

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	256KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 200K Gates, 4608 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f200m3f-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

SmartFusion cSoC Family Product Table

		A2F060	I		A2F	200			A2F500		
FPGA Fabric	TQ144	CS288	FG256	PQ208	CS288	FG256	FG484	PQ208	CS288	FG256	FG484
System Gates		60,000	-		200	,000	-		500,000		
Tiles (D-flip-flops)		1,536			4,6	808			11,	520	
RAM Blocks (4,608 bits)		8			8	3			2	4	
		A2F060	1		A2F200			A2F500			
Microcontroller Subsystem (MSS)	TQ144	CS288	FG256	PQ208	CS288	FG256	FG484	PQ208	CS288	FG256	FG484
Flash (Kbytes)		128			25	56			5	12	
SRAM (Kbytes)		16			6	4			6	4	
Cortex-M3 processor with MPU		Yes			Ye	es			Ye	es	
10/100 Ethernet MAC		No			Ye	es			Ye	es	
External Memory Controller (EMC)	-	26-/ ² addres	16-bit ss/data	26-t	oit addres	s,16-bit	data	– 26-/16-bit address/			ess/data
DMA		8 Ch			8 (Ch		8 Ch			
l ² C		2		2		2					
SPI	1		2	1		2		1 2			
16550 UART		2			4	2				2	
32-Bit Timer		2			2	2				2	
PLL		1				1		1	2	1	2
32 KHz Low Power Oscillator		1				1				1	
100 MHz On-Chip RC Oscillator		1				1				1	
Main Oscillator (32 KHz to 20 MHz)		1				1				1	
		A2F060			A2F	200			A2F	500	
Programmable Analog	TQ144	CS288	FG256	PQ208	CS288	FG256	FG484	PQ208	CS288	FG256	FG484
ADCs (8-/10-/12-bit SAR)		1			4	2			2		3
DACs (8-/16-/24-bit sigma-delta)		1			2	2			2		3
Signal Conditioning Blocks (SCBs)		1			4	4		4		5	
Comparator*		2			8	3			8		10
Current Monitors*		1			4	4			4		5
Temperature Monitors*		1			2	4			4		5
Bipolar High Voltage Monitors*		2			8	3			8		10

Note: *These functions share I/O pins and may not all be available at the same time. See the "Analog Front-End Overview" section in the http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130925 for details.

Package I/Os: MSS + FPGA I/Os

Device		A2F060 ¹		A2F200 ²				A2F500 ²			
Package	TQ144	CS288	FG256	PQ208	CS288	FG256	FG484	PQ208	CS288	FG256	FG484
Direct Analog Inputs	11	11	11	8	8	8	8	8	8	8	12
Shared Analog Inputs	4	4	4	16	16	16	16	16	16	16	20
Total Analog Inputs	15	15	15	24	24	24	24	24	24	24	32
Analog Outputs	1	1	1	1	2	2	2	1	2	2	3
MSS I/Os ^{3,4}	21 ⁵	28 ⁵	26 ⁵	22	31	25	41	22	31	25	41
FPGA I/Os	33 ⁶	68	66	66	78	66	94	66 ⁶	78	66	128
Total I/Os	70	112	108	113	135	117	161	113	135	117	204

Notes:

1. There are no LVTTL capable direct inputs available on A2F060 devices.

2. These pins are shared between direct analog inputs to the ADCs and voltage/current/temperature monitors.

3. 16 MSS I/Os are multiplexed and can be used as FPGA I/Os, if not needed for MSS. These I/Os support Schmitt triggers and support only LVTTL and LVCMOS (1.5 / 1.8 / 2.5, 3.3 V) standards.

4. 9 MSS I/Os are primarily for 10/100 Ethernet MAC and are also multiplexed and can be used as FPGA I/Os if Ethernet MAC is not used in a design. These I/Os support Schmitt triggers and support only LVTTL and LVCMOS (1.5 / 1.8 / 2.5, 3.3 V standards.

5. 10/100 Ethernet MAC is not available on A2F060.

6. EMC is not available on the A2F500 PQ208 and A2F060 TQ144 package.

Table 1 • SmartFusion cSoC Package Sizes Dimensions

Package	TQ144	PQ208	CS288	FG256	FG484
Length × Width (mm\mm)	20 × 20	28 × 28	11 × 11	17 × 17	23 × 23
Nominal Area (mm ²)	400	784	121	289	529
Pitch (mm)	0.5	0.5	0.5	1.0	1.0
Height (mm)	1.40	3.40	1.05	1.60	2.23

SmartFusion cSoC Device Status

Device	Status
A2F060	Preliminary: CS288, FG256, TQ144
A2F200	Production: CS288, FG256, FG484, PQ208
A2F500	Production: CS288, FG256, FG484, PQ208

Table of Contents

Datasheet Categories	6-14
Microsemi SoC Products Group Safety Critical, Life Support, and High-Reliability Applications Policy	6-14

This enables reduction or complete removal of expensive voltage monitor and brownout detection devices from the PCB design. Flash-based SmartFusion cSoCs simplify total system design and reduce cost and design risk, while increasing system reliability.

Immunity to Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O configuration behavior in an unpredictable way.

Another source of radiation-induced firm errors is alpha particles. For alpha radiation to cause a soft or firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in the package molding compound or in the die itself. While low-alpha molding compounds are being used increasingly, this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not occur in SmartFusion cSoCs. Once it is programmed, the flash cell configuration element of SmartFusion cSoCs cannot be altered by high energy neutrons and is therefore immune to errors from them. Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate driver in software v9.0.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
- 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-1 on page 1-4).
- Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

SmartFusion DC and Switching Characteristics

Power Consumption of Various Internal Resources

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs

		Power Supp	ly	Device			
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F500	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	3.39	3.40	5.05	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	1.14	1.83	2.50	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V	1.15	1.15	1.15	µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.12	0.12	0.12	µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.07	0.07	0.07	µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz
PAC8	Average contribution of a routing net	VCC	1.5 V	1.04	0.79	0.79	µW/MHz
PAC9	Contribution of an I/O input pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	ole 2-10 a	age 2-11		
PAC10	Contribution of an I/O output pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	e Table 2-12 and Table 2-13 on p			
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25.00		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30.00		
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.60		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < 33MHz)	VCC	1.5 V		358.00		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		12.88		mW
PAC17	2nd contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		4.80		µW/MHz
PAC18	Main Crystal Oscillator contribution	VCCMAINXTAL	3.3 V		1.98		mW
PAC19a	RC Oscillator contribution	VCCRCOSC	3.3 V		3.30		mW
PAC19b	RC Oscillator contribution	VCC	1.5 V		3.00		mW
PAC20a	Analog Block Dynamic Power Contribution of the ADC	VCC33ADCx	3.3 V		8.25		mW
PAC20b	Analog Block Dynamic Power Contribution of the ADC	VCC15ADCx	1.5 V		3.00		mW
PAC21	Low Power Crystal Oscillator contribution	VCCLPXTAL	3.3 V		33.00		μW
PAC22	MSS Dynamic Power Contribution – Running Drysthone at 100MHz ¹	VCC	1.5 V		67.50		mW
PAC23	Temperature Monitor Power Contribution	See Table 2-94 on page 2-79	_		1.23		mW

User I/O Characteristics

Timing Model

Figure 2-2 • Timing Model Operating Conditions: –1 Speed, Commercial Temperature Range (T_J = 85°C), Worst Case VCC = 1.425 V

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-69 • Parameter Definition and Measuring Nodes

* See Figure 2-14 on page 2-44 for more information.

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Input Register

Timing Characteristics

Table 2-71 • Input Data Register Propagation DelaysWorst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.29	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.27	0.32	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.38	0.45	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.46	0.55	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.46	0.55	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.23	0.27	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.23	0.27	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.22	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.22	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.36	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.32	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Programmable Analog Specifications

Current Monitor

Unless otherwise noted, current monitor performance is specified at 25°C with nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 91 Ksps, after digital compensation. All results are based on averaging over 16 samples.

 Table 2-93 • Current Monitor Performance Specification

Specification	Test Conditions	Min.	Typical	Max.	Units
Input voltage range (for driving ADC over full range)		0 – 48	0 – 50	1 – 51	mV
Analog gain	From the differential voltage across the input pads to the ADC input		50		V/V
Input referred offset voltage	Input referred offset voltage	0	0.1	0.5	mV
	-40°C to +100°C	0	0.1	0.5	mV
Gain error	Slope of BFSL vs. 50 V/V		±0.1	±0.5	% nom.
	-40°C to +100°C			±0.5	% nom.
Overall Accuracy	Peak error from ideal transfer function, 25°C		±(0.1 + 0.25%)	±(0.4 + 1.5%)	mV plus % reading
Input referred noise	0 VDC input (no output averaging)	0.3	0.4	0.5	mVrms
Common-mode rejection ratio	0 V to 12 VDC common-mode voltage	-86	-87		dB
Analog settling time	To 0.1% of final value (with ADC load)				
	From CM_STB (High)	5			μs
	From ADC_START (High)	5		200	μs
Input capacitance			8		pF
Input biased current	CM[n] or TM[n] pad, -40°C to +100°C over maximum input voltage range (plus is into pad)				
	Strobe = 0; IBIAS on CM[n]		0		μA
	Strobe = 1; IBIAS on CM[n]		1		μA
	Strobe = 0; IBIAS on TM[n]		2		μA
	Strobe = 1; IBIAS on TM[n]		1		μA
Power supply rejection ratio	DC (0 – 10 KHz)	41	42		dB
Incremental operational current	VCC33A		150		μA
monitor power supply current requirements (per current monitor	VCC33AP		140		μA
instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: Under no condition should the TM pad ever be greater than 10 mV above the CM pad. This restriction is applicable only if current monitor is used.

static Microsemi.

SmartFusion DC and Switching Characteristics

Comparator

Unless otherwise specified, performance is specified at 25°C with nominal power supply voltages.

Table 2-97 • Compara	or Performance Specifications
----------------------	-------------------------------

Specification	Test Condition	IS	Min.	Тур.	Max.	Units
Input voltage range	Minimum			0		V
	Maximum			2.56		V
Input offset voltage	HYS[1:0] = 00	HYS[1:0] = 00				mV
	(no hysteresis)					
Input bias current	Comparator 1,	Comparator 1, 3, 5, 7, 9 (measured at 2.56 V)				nA
	Comparator 0,	Comparator 0, 2, 4, 6, 8 (measured at 2.56 V)				nA
Input resistance		10			MΩ	
Power supply rejection ratio	DC (0 – 10 KH:	z)	50	60		dB
Propagation delay	100 mV overdr	ve				
	HYS[1:0] = 00					
	(no hysteresis)			15	18	ns
	100 mV overdrive					
	HYS[1:0] = 10					
	(with hysteresis)			25	30	ns
Hysteresis	HYS[1:0] = 00	Typical (25°C)	0	0	±5	mV
(± refers to rising and falling		Across all corners (-40°C to +100°C)	0		±5	mV
(intestiola sinits, respectively)	HYS[1:0] = 01	Typical (25°C)	±3	± 16	±30	mV
		Across all corners (–40°C to +100°C)	0		±36	mV
	HYS[1:0] = 10	Typical (25°C)	±19	± 31	±48	mV
		Across all corners (-40°C to +100°C)	±12		±54	mV
	HYS[1:0] = 11	Typical (25°C)	±80	± 105	±190	mV
		Across all corners (-40°C to +100°C)	±80		±194	mV
Comparator current	VCC33A = 3.3 V (operational mode); COMP_EN = 1					<u></u>
requirements (per comparator)	VCC33A			150	165	μA
u /	VCC33AP			140	165	μA
	VCC15A			1	3	μA

The JTAGSEL pin selects the FPGA TAP controller or the Cortex-M3 debug logic. When JTAGSEL is asserted, the FPGA TAP controller is selected and the TRSTB input into the Cortex-M3 is held in a reset state (logic 0), as depicted in Figure 4-1. Users should tie the JTAGSEL pin high externally.

Microsemi's free Eclipse-based IDE, SoftConsole, has the ability to control the JTAGSEL pin directly with the FlashPro4 programmer. Manual jumpers are provided on the evaluation and development kits to allow manual selection of this function for the J-Link and ULINK debuggers.

Note: Standard ARM JTAG connectors do not have access to the JTAGSEL pin. SoftConsole automatically selects the appropriate TAP controller using the CTXSELECT JTAG command. When using SoftConsole, the state of JTAGSEL is a "don't care."

Figure 4-1 • TRSTB Logic

In-Application Programming

In-application programming refers to the ability to reprogram the various flash areas under direct supervision of the Cortex-M3.

Reprogramming the FPGA Fabric Using the Cortex-M3

In this mode, the Cortex-M3 is executing the programming algorithm on-chip. The IAP driver can be incorporated into the design project and executed from eNVM or eSRAM. The SoC Products Group provides working example projects for SoftConsole, IAR, and Keil development environments. These can be downloaded via the SoC Products Group Firmware Catalog. The new bitstream to be programmed into the FPGA can reside on the user's printed circuit board (PCB) in a separate SPI flash memory. Alternately, the user can modify the existing projects supplied by the SoC Products Group and, via custom handshaking software, throttle the download of the new image and program the FPGA a piece at a time in real time. A cost-effective and reliable approach would be to store the bitstream in an external SPI flash. Another option is storing a redundant bitstream image in an external SPI flash and loading the newest version into the FPGA only when receiving an IAP command. Since the FPGA I/Os are tristated or held at predefined or last known state during FPGA programming, the user must use MSS I/Os to interface to external memories. Since there are two SPI controllers in the MSS, the user can dedicate one to an SPI flash and the other to the particulars of an application. The amount of flash memory required to program the FPGA always exceeds the size of the eNVM block that is on-chip. The external memory controller (EMC) cannot be used as an interface to a memory device for storage of a bitstream because its I/O pads are FPGA I/Os; hence they are tristated when the FPGA is in a programming state.

The MSS resets itself after IAP of the FPGA fabric. This reset is internally asserted on MSS_RESETN by the power supply monitor (PSM) and reset controller of the MSS.

Pin Descriptions

Name	Туре	Description
VCC15A	Supply	Clean analog 1.5 V supply to the analog circuitry. Always power this pin.
VCC15ADC0	Supply	Analog 1.5 V supply to the first ADC. Always power this pin.
VCC15ADC1	Supply	Analog 1.5 V supply to the second ADC. Always power this pin.
VCC15ADC2	Supply	Analog 1.5 V supply to the third ADC. Always power this pin.
VCC33A	Supply	Clean 3.3 V analog supply to the analog circuitry. VCC33A is also used to feed the 1.5 V voltage regulator for designs that do not provide an external supply to VCC. Refer to the Voltage Regulator (VR), Power Supply Monitor (PSM), and Power Modes section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> for more information.
VCC33ADC0	Supply	Analog 3.3 V supply to the first ADC. If unused, Microsemi recommends connecting this pin to a 3.3 V supply. ¹
VCC33ADC1	Supply	Analog 3.3 V supply to the second ADC. If unused, Microsemi recommends connecting this pin to a 3.3 V supply. ¹
VCC33ADC2	Supply	Analog 3.3 V supply to the third ADC. If unused, Microsemi recommends connecting this pin to a 3.3 V supply. ¹
VCC33AP	Supply	Analog clean 3.3 V supply to the charge pump. To avoid high current draw, VCC33AP should be powered up simultaneously with or after VCC33A. Can be pulled down if unused. ¹
VCC33N	Supply	-3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to GND. Analog charge pump capacitors are not needed if none of the analog SCB features are used and none of the SDDs are used. In that case it should be left unconnected.
VCC33SDD0	Supply	Analog 3.3 V supply to the first sigma-delta DAC
VCC33SDD1	Supply	Common analog 3.3 V supply to the second and third sigma-delta DACs
VCCENVM	Supply	Digital 1.5 V power supply to the embedded nonvolatile memory blocks. To avoid high current draw, VCC should be powered up before or simultaneously with VCCENVM.
VCCESRAM	Supply	Digital 1.5 V power supply to the embedded SRAM blocks. Available only on the 208PQFP package. It should be connected to VCC (in other packages, it is internally connected to VCC).
VCCFPGAIOB0	Supply	Digital supply to the FPGA fabric I/O bank 0 (north FPGA I/O bank) for the output buffers and I/O logic.
		Each bank can have a separate VCCFPGAIO connection. All I/Os in a bank will run off the same VCCFPGAIO supply. VCCFPGAIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCFPGAIO pins tied to GND.
VCCFPGAIOB1	Supply	Digital supply to the FPGA fabric I/O bank 1 (east FPGA I/O bank) for the output buffers and I/O logic.
		Each bank can have a separate VCCFPGAIO connection. All I/Os in a bank will run off the same VCCFPGAIO supply. VCCFPGAIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCFPGAIO pins tied to GND.

Notes:

1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33ADCx, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL.

2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.

3. For more details on VCCPLLx capacitor recommendations, refer to the application note AC359, SmartFusion cSoC Board Design Guidelines, the "PLL Power Supply Decoupling Scheme" section.

User-Defined Supply Pins

Name	Туре	Polarity/ Bus Size	Description
VAREF0	Input	1	Analog reference voltage for first ADC.
			The SmartFusion cSoC can be configured to generate a 2.56 V internal reference that can be used by the ADC. While using the internal reference, the reference voltage is output on the VAREFOUT pin for use as a system reference. If a different reference voltage is required, it can be supplied by an external source and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When VAREF0 is internally generated, a bypass capacitor must be connected from this pin to ground. The value of the bypass capacitor should be between 3.3 μ F and 22 μ F, which is based on the needs of the individual designs. The choice of the capacitor value has an impact on the settling time it takes the VAREF0 signal to reach the required specification of 2.56 V to initiate valid conversions by the ADC. If the lower capacitor value is chosen, the settling time required for VAREF0 to achieve 2.56 V will be shorter than when selecting the larger capacitor value. The above range of capacitor values supports the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor. Designers choosing to use an external VAREF0 pin before initiating conversions by the ADC. To use the internal voltage for more information. The SoC Products Group recommends customers use 10 μ F as the value of the bypass capacitor. Designers choosing to use an external VAREF0 pin before initiating conversions by the ADC. To use the internal voltage for enerce, the VAREF0UT pin must be connected to the appropriate ADC VAREF1 only, if ADC0 alone is used. VAREFOUT can be connected to VAREF2 only, if ADC2 alone is used. VAREFOUT can be connected to VAREF2 only, if ADC2 alone is used. VAREFOUT can be connected to VAREF1 and VAREF2 together, if ADC0, ADC1, and ADC2 all are used.
VAREF1	Input	1	Analog reference voltage for second ADC See "VAREF0" above for more information.
VAREF2	Input	1	Analog reference voltage for third ADC
			See "VAREF0" above for more.
VAREFOUT	Out	1	Internal 2.56 V voltage reference output. Can be used to provide the two ADCs with a unique voltage reference externally by connecting VAREFOUT to both VAREF0 and VAREF1. To use the internal voltage reference, you must connect the VAREFOUT pin to the appropriate ADC VAREFx input—either the VAREF0 or VAREF1 pin—on the PCB.

star i Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin		CS288	
No.	A2F060 Function	A2F200 Function	A2F500 Function
K17	GNDLPXTAL	GNDLPXTAL	GNDLPXTAL
K19	GNDMAINXTAL	GNDMAINXTAL	GNDMAINXTAL
K21	MAINXIN	MAINXIN	MAINXIN
L1	GNDRCOSC	GNDRCOSC	GNDRCOSC
L3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
L5	EMC_DB[2]/IO37NPB5V0	EMC_DB[2]/IO60NPB5V0	EMC_DB[2]/IO77NPB5V0
L6	NC	GNDQ	GNDQ
L8	VCC	VCC	VCC
L9	GND	GND	GND
L10	VCC	VCC	VCC
L12	VCC	VCC	VCC
L13	GND	GND	GND
L14	VCC	VCC	VCC
L16	VCCLPXTAL	VCCLPXTAL	VCCLPXTAL
L17	VDDBAT	VDDBAT	VDDBAT
L19	LPXIN	LPXIN	LPXIN
L21	MAINXOUT	MAINXOUT	MAINXOUT
M1	VCCRCOSC	VCCRCOSC	VCCRCOSC
M3	MSS_RESET_N	MSS_RESET_N	MSS_RESET_N
M5	GPIO_5/IO28RSB4V0	GPIO_5/IO42RSB4V0	GPIO_5/IO51RSB4V0
M6	GND	GND	GND
M8	GND	GND	GND
M9	VCC	VCC	VCC
M10	GND	GND	GND
M11	VCC	VCC	VCC
M12	GND	GND	GND
M13	VCC	VCC	VCC
M14	GND	GND	GND
M16	TMS	TMS	TMS
M17	VJTAG	VJTAG	VJTAG
M19	TDO	TDO	TDO

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

SmartFusion Customizable System-on-Chip (cSoC)

Pin		FG256	
No.	A2F060 Function	A2F200 Function	A2F500 Function
D15	GCA1/IO20PDB0V0	IO24NDB1V0	IO33NDB1V0
D16	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1
E1	EMC_DB[13]/IO44PDB5V0	EMC_DB[13]/GAC2/IO70PDB5V0	EMC_DB[13]/GAC2/IO87PDB5V0
E2	EMC_DB[12]/IO44NDB5V0	EMC_DB[12]/IO70NDB5V0	EMC_DB[12]/IO87NDB5V0
E3	GFA2/IO42PDB5V0	GFA2/IO68PDB5V0	GFA2/IO85PDB5V0
E4	EMC_DB[10]/IO43NPB5V0	EMC_DB[10]/IO69NPB5V0	EMC_DB[10]/IO86NPB5V0
E5	GNDQ	GNDQ	GNDQ
E6	GND	GND	GND
E7	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0
E8	GND	GND	GND
E9	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0
E10	GND	GND	GND
E11	VCCFPGAIOB0	VCCFPGAIOB0	VCCFPGAIOB0
E12	GCB2/IO22PDB1V0	GCA1/IO28PDB1V0	GCA1/IO36PDB1V0 *
E13	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1
E14	GCA2/IO21PDB1V0	GCB1/IO27PDB1V0	GCB1/IO34PDB1V0
E15	GCC2/IO23PDB1V0	GDC1/IO29PDB1V0	GDC1/IO38PDB1V0
E16	IO23NDB1V0	GDC0/IO29NDB1V0	GDC0/IO38NDB1V0
F1	EMC_DB[9]/IO40PDB5V0	EMC_DB[9]/GEC1/IO63PDB5V0	EMC_DB[9]/GEC1/IO80PDB5V0
F2	GND	GND	GND
F3	GFB2/IO42NDB5V0	GFB2/IO68NDB5V0	GFB2/IO85NDB5V0
F4	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
F5	EMC_DB[11]/IO43PPB5V0	EMC_DB[11]/IO69PPB5V0	EMC_DB[11]/IO86PPB5V0
F6	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
F7	GND	GND	GND
F8	VCC	VCC	VCC
F9	GND	GND	GND
F10	VCC	VCC	VCC
F11	GND	GND	GND
F12	IO22NDB1V0	GCA0/IO28NDB1V0	GCA0/IO36NDB1V0 *
F13	NC	GNDQ	GNDQ
Notes			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Pin Descriptions

🔨 Microsemi

Pin		FG256	
No.	A2F060 Function	A2F200 Function	A2F500 Function
F14	IO21NDB1V0	GCB0/IO27NDB1V0	GCB0/IO34NDB1V0
F15	GND	GND	GND
F16	VCCENVM	VCCENVM	VCCENVM
G1	EMC_DB[8]/IO40NDB5V0	EMC_DB[8]/GEC0/IO63NDB5V0	EMC_DB[8]/GEC0/IO80NDB5V0
G2	EMC_DB[7]/IO39PDB5V0	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0
G3	EMC_DB[6]/IO39NDB5V0	EMC_DB[6]/GEB0/IO62NDB5V0	EMC_DB[6]/GEB0/IO79NDB5V0
G4	GFC2/IO41PDB5V0	GFC2/IO67PDB5V0	GFC2/IO84PDB5V0
G5	IO41NDB5V0	IO67NDB5V0	IO84NDB5V0
G6	GND	GND	GND
G7	VCC	VCC	VCC
G8	GND	GND	GND
G9	VCC	VCC	VCC
G10	GND	GND	GND
G11	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1
G12	VPP	VPP	VPP
G13	TRSTB	TRSTB	TRSTB
G14	TMS	TMS	TMS
G15	ТСК	ТСК	ТСК
G16	GNDENVM	GNDENVM	GNDENVM
H1	GND	GND	GND
H2	EMC_DB[5]/IO38PPB5V0	EMC_DB[5]/GEA1/IO61PPB5V0	EMC_DB[5]/GEA1/IO78PPB5V0
H3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
H4	EMC_DB[1]/IO36PDB5V0	EMC_DB[1]/GEB2/IO59PDB5V0	EMC_DB[1]/GEB2/IO76PDB5V0
H5	EMC_DB[0]/IO36NDB5V0	EMC_DB[0]/GEA2/IO59NDB5V0	EMC_DB[0]/GEA2/IO76NDB5V0
H6	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5
H7	GND	GND	GND
H8	VCC	VCC	VCC
H9	GND	GND	GND
H10	VCC	VCC	VCC
H11	GND	GND	GND
H12	VJTAG	VJTAG	VJTAG

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

FG256 Pin A2F060 Function A2F200 Function No. A2F500 Function K12 UART 0 RXD/GPIO 21 UART 0 RXD/GPIO 21 UART 0 RXD/GPIO 21 K13 GND GND GND K14 UART 1 TXD/GPIO 28 UART 1 TXD/GPIO 28 UART 1 TXD/GPIO 28 K15 UART 1 RXD/GPIO 29 UART 1 RXD/GPIO 29 UART_1_RXD/GPIO_29 K16 UART_0_TXD/GPIO_20 UART_0_TXD/GPIO_20 UART_0_TXD/GPIO_20 L1 GND GND GND L2 GPIO 2/IO31RSB4V0 MAC TXEN/IO52RSB4V0 MAC TXEN/IO61RSB4V0 L3 GPIO 3/IO30RSB4V0 MAC CRSDV/IO51RSB4V0 MAC CRSDV/IO60RSB4V0 L4 GPIO 4/IO29RSB4V0 MAC RXER/IO50RSB4V0 MAC RXER/IO59RSB4V0 L5 GPIO 9/IO24RSB4V0 MAC CLK MAC CLK GND GND 16 GND L7 VCC VCC VCC GND GND GND L8 L9 VCC VCC VCC L10 GND GND GND L11 VCCMSSIOB2 VCCMSSIOB2 VCCMSSIOB2 L12 SPI 1 DO/GPIO 24 SPI 1 DO/GPIO 24 SPI_1_DO/GPIO_24 L13 SPI 1 SS/GPIO 27 SPI 1 SS/GPIO 27 SPI 1 SS/GPIO 27 L14 SPI 1 CLK/GPIO 26 SPI 1 CLK/GPIO 26 SPI 1 CLK/GPIO 26 L15 SPI_1_DI/GPIO_25 SPI_1_DI/GPIO_25 SPI_1_DI/GPIO_25 L16 GND GND GND M1 GPIO 5/IO28RSB4V0 MAC TXD[0]/IO56RSB4V0 MAC TXD[0]/IO65RSB4V0 M2 GPIO 6/IO27RSB4V0 MAC TXD[1]/IO55RSB4V0 MAC TXD[1]/IO64RSB4V0 MAC RXD[0]/IO54RSB4V0 GPIO 7/IO26RSB4V0 MAC RXD[0]/IO63RSB4V0 M3 M4 GND GND GND NC ADC3 ADC3 M5 M6 NC GND15ADC0 GND15ADC0 GND33ADC1 M7 GND33ADC0 GND33ADC1 M8 GND33ADC0 GND33ADC1 GND33ADC1 M9 ADC7 ADC4 ADC4 M10 **GNDTM0** GNDTM1 GNDTM1

Notes:

🔨 🤇 Microsemi

Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🔨 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484	
Pin Number	A2F200 Function	A2F500 Function
Y15	NC	VCC15ADC2
Y16	VCCMAINXTAL	VCCMAINXTAL
Y17	SDD1	SDD1
Y18	PTEM	PTEM
Y19	VCC33A	VCC33A
Y20	SPI_0_SS/GPIO_19	SPI_0_SS/GPIO_19
Y21	VCCMSSIOB2	VCCMSSIOB2
Y22	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Datasheet Information

Revision	Changes	Page
Revision 3 (continued)	In Table 2-3 • Recommended Operating Conditions ^{5,6} , the VDDBAT recommended operating range was changed from "2.97 to 3.63" to "2.7 to 3.63" (SAR 25246). Recommended operating range was changed to "3.15 to 3.45" for the following voltages: VCC33A VCC33ADCx VCC33ADCx VCC33AP VCC33SDDx VCCMAINXTAL VCCLPXTAL Two notes were added to the table (SAR 27109): 1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33AP, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL.	2-3
	2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.	
	In Table 2-3 • Recommended Operating Conditions ^{5,6} , the description for VCCLPXTAL was corrected to change "32 Hz" to "32 KHz" (SAR 27110).	2-3
	The "Power Supply Sequencing Requirement" section is new (SAR 27178).	2-4
	Table 2-8 • Power Supplies Configuration was revised to change most on/off entries to voltages. Note 5 was added, stating that "on" means proper voltage is applied. The values of 6 μ A and 16 μ A were removed for IDC1 and IDC2 for 3.3 V. A note was added for IDC1 and IDC2: "Power mode and Sleep mode are consuming higher current than expected in the current version of silicon. These specifications will be updated when new version of the silicon is available" (SAR 27926).	2-10
	The "Power-Down and Sleep Mode Implementation" section is new (SAR 27178).	2-11
	A note was added to Table 2-86 • SmartFusion CCC/PLL Specification, pertaining to f_{out_CCC} , stating that "one of the CCC outputs (GLA0) is used as an MSS clock and is limited to 100 MHz (maximum) by software" (SAR 26388).	2-63
	Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$, VCC = 1.425 V was revised. Values were included for A2F200 and A2F500, for –1 and Std. speed grades. A note was added to define 6:1:1:1 and 5:1:1:1 (SAR 26166).	2-76
	The units were corrected (mV instead of V) for input referred offset voltage, GDEC[1:0] = 00 in Table 2-96 • ABPS Performance Specifications (SAR 25381).	2-82
	The test condition values for operating current (ICC33A, typical) were changed in Table 2-99 • Voltage Regulator (SAR 26465).	2-87
	Figure 2-45 • Typical Output Voltage was revised to add legends for the three curves, stating the load represented by each (SAR 25247).	2-88
	The "SmartFusion Programming" chapter was moved to this document from the SmartFusion Subsystem Microcontroller User's Guide (SAR 26542). The "Typical Programming and Erase Times" section was added to this chapter.	4-7
	Figure 4-1 • TRSTB Logic was revised to change 1.5 V to "VJTAG (1.5 V to 3.3 V nominal)" (SAR 24694).	4-8

Revision	Changes	Page
Revision 3 (continued)	Two notes were added to the "Supply Pins" table (SAR 27109):	
	 The following supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33AP, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL. The following a following should be connected together while following supplies and the second statement of the second stat	
	 The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx. 	
	The descriptions for the "VCC33N", "NCAP", and "PCAP" pins were revised to include information on what to do if analog SCB features and SDDs are not used (SAR 26744).	5-2, 5-9, 5-9
	Information was added to the "User Pins" table regarding tristating of used and unused GPIO pins. The IO portion of the table was revised to state that unused I/O pins are disabled by Libero IDE software and include a weak pull-up resistor (SAR 26890). Information was added regarding behavior of used I/O pins during power-up.	5-6
	The type for "EMC_RW_N" was changed from In/out to Out (SAR 25113).	5-12
	A note was added to the "Analog Front-End (AFE)" table stating that unused analog inputs should be grounded (SAR 26744).	5-14
	The "TQ144" section is new, with pin tables for A2F200 and A2F500 (SAR 27044).	5-18
	The "FG256" pin table was replaced and now includes "Handling When Unused" information (SAR 27709).	5-42
Revision 2 (May 2010)	Embedded nonvolatile flash memory (eNVM) was changed from "64 to 512 Kbytes" to "128 to 512 Kbytes" in the "Microcontroller Subsystem (MSS)" section and "SmartFusion cSoC Family Product Table" (SAR 26005).	I, II
	The main oscillator range of values was changed to "32 KHz to 20 MHz" in the "Microcontroller Subsystem (MSS)" section and the "SmartFusion cSoC Family Product Table" (SAR 24906).	I, II
	The value for t_{PD} was changed from 50 ns to 15 ns for the high-speed voltage comparators listed in the "Analog Front-End (AFE)" section (SAR 26005).	I
	The number of PLLs for A2F200 was changed from 2 to 1 in the "SmartFusion cSoC Family Product Table" (SAR 25093).	П
	Values for direct analog input, total analog input, and total I/Os were updated for the FG256 package, A2F060, in the "Package I/Os: MSS + FPGA I/Os" table. The Max. column was removed from the table (SAR 26005).	Ξ
	The Speed Grade section of the "Product Ordering Codes" table was revised (SAR 25257).	VI
Revision 1 (March 2010)	The "Product Ordering Codes" table was revised to add "blank" as an option for lead- free packaging and application (junction temperature range).	VI
	Table 2-3 • Recommended Operating Conditions ^{5,6} was revised. Ta (ambient temperature) was replaced with T_J (junction temperature).	2-3
	PDC5 was deleted from Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs.	2-13
	The formulas in the footnotes for Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were revised.	2-27
	The values for input biased current were revised in Table 2-93 • Current Monitor Performance Specification.	2-78
Revision 0 (March 2010)	The "Analog Front-End (AFE)" section was updated to change the throughput for 10- bit mode from 600 Ksps to 550 Ksps.	I