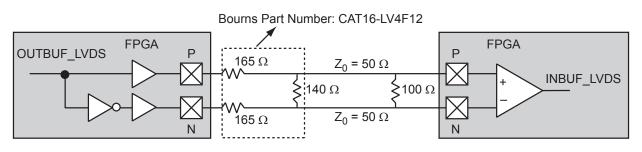
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

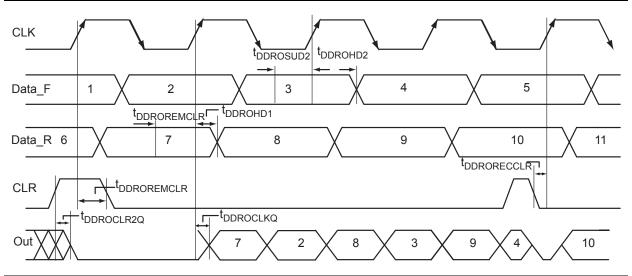
LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-11. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, SmartFusion cSoCs also support bus LVDS structure and multipoint LVDS (M-LVDS) configuration (up to 40 nodes).




Figure 2-11 • LVDS Circuit Diagram and Board-Level Implementation

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{ОНD}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
tOESUE	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-70 • Parameter Definition and Measuring Nodes

* See Figure 2-15 on page 2-46 for more information.

SmartFusion DC and Switching Characteristics

	Figure 2-22	Output D	DR Timing	Diagram
--	-------------	----------	-----------	---------

Timing Characteristics

Table 2-77 • Output DDR Propagation Delays Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	–1	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.71	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.81	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	350	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Temperature Monitor

Unless otherwise noted, temperature monitor performance is specified with a 2N3904 diode-connected bipolar transistor from National Semiconductor or Infineon Technologies, nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 62.5 Ksps. After digital compensation. Unless otherwise noted, the specifications pertain to conditions where the SmartFusion cSoC and the sensing diode are at the same temperature.

Table 2-94 • Temperature Monitor Performance Specifications

Specification	Test Conditions	Min.	Typical	Max.	Units
Input diode temperature range		-55		150	°C
		233.2		378.15	K
Temperature sensitivity			2.5		mV/K
Intercept	Extrapolated to 0K		0		V
Input referred temperature offset error	At 25°C (298.15K)		±1	1.5	°C
Gain error	Slope of BFSL vs. 2.5 mV/K		±1	2.5	% nom.
Overall accuracy	Peak error from ideal transfer function		±2	±3	°C
Input referred noise	At 25°C (298.15K) – no output averaging		4		°C rms
Output current	Idle mode		100		μA
	Final measurement phases		10		μA
Analog settling time	Measured to 0.1% of final value, (with ADC load)				
	From TM_STB (High)	5			μs
	From ADC_START (High)	5		105	μs
AT parasitic capacitance				500	pF
Power supply rejection ratio	DC (0–10 KHz)	1.2	0.7		°C/V
Input referred temperature sensitivity error	Variation due to device temperature (-40°C to +100°C). External temperature sensor held constant.		0.005	0.008	°C/°C
Temperature monitor (TM)	VCC33A		200		μA
operational power supply current requirements (per temperature	VCC33AP		150		μA
monitor instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: All results are based on averaging over 64 samples.

static Microsemi.

SmartFusion DC and Switching Characteristics

Comparator

Unless otherwise specified, performance is specified at 25°C with nominal power supply voltages.

Specification	Test Condition	IS	Min.	Тур.	Max.	Units
Input voltage range	Minimum			0		V
	Maximum			2.56		V
Input offset voltage	HYS[1:0] = 00			±1	±3	mV
	(no hysteresis)					
Input bias current	t Comparator 1, 3, 5, 7, 9 (measured at 2.56 V)			40	100	nA
	Comparator 0,	2, 4, 6, 8 (measured at 2.56 V)		150	300	nA
Input resistance						MΩ
Power supply rejection ratio	DC (0 – 10 KHz	z)	50	60		dB
Propagation delay	100 mV overdri	ve				
	HYS[1:0] = 00					
	(no hysteresis)			15	18	ns
	100 mV overdrive					
	HYS[1:0] = 10					
	(with hysteresis	3)		25	30	ns
Hysteresis	HYS[1:0] = 00	Typical (25°C)	0	0	±5	mV
(± refers to rising and falling threshold shifts, respectively)		Across all corners (–40°C to +100°C)	0		±5	mV
tineshold sinits, respectively)	HYS[1:0] = 01	Typical (25°C)	±3	40 100 150 300 60 - 60 - 15 18 15 18 15 18 25 30 0 ±5 ±16 ±30 ±36 ±36 ±31 ±48 ±105 ±190	mV	
		Across all corners (–40°C to +100°C)	0		1 \pm 3 \pm 1 \pm 3 40 100 150 300 150 300 60 - 15 18 15 18 25 30 0 \pm 5 16 \pm 30 \pm 31 \pm 48 \pm 31 \pm 48 105 \pm 190 \pm 194 \pm 194 150 165 160 \pm 164 105 \pm 194	mV
	HYS[1:0] = 10	Typical (25°C)	±19	± 31	±48	mV
		Across all corners (–40°C to +100°C)	±12		±54	mV
	HYS[1:0] = 11	Typical (25°C)	±80	± 105	±190	mV
		Across all corners (–40°C to +100°C)	±80		±194	mV
Comparator current	VCC33A = 3.3	V (operational mode); COMP_EN = 1			1	
requirements (per comparator)	VCC33A			150	165	μA
	VCC33AP 140	165	μA			
	VCC15A			1	3	μA

Serial Peripheral Interface (SPI) Characteristics

This section describes the DC and switching of the SPI interface. Unless otherwise noted, all output characteristics given for a 35 pF load on the pins and all sequential timing characteristics are related to SPI_x_CLK. For timing parameter definitions, refer to Figure 2-47 on page 2-90.

Symbol	Description and Condition	A2F060	A2F200	A2F500	Unit		
sp1	SPI_x_CLK minimum period						
	SPI_x_CLK = PCLK/2	20	NA	20	ns		
	SPI_x_CLK = PCLK/4	40	40	40	ns		
	SPI_x_CLK = PCLK/8	80	80	80	ns		
	SPI_x_CLK = PCLK/16	0.16	0.16	0.16	μs		
	SPI_x_CLK = PCLK/32	0.32	0.32	0.32	μs		
	SPI_x_CLK = PCLK/64	0.64	0.64	0.64	μs		
	SPI_x_CLK = PCLK/128	1.28	1.28	1.28	μs		
	SPI_x_CLK = PCLK/256	2.56	2.56	2.56	μs		
sp2	SPI_x_CLK minimum pulse width high						
	SPI_x_CLK = PCLK/2	10	NA	10	ns		
	SPI_x_CLK = PCLK/4	20	20	20	ns		
	SPI_x_CLK = PCLK/8	40	40	40	ns		
	SPI_x_CLK = PCLK/16	0.08	0.08	0.08	μs		
	SPI_x_CLK = PCLK/32	0.16	0.16	0.16	μs		
	SPI_x_CLK = PCLK/64	0.32	0.32	0.32	μs		
	SPI_x_CLK = PCLK/128	0.64	0.64	0.64	μs		
	SPI_x_CLK = PCLK/256	1.28	1.28	1.28	us		
sp3	SPI_x_CLK minimum pulse width low						
	SPI_x_CLK = PCLK/2	10	NA	10	ns		
	SPI_x_CLK = PCLK/4	20	20	20	ns		
	SPI_x_CLK = PCLK/8	40	40	40	ns		
	SPI_x_CLK = PCLK/16	0.08	0.08	0.08	μs		
	SPI_x_CLK = PCLK/32	0.16	0.16	0.16	μs		
	SPI_x_CLK = PCLK/64	0.32	0.32	0.32	μs		
	SPI_x_CLK = PCLK/128	0.64	0.64	0.64	μs		
	SPI_x_CLK = PCLK/256	1.28	1.28	1.28	μs		
sp4	SPI_x_CLK, SPI_x_DO, SPI_x_SS rise time (10%-90%) ¹	4.7	4.7	4.7	ns		
sp5	SPI_x_CLK, SPI_x_DO, SPI_x_SS fall time (10%-90%) ¹	3.4	3.4	3.4	ns		

Table 2-100 • SPI Characteristics

Commercial Case Conditions: T_J = 85°C, VDD = 1.425 V, -1 Speed Grade

Notes:

 These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/index.php?option=com_microsemi<emid=489&lang=en&view=salescontact.

2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion Microcontroller Subsystem User's Guide.

3 – SmartFusion Development Tools

Designing with SmartFusion cSoCs involves three different types of design: FPGA design, embedded design and analog design. These roles can be filled by three different designers, two designers or even a single designer, depending on company structure and project complexity.

Types of Design Tools

Microsemi has developed design tools and flows to meet the needs of these three types of designers so they can work together smoothly on a single project (Figure 3-1).

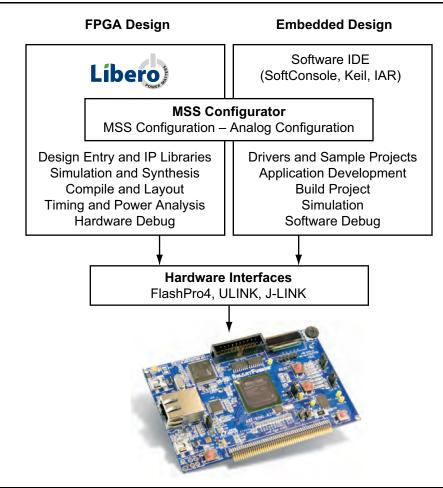


Figure 3-1 • Three Design Roles

FPGA Design

Libero System-on-Chip (SoC) software is Microsemi's comprehensive software toolset for designing with all Microsemi FPGAs and cSoCs. Libero SoC includes industry-leading synthesis, simulation and debug tools from Synopsys[®] and Mentor Graphics[®], as well as innovative timing and power optimization and analysis.

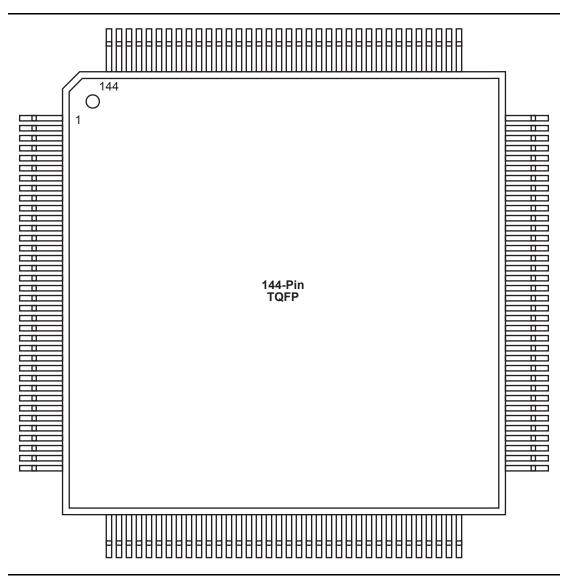
SmartFusion Customizable System-on-Chip (cSoC)

Table 5-1 • Recommended Tie-Off Values for the TCK and TRST Pins

VJTAG	Tie-Off Resistance ^{1, 2}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Notes:

1. The TCK pin can be pulled up/down.


2. The TRST pin can only be pulled down.

1. Equivalent parallel resistance if more than one device is on JTAG chain.

Pin Assignment Tables

TQ144

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	CS288				
No.	A2F060 Function	A2F200 Function	A2F500 Function		
W14	ADC5	CM2	CM2		
W15	NC	ABPS5	ABPS5		
W16	GNDAQ	GNDAQ	GNDAQ		
W17	NC	VCC33SDD1	VCC33SDD1		
W18	NC	GNDSDD1	GNDSDD1		
W19	PTBASE	PTBASE	PTBASE		
W21	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17		
Y1	VCC33AP	VCC33AP	VCC33AP		
Y21	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16		

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	FG256				
No.	A2F060 Function	A2F200 Function	A2F500 Function		
A1	GND	GND	GND		
A2	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0		
A3	EMC_AB[0]/IO04NDB0V0	EMC_AB[0]/IO04NDB0V0	EMC_AB[0]/IO06NDB0V0		
A4	EMC_AB[1]/IO04PDB0V0	EMC_AB[1]/IO04PDB0V0	EMC_AB[1]/IO06PDB0V0		
A5	GND	GND	GND		
A6	EMC_AB[3]/IO05PDB0V0	EMC_AB[3]/IO05PDB0V0	EMC_AB[3]/IO09PDB0V0		
A7	EMC_AB[5]/IO06PDB0V0	EMC_AB[5]/IO06PDB0V0	EMC_AB[5]/IO10PDB0V0		
A8	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0		
A9	GND	GND	GND		
A10	EMC_AB[14]/IO11NDB0V0	EMC_AB[14]/IO11NDB0V0	EMC_AB[14]/IO15NDB0V0		
A11	EMC_AB[15]/IO11PDB0V0	EMC_AB[15]/IO11PDB0V0	EMC_AB[15]/IO15PDB0V0		
A12	GND	GND	GND		
A13	EMC_AB[20]/IO14NDB0V0	EMC_AB[20]/IO14NDB0V0	EMC_AB[20]/IO21NDB0V0		
A14	EMC_AB[24]/IO16NDB0V0	EMC_AB[24]/IO16NDB0V0	EMC_AB[24]/IO20NDB0V0		
A15	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0		
A16	GND	GND	GND		
B1	EMC_DB[15]/IO45PDB5V0	EMC_DB[15]/GAA2/IO71PDB5V0	EMC_DB[15]/GAA2/IO88PDB5V0		
B2	GND	GND	GND		
B3	EMC_BYTEN[1]/IO02PDB0V0	EMC_BYTEN[1]/GAC1/IO02PDB0V0	EMC_BYTEN[1]/GAC1/IO07PDB0V0		
B4	EMC_OEN0_N/IO03NDB0V0	EMC_OEN0_N/IO03NDB0V0	EMC_OEN0_N/IO08NDB0V0		
B5	EMC_OEN1_N/IO03PDB0V0	EMC_OEN1_N/IO03PDB0V0	EMC_OEN1_N/IO08PDB0V0		
B6	EMC_AB[2]/IO05NDB0V0	EMC_AB[2]/IO05NDB0V0	EMC_AB[2]/IO09NDB0V0		
B7	EMC_AB[4]/IO06NDB0V0	EMC_AB[4]/IO06NDB0V0	EMC_AB[4]/IO10NDB0V0		
B8	EMC_AB[9]/IO08PDB0V0	EMC_AB[9]/IO08PDB0V0	EMC_AB[9]/IO13PDB0V0		
B9	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO14NDB0V0		
B10	EMC_AB[13]/IO10PDB0V0	EMC_AB[13]/IO10PDB0V0	EMC_AB[13]/IO14PDB0V0		
B11	EMC_AB[16]/IO12NDB0V0	EMC_AB[16]/IO12NDB0V0	EMC_AB[16]/IO17NDB0V0		
B12	EMC_AB[18]/IO13NDB0V0	EMC_AB[18]/IO13NDB0V0	EMC_AB[18]/IO18NDB0V0		
B13	EMC_AB[21]/IO14PDB0V0	EMC_AB[21]/IO14PDB0V0	EMC_AB[21]/IO21PDB0V0		
B14	EMC_AB[25]/IO16PDB0V0	EMC_AB[25]/IO16PDB0V0	EMC_AB[25]/IO20PDB0V0		
B15	GND	GND	GND		

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	FG256				
No.	A2F060 Function	A2F200 Function	A2F500 Function		
D15	GCA1/IO20PDB0V0	IO24NDB1V0	IO33NDB1V0		
D16	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1		
E1	EMC_DB[13]/IO44PDB5V0	EMC_DB[13]/GAC2/IO70PDB5V0	EMC_DB[13]/GAC2/IO87PDB5V0		
E2	EMC_DB[12]/IO44NDB5V0	EMC_DB[12]/IO70NDB5V0	EMC_DB[12]/IO87NDB5V0		
E3	GFA2/IO42PDB5V0	GFA2/IO68PDB5V0	GFA2/IO85PDB5V0		
E4	EMC_DB[10]/IO43NPB5V0	EMC_DB[10]/IO69NPB5V0	EMC_DB[10]/IO86NPB5V0		
E5	GNDQ	GNDQ	GNDQ		
E6	GND	GND	GND		
E7	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0		
E8	GND	GND	GND		
E9	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0		
E10	GND	GND	GND		
E11	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0		
E12	GCB2/IO22PDB1V0	GCA1/IO28PDB1V0	GCA1/IO36PDB1V0 *		
E13	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1		
E14	GCA2/IO21PDB1V0	GCB1/IO27PDB1V0	GCB1/IO34PDB1V0		
E15	GCC2/IO23PDB1V0	GDC1/IO29PDB1V0	GDC1/IO38PDB1V0		
E16	IO23NDB1V0	GDC0/IO29NDB1V0	GDC0/IO38NDB1V0		
F1	EMC_DB[9]/IO40PDB5V0	EMC_DB[9]/GEC1/IO63PDB5V0	EMC_DB[9]/GEC1/IO80PDB5V0		
F2	GND	GND	GND		
F3	GFB2/IO42NDB5V0	GFB2/IO68NDB5V0	GFB2/IO85NDB5V0		
F4	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5		
F5	EMC_DB[11]/IO43PPB5V0	EMC_DB[11]/IO69PPB5V0	EMC_DB[11]/IO86PPB5V0		
F6	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5		
F7	GND	GND	GND		
F8	VCC	VCC	VCC		
F9	GND	GND	GND		
F10	VCC	VCC	VCC		
F11	GND	GND	GND		
F12	IO22NDB1V0	GCA0/IO28NDB1V0	GCA0/IO36NDB1V0 *		
F13	NC	GNDQ	GNDQ		
Notes		·			

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

SmartFusion Customizable System-on-Chip (cSoC)

Revision	Changes	Page
Revision 7	Usage instructions, such as how to handle the pin when unused, were added for the	5-2
(continued)	following supply pins (SAR 29769):	through
	"VCC15A"	5-3
	"VCC15ADC0" through "VCC15ADC2"	
	"VCC33ADC0" through "VCC33ADC2"	
	"VCC33AP"	
	"VCC33ADC2"	
	"VCCLPXTAL"	
	"VCCMAINXTAL"	
	"VCCMSSIOB2"	
	"VCCPLLx"	
	"VCCRCOSC"	
	"VDDBAT"	
	The "IO" description was revised to clarify the definitions of u, I/O pair, and w, differential pair (SAR 31147). Information on configuration of unused I/Os (including unused MSS I/Os, SAR 26891) was added (SAR 32643).	5-6
	Usage instructions were added for the following pins (SAR 29769):	5-9
	"MSS_RESET_N"	through
	"TCK"	5-13
	"TMS"	
	"TRSTB"	
	"MAC_CLK"	
	Package names used in the "Pin Assignment Tables" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	5-18
	The pin assignments for A2F060 for "TQ144" and "FG256" have been revised due to the device status change from advance to preliminary (SAR 33068).	5-18, 5-42
	The "TQ144" and "FG256" pin assignment sections previously compared functions between A2F060/A2F200 devices in one table and A2F200/A2F500 in a separate table. Functions for all three devices have now been combined into one table for each package (SAR 33072).	
	The "PQ208" pin table was revised for A2F500 to remove EMC functions, which are not available for this device/package combination (SAR 33041).	5-34
Revision 6 (March 2011)	The "PQ208" package was added to product tables and "Product Ordering Codes" for A2F200 and A2F500 (SAR 31005).	Ш
	The "Package I/Os: MSS + FPGA I/Os" table was revised to add the CS288 package for A2F060 and the PQ208 package for A2F200 and A2F500. A row was added for shared analog inputs (SAR 31034).	Ш
	The "SmartFusion cSoC Device Status" table was updated (SAR 31084).	Ш
	VCCESRAM was added to Table 2-1 • Absolute Maximum Ratings, Table 2-3 • Recommended Operating Conditions ^{5,6} , Table 2-8 • Power Supplies Configuration, and the "Supply Pins" table (SAR 31035).	2-1, 2-3, 2-10, 5-1
	The following note was removed from Table 2-8 • Power Supplies Configuration (SAR 30984):	2-10
	"Current monitors and temperature monitors should not be used when Power-Down and/or Sleep mode are required by the application."	

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "SmartFusion cSoC Device Status" table on page III, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi SoC Products Group Safety Critical, Life Support, and High-Reliability Applications Policy

The SoC Products Group products described in this advance status document may not have completed the SoC Products Group's qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the SoC Products Group's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available on the SoC Products Group website at:

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131372. Microsemi SoC Products Group also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local SoC Products Group sales office for additional reliability information.