

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

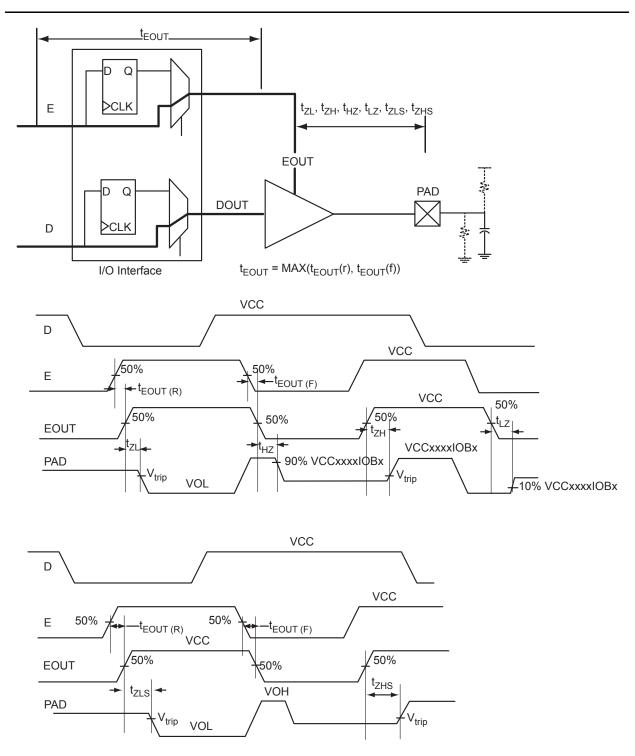
System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	256KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 200K Gates, 4608 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	288-TFBGA, CSPBGA
Supplier Device Package	288-CSP (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f200m3f-csg288i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


SmartFusion DC and Switching Characteristics

Power Consumption of Various Internal Resources

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs

		Power Supp	ly				
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F500	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	3.39	3.40	5.05	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	1.14	1.83	2.50	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V	1.15	1.15	1.15	µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.12	0.12	0.12	µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.07	0.07	0.07	µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz
PAC8	Average contribution of a routing net	VCC	1.5 V	1.04	0.79	0.79	µW/MHz
PAC9	Contribution of an I/O input pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	ole 2-10 a	nd Table	2-11 on p	age 2-11
PAC10	Contribution of an I/O output pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	ole 2-12 a	nd Table	2-13 on p	age 2-11
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25.00		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30.00		µW/MHz
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.60		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < 33MHz)	VCC	1.5 V		358.00		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		12.88		mW
PAC17	2nd contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		4.80		µW/MHz
PAC18	Main Crystal Oscillator contribution	VCCMAINXTAL	3.3 V		1.98		mW
PAC19a	RC Oscillator contribution	VCCRCOSC	3.3 V		3.30		mW
PAC19b	RC Oscillator contribution	VCC	1.5 V		3.00		mW
PAC20a	Analog Block Dynamic Power Contribution of the ADC	VCC33ADCx	3.3 V	8.25			mW
PAC20b	Analog Block Dynamic Power Contribution of the ADC	VCC15ADCx	1.5 V	5 V 3.00			mW
PAC21	Low Power Crystal Oscillator contribution	VCCLPXTAL	3.3 V	3.3 V 33.00			μW
PAC22	MSS Dynamic Power Contribution – Running Drysthone at 100MHz ¹	VCC	1.5 V 67.50			mW	
PAC23	Temperature Monitor Power Contribution	See Table 2-94 on page 2-79	-		1.23		mW

SmartFusion DC and Switching Characteristics

Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

Microsemi Š,

SmartFusion DC and Switching Characteristics

Table 2-52 • 1.8 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 1.7 V Applicable to MSS I/O Banks

	pplicable		Dunks						
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zł}
4 mA	Std.	0.22	2.77	0.09	1.09	1.64	0.22	2.82	2.7

ength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}
A	Std.	0.22	2.77	0.09	1.09	1.64	0.22	2.82	2.72	2.21
	–1	0.18	2.31	0.07	0.91	1.37	0.18	2.35	2.27	1.84

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Units

ns

ns

t_{HZ}

2.25

1.87

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{ОНD}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
tOESUE	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-70 • Parameter Definition and Measuring Nodes

* See Figure 2-15 on page 2-46 for more information.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The SmartFusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO/e, Fusion, ProASIC3/E, and SmartFusion Macro Library Guide*.

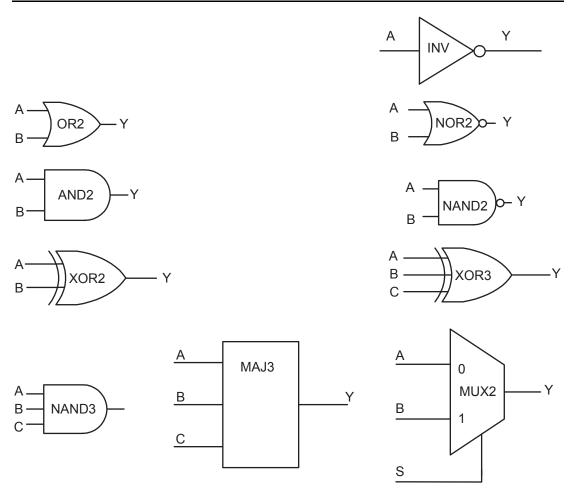


Figure 2-23 • Sample of Combinatorial Cells

static Microsemi.

SmartFusion DC and Switching Characteristics

Main and Lower Power Crystal Oscillator

The tables below describes the electrical characteristics of the main and low power crystal oscillator.

Table 2-84 • Electrical Characteristics of the Main Crystal Oscillator

Parameter	Description	Condition	Min.	Тур.	Max.	Units
	Operating frequency	Using external crystal	0.032		20	MHz
		Using ceramic resonator	0.5		8	MHz
		Using RC Network	0.032		4	MHz
	Output duty cycle			50		%
	Output jitter	With 10 MHz crystal		1		ns RMS
IDYNXTAL	Operating current	RC		0.6		mA
		0.032–0.2		0.6		mA
		0.2–2.0		0.6		mA
		2.0–20.0		0.6		mA
ISTBXTAL	Standby current of crystal oscillator			10		μA
PSRRXTAL	Power supply noise tolerance			0.5		Vp-p
VIHXTAL	Input logic level High		90% of VCC			V
VILXTAL	Input logic level Low				10% of VCC	V
	Startup time	RC [Tested at 3.24Mhz]		300	550	μs
		0.032–0.2 [Tested at 32KHz]		500	3,000	μs
		0.2–2.0 [Tested at 2MHz]		8	12	μs
		2.0-20.0 [Tested at 20MHz]		160	180	μs

Table 2-85 • Electrical Characteristics of the Low Power Oscillator

Parameter	Description	Condition	Min.	Тур.	Max.	Units
	Operating frequency			32		KHz
	Output duty cycle			50		%
	Output jitter			30		ns RMS
IDYNXTAL	Operating current	32 KHz		10		μA
ISTBXTAL	Standby current of crystal oscillator			2		μA
PSRRXTAL	Power supply noise tolerance			0.5		Vp-p
VIHXTAL	Input logic level High		90% of VCC			V
VILXTAL	Input logic level Low				10% of VCC	V
	Startup time	Test load used: 20 pF		2.5		S
		Test load used: 30 pF		3.7	13	s

Programmable Analog Specifications

Current Monitor

Unless otherwise noted, current monitor performance is specified at 25°C with nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 91 Ksps, after digital compensation. All results are based on averaging over 16 samples.

 Table 2-93 • Current Monitor Performance Specification

Specification	Test Conditions	Min.	Typical	Max.	Units
Input voltage range (for driving ADC over full range)		0 – 48	0 – 50	1 – 51	mV
Analog gain	From the differential voltage across the input pads to the ADC input		50		V/V
Input referred offset voltage	Input referred offset voltage	0	0.1	0.5	mV
	-40°C to +100°C	0	0.1	0.5	mV
Gain error	Slope of BFSL vs. 50 V/V		±0.1	±0.5	% nom.
	-40°C to +100°C			±0.5	% nom.
Overall Accuracy	Peak error from ideal transfer function, 25°C		±(0.1 + 0.25%)	±(0.4 + 1.5%)	mV plus % reading
Input referred noise	0 VDC input (no output averaging)	0.3	0.4	0.5	mVrms
Common-mode rejection ratio	0 V to 12 VDC common-mode voltage	-86	-87		dB
Analog settling time	To 0.1% of final value (with ADC load)				
	From CM_STB (High)	5			μs
	From ADC_START (High)	5		200	μs
Input capacitance			8		pF
Input biased current	CM[n] or TM[n] pad, 40°C to +100°C over maximum input voltage range (plus is into pad)				
	Strobe = 0; IBIAS on CM[n]		0		μA
	Strobe = 1; IBIAS on CM[n]		1		μA
	Strobe = 0; IBIAS on TM[n]		2		μA
	Strobe = 1; IBIAS on TM[n]		1		μA
Power supply rejection ratio	DC (0 – 10 KHz)	41	42		dB
	VCC33A		150		μA
monitor power supply current requirements (per current monitor	VCC33AP		140		μA
instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: Under no condition should the TM pad ever be greater than 10 mV above the CM pad. This restriction is applicable only if current monitor is used.

SmartFusion Ecosystem

The Microsemi SoC Products Group has a long history of supplying comprehensive FPGA development tools and recognizes the benefit of partnering with industry leaders to deliver the optimum usability and productivity to customers. Taking the same approach with processor development, Microsemi has partnered with key industry leaders in the microcontroller space to provide the robust SmartFusion ecosystem.

Microsemi is partnering with Keil and IAR to provide Software IDE support to SmartFusion system designers. The result is a robust solution that can be easily adopted by developers who are already doing embedded design. The learning path is straightforward for FPGA designers.

Support for the SoC Products Group device and ecosystem resources is represented in Figure 3-3.

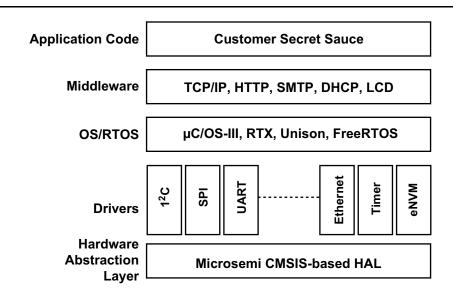


Figure 3-3 • SmartFusion Ecosystem

Figure 3-3 shows the SmartFusion stack with examples of drivers, RTOS, and middleware from Microsemi and partners. By leveraging the SmartFusion stack, designers can decide at which level to add their own customization to their design, thus speeding time to market and reducing overhead in the design.

ARM

Because an ARM processor was chosen for SmartFusion cSoCs, Microsemi's customers can benefit from the extensive ARM ecosystem. By building on Microsemi supplied hardware abstraction layer (HAL) and drivers, third party vendors can easily port RTOS and middleware for the SmartFusion cSoC.

- ARM Cortex-M Series Processors
- ARM Cortex-M3 Processor Resource
- ARM Cortex-M3 Technical Reference Manual
- ARM Cortex-M3 Processor Software Development for ARM7TDMI Processor Programmers
 White Paper

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

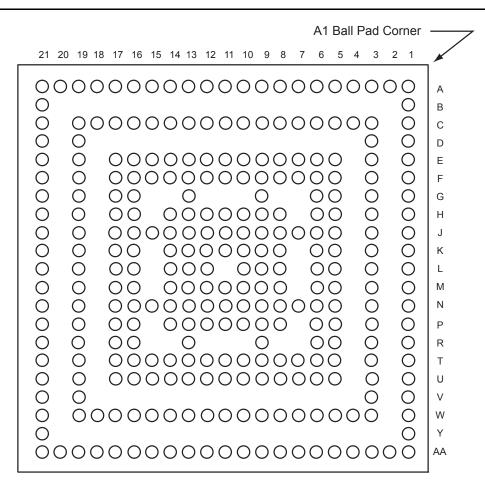
Name	Туре	Polarity/ Bus Size	Description
SPI_1_DO	Out	1	Data output. Second SPI.
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).
SPI_1_SS	Out	1	Slave select (chip select). Second SPI.
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).
Universal Asynch	hronous Re	eceiver/Trans	mitter (UART) Peripherals
UART_0_RXD	In	1	Receive data. First UART.
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).
UART_0_TXD	Out	1	Transmit data. First UART.
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).
UART_1_RXD	In	1	Receive data. Second UART.
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).
UART_1_TXD	Out	1	Transmit data. Second UART.
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).
Ethernet MAC			
MAC_CLK	In	Rise	Receive clock. 50 MHz \pm 50 ppm clock source received from RMII PHY.
			Can be left floating when unused.
MAC_CRSDV	In	High	Carrier sense/receive data valid for RMII PHY
			Can also be used as an FPGA User IO (see "IO" on page 5-6).
MAC_MDC	Out	Rise	RMII management clock
			Can also be used as an FPGA User IO (see "IO" on page 5-6).
MAC_MDIO	In/Out	1	RMII management data input/output
			Can also be used as an FPGA User IO (see "IO" on page 5-6).
MAC_RXDx	In	2	Ethernet MAC receive data. Data recovered and decoded by PHY. The RXD[0] signal is the least significant bit.
			Can also be used as an FPGA User I/O (see "IO" on page 5-6).
MAC_RXER	In	HIGH	Ethernet MAC receive error. If MACRX_ER is asserted during reception, the frame is received and status of the frame is updated with MACRX_ER.
			Can also be used as an FPGA user I/O (see "IO" on page 5-6).
MAC_TXDx	Out	2	Ethernet MAC transmit data. The TXD[0] signal is the least significant bit.
			Can also be used as an FPGA user I/O (see "IO" on page 5-6).
MAC_TXEN	Out	HIGH	Ethernet MAC transmit enable. When asserted, indicates valid data for the PHY on the TXD port.
			Can also be used as an FPGA User I/O (see "IO" on page 5-6).

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
SDD2	ADC2_CH15								SDD2_OUT
TM0	ADC0_CH4	Yes		CM0_L	TM0_IO	CMP0_N			
TM1	ADC0_CH8	Yes		CM1_L	TM1_IO	CMP2_N			
TM2	ADC1_CH4	Yes		CM2_L	TM2_IO	CMP4_N			
TM3	ADC1_CH8	Yes		CM3_L	TM3_IO	CMP6_N			
TM4	ADC2_CH4	Yes		CM4_L	TM4_IO	CMP8_N			

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.


2. CMx_H/L: Current monitor channel x, high/low side.

- 3. TMx_IO: Temperature monitor channel x.
- 4. CMPx_P/N: Comparator channel x, positive/negative input.
- 5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

Note: Bottom view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Din	Pin CS288								
No.	A2F060 Function	A2F200 Function	A2F500 Function						
F12	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO14NDB0V0						
F13	GND	GND	GND						
F14	GCB1/IO19PPB0V0	GCC1/IO26PPB1V0	GCC1/IO35PPB1V0						
F15	GNDQ	GNDQ	GNDQ						
F16	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1						
F17	GCB0/IO19NPB0V0	IO24NDB1V0	IO33NDB1V0						
F19	IO23NDB1V0	GDB1/IO30PDB1V0	GDB1/IO39PDB1V0						
F21	GCA2/IO21PDB1V0	GDB0/IO30NDB1V0	GDB0/IO39NDB1V0						
G1	IO41NDB5V0	IO67NDB5V0	IO84NDB5V0						
G3	GFC2/IO41PDB5V0	GFC2/IO67PDB5V0	GFC2/IO84PDB5V0						
G5	NC	GFB1/IO65PDB5V0	GFB1/IO82PDB5V0						
G6	EMC_DB[10]/IO43NDB5V0	EMC_DB[10]/IO69NDB5V0	EMC_DB[10]/IO86NDB5V0						
G9	NC	GFC0/IO66NPB5V0	GFC0/IO83NPB5V0						
G13	GCA0/IO20NPB0V0	GCC0/IO26NPB1V0	GCC0/IO35NPB1V0						
G16	NC	GDA0/IO31NDB1V0	GDA0/IO40NDB1V0						
G17	IO22NPB1V0	GDC1/IO29PDB1V0	GDC1/IO38PDB1V0						
G19	GCC2/IO23PDB1V0	GDC0/IO29NDB1V0	GDC0/IO38NDB1V0						
G21	GND	GND	GND						
H1	EMC_DB[9]/IO40PPB5V0	EMC_DB[9]/GEC1/IO63PPB5V0	EMC_DB[9]/GEC1/IO80PPB5V0						
H3	GND	GND	GND						
H5	NC	GFB0/IO65NDB5V0	GFB0/IO82NDB5V0						
H6	EMC_DB[7]/IO39PDB5V0	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0						
H8	GND	GND	GND						
H9	VCC	VCC	VCC						
H10	GND	GND	GND						
H11	VCC	VCC	VCC						
H12	GND	GND	GND						
H13	VCC	VCC	VCC						
H14	GND	GND	GND						
H16	NC	GDA1/IO31PDB1V0	GDA1/IO40PDB1V0						
H17	NC	GDC2/IO32PPB1V0	GDC2/IO41PPB1V0						

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin		CS288							
No.	A2F060 Function	A2F200 Function	A2F500 Function						
W14	ADC5	CM2	CM2						
W15	NC	ABPS5	ABPS5						
W16	GNDAQ	GNDAQ	GNDAQ						
W17	NC	VCC33SDD1	VCC33SDD1						
W18	NC	GNDSDD1	GNDSDD1						
W19	PTBASE	PTBASE	PTBASE						
W21	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17						
Y1	VCC33AP	VCC33AP	VCC33AP						
Y21	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16						

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	PQ208	
Pin Number	A2F200	A2F500
63	TM1	TM1
64	CM1	CM1
65	ABPS3	ABPS3
66	ABPS2	ABPS2
67	ADC0	ADC0
68	ADC1	ADC1
69	ADC2	ADC2
70	ADC3	ADC3
71	VAREF0	VAREF0
72	GND33ADC0	GND33ADC0
73	VCC33ADC0	VCC33ADC0
74	GND33ADC0	GND33ADC0
75	VCC15ADC0	VCC15ADC0
76	GND15ADC0	GND15ADC0
77	GND15ADC1	GND15ADC1
78	VCC15ADC1	VCC15ADC1
79	GND33ADC1	GND33ADC1
80	VCC33ADC1	VCC33ADC1
81	GND33ADC1	GND33ADC1
82	VAREF1	VAREF1
83	ADC7	ADC7
84	ADC6	ADC6
85	ADC5	ADC5
86	ADC4	ADC4
87	ABPS6	ABPS6
88	ABPS7	ABPS7
89	CM3	СМЗ
90	TM3	TM3
91	GNDTM1	GNDTM1
92	TM2	TM2
93	CM2	CM2

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

	PQ208		
Pin Number	A2F200	A2F500	
94	ABPS5	ABPS5	
95	ABPS4	ABPS4	
96	GNDAQ	GNDAQ	
97	GNDA	GNDA	
98	NC	NC	
99	GNDVAREF	GNDVAREF	
100	VAREFOUT	VAREFOUT	
101	PU_N	PU_N	
102	VCC33A	VCC33A	
103	PTEM	PTEM	
104	PTBASE	PTBASE	
105	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	
106	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	
107	SPI_0_CLK/GPIO_18	SPI_0_CLK/GPIO_18	
108	SPI_0_SS/GPIO_19	SPI_0_SS/GPIO_19	
109	UART_0_RXD/GPIO_21	UART_0_RXD/GPIO_21	
110	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20	
111	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29	
112	UART_1_TXD/GPIO_28	UART_1_TXD/GPIO_28	
113	VCC	VCC	
114	VCCMSSIOB2	VCCMSSIOB2	
115	GND	GND	
116	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30	
117	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31	
118	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22	
119	I2C_0_SCL/GPIO_23	I2C_0_SCL/GPIO_23	
120	GNDENVM	GNDENVM	
121	VCCENVM	VCCENVM	
122	JTAGSEL	JTAGSEL	
123	ТСК	тск	
124	TDI	TDI	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

FG256

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

FG256 Pin A2F060 Function A2F200 Function No. A2F500 Function K12 UART 0 RXD/GPIO 21 UART 0 RXD/GPIO 21 UART 0 RXD/GPIO 21 K13 GND GND GND K14 UART 1 TXD/GPIO 28 UART 1 TXD/GPIO 28 UART 1 TXD/GPIO 28 K15 UART 1 RXD/GPIO 29 UART 1 RXD/GPIO 29 UART_1_RXD/GPIO_29 K16 UART_0_TXD/GPIO_20 UART_0_TXD/GPIO_20 UART_0_TXD/GPIO_20 L1 GND GND GND L2 GPIO 2/IO31RSB4V0 MAC TXEN/IO52RSB4V0 MAC TXEN/IO61RSB4V0 L3 GPIO 3/IO30RSB4V0 MAC CRSDV/IO51RSB4V0 MAC CRSDV/IO60RSB4V0 L4 GPIO 4/IO29RSB4V0 MAC RXER/IO50RSB4V0 MAC RXER/IO59RSB4V0 L5 GPIO 9/IO24RSB4V0 MAC CLK MAC CLK GND GND 16 GND L7 VCC VCC VCC GND GND GND L8 L9 VCC VCC VCC L10 GND GND GND L11 VCCMSSIOB2 VCCMSSIOB2 VCCMSSIOB2 L12 SPI 1 DO/GPIO 24 SPI 1 DO/GPIO 24 SPI_1_DO/GPIO_24 L13 SPI 1 SS/GPIO 27 SPI 1 SS/GPIO 27 SPI 1 SS/GPIO 27 L14 SPI 1 CLK/GPIO 26 SPI 1 CLK/GPIO 26 SPI 1 CLK/GPIO 26 L15 SPI_1_DI/GPIO_25 SPI_1_DI/GPIO_25 SPI_1_DI/GPIO_25 L16 GND GND GND M1 GPIO 5/IO28RSB4V0 MAC TXD[0]/IO56RSB4V0 MAC TXD[0]/IO65RSB4V0 M2 GPIO 6/IO27RSB4V0 MAC TXD[1]/IO55RSB4V0 MAC TXD[1]/IO64RSB4V0 MAC RXD[0]/IO54RSB4V0 GPIO 7/IO26RSB4V0 MAC RXD[0]/IO63RSB4V0 M3 M4 GND GND GND NC ADC3 ADC3 M5 M6 NC GND15ADC0 GND15ADC0 GND33ADC1 M7 GND33ADC0 GND33ADC1 M8 GND33ADC0 GND33ADC1 GND33ADC1 ADC7 M9 ADC4 ADC4 M10 **GNDTM0** GNDTM1 GNDTM1

Notes:

🔨 🤇 Microsemi

Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

	FG484	
Pin Number	A2F200 Function	A2F500 Function
W3	GND	GND
W4	MAC_CRSDV/IO51RSB4V0	MAC_CRSDV/IO60RSB4V0
W5	MAC_TXD[1]/IO55RSB4V0	MAC_TXD[1]/IO64RSB4V0
W6	NC	SDD2
W7	GNDA	GNDA
W8	ТМО	ТМО
W9	ABPS2	ABPS2
W10	GND33ADC0	GND33ADC0
W11	VCC15ADC1	VCC15ADC1
W12	ABPS6	ABPS6
W13	NC	CM4
W14	NC	ABPS9
W15	NC	VCC33ADC2
W16	GNDA	GNDA
W17	PU_N	PU_N
W18	GNDSDD1	GNDSDD1
W19	SPI_0_CLK/GPIO_18	SPI_0_CLK/GPIO_18
W20	GND	GND
W21	SPI_1_SS/GPIO_27	SPI_1_SS/GPIO_27
W22	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29
Y1	GPIO_3/IO44RSB4V0	GPIO_3/IO53RSB4V0
Y2	VCCMSSIOB4	VCCMSSIOB4
Y3	GPIO_15/IO34RSB4V0	GPIO_15/IO43RSB4V0
Y4	MAC_TXEN/IO52RSB4V0	MAC_TXEN/IO61RSB4V0
Y5	VCCMSSIOB4	VCCMSSIOB4
Y6	GNDSDD0	GNDSDD0
Y7	CM0	CM0
Y8	GNDTM0	GNDTM0
Y9	ADC0	ADC0
Y10	VCC15ADC0	VCC15ADC0
Y11	ABPS7	ABPS7
Y12	TM3	TM3
Y13	NC	ABPS8
Y14	NC	GND33ADC2

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Revision	Changes	Page
Revision 5 (continued)	Available values for the Std. speed were added to the timing tables from Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew to Table 2-92 • JTAG 1532 (SAR 29331).	2-31 to 2-76
	One or more values changed for the –1 speed in tables covering 3.3 V LVCMOS, 2.5 V LVCMOS, 1.8 V LVCMOS, 1.5 V LVCMOS, Combinatorial Cell Propagation Delays, and A2F200 Global Resources.	
	Table 2-80 • A2F500 Global Resource is new.	2-60
	Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$, VCC = 1.425 V was revised (SAR 27585).	2-76
	The programmable analog specifications tables were revised with updated information.	2-78 to 2-87
	Table 4-1 • Supported JTAG Programming Hardware was revised by adding a note to indicate "planned support" for several of the items in the table.	4-7
	The note on JTAGSEL in the "In-System Programming" section was revised to state that SoftConsole selects the appropriate TAP controller using the CTXSELECT JTAG command. When using SoftConsole, the state of JTAGSEL is a "don't care" (SAR 29261).	4-7
	The "CS288" and "FG256" pin tables for A2F060 are new, comparing the A2F060 function with the A2F200 function (SAR 29353).	5-24
	The "Handling When Unused" column was removed from the "FG256" pin table for A2F200 and A2F500 (SAR 29691).	5-42
(September 2010) column of its own with new values. VCCENVM was added to the table. Standby for VJTAG and VPP was changed from 0 V to N/A. "Disable" was changed to the eNVM column. The column for RCOSC was deleted.	Table 2-8 • Power Supplies Configuration was revised. VCCRCOSC was moved to a column of its own with new values. VCCENVM was added to the table. Standby mode for VJTAG and VPP was changed from 0 V to N/A. "Disable" was changed to "Off" in the eNVM column. The column for RCOSC was deleted.	2-10
	The "Power-Down and Sleep Mode Implementation" section was revised to include VCCROSC.	2-11
Revision 3 (September 2010)	The "I/Os and Operating Voltage" section was revised to list "single 3.3 V power supply with on-chip 1.5 V regulator" and "external 1.5 V is allowed" (SAR 27663).	I
	The CS288 package was added to the "Package I/Os: MSS + FPGA I/Os" table (SAR 27101), "Product Ordering Codes" table, and "Temperature Grade Offerings" table (SAR 27044). The number of direct analog inputs for the FG256 package in A2F060 was changed from 8 to 6.	III, VI, VI
	Two notes were added to the "SmartFusion cSoC Family Product Table" indicating limitations for features of the A2F500 device:	II
	Two PLLs are available in CS288 and FG484 (one PLL in FG256). [ADCs, DACs, SCBs, comparators, current monitors, and bipolar high voltage monitors are] Available on FG484 only. FG256 and CS288 packages offer the same programmable analog capabilities as A2F200.	
	Table cells were merged in rows containing the same values for easier reading (SAR 24748).	
	The security feature option was added to the "Product Ordering Codes" table.	VI

Datasheet Information

Revision	Changes	
	The A2F060 device was added to product information tables.	N/A
	The "Product Ordering Codes" table was updated to removed Std. speed and add speed grade 1. Pre-production was removed from the application ordering code category.	VI
	The "SmartFusion cSoC Block Diagram" was revised.	IV
	The "Datasheet Categories" section was updated, referencing the "SmartFusion cSoC Block Diagram" table, which is new.	1-4, IV
	The "VCCI" parameter was renamed to "VCCxxxxIOBx." "Advanced I/Os" were renamed to "FPGA I/Os."	N/A
	Generic pin names that represent multiple pins were standardized with a lower case x as a placeholder. For example, VAREFx designates VAREF0, VAREF1, and VAREF2. Modes were renamed as follows:	
	Operating mode was renamed to SoC mode.	
	32KHz Active mode was renamed to Standby mode.	
	Battery mode was renamed to Time Keeping mode.	
	Table entries have been filled with values as data has become available.	
	Table 2-1 • Absolute Maximum Ratings, Table 2-2 • Analog Maximum Ratings, and Table 2-3 • Recommended Operating Conditions ^{5,6} were revised extensively.	2-1 through 2-3
	Device names were updated in Table 2-6 • Package Thermal Resistance.	2-7
	Table 2-8 • Power Supplies Configuration was revised extensively.	2-10
	Table 2-11 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings was revised extensively.	2-11
	Removed "Example of Power Calculation."	N/A
	Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs was revised extensively.	2-12
	Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs was revised extensively.	2-13
	The "Power Calculation Methodology" section was revised.	2-14
	Table 2-83 • Electrical Characteristics of the RC Oscillator was revised extensively.	2-61
	Table 2-85 • Electrical Characteristics of the Low Power Oscillator was revised extensively.	2-62
	The parameter t _{RSTBQ} was changed to T _{C2CWRH} in Table 2-87 • RAM4K9.	2-69
	The 12-bit mode row for integral non-linearity was removed from Table 2-95 • ADC Specifications. The typical value for 10-bit mode was revised. The table note was punctuated correctly to make it clear.	2-81
	Figure 37-34 • Write Access after Write onto Same Address, Figure 37-34 • Read Access after Write onto Same Address, and Figure 37-34 • Write Access after Read onto Same Address were deleted.	N/A
	Table 2-99 • Voltage Regulator was revised extensively.	2-87
	The "Serial Peripheral Interface (SPI) Characteristics" section and "Inter-Integrated Circuit (I^2C) Characteristics" section are new.	2-89, 2-91