

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

·XE

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	100MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-1fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: Architecture for A2F200

	VCCMSSIOBx (V)	Static Power PDC7 (mW)	Dynamic Power PAC9 (µW/MHz)
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.21
3.3 V LVCMOS / 3.3 V LVCMOS – Schmitt trigger	3.3	-	20.00
2.5 V LVCMOS	2.5	-	5.55
2.5 V LVCMOS – Schmitt trigger	2.5	_	7.03
1.8 V LVCMOS	1.8	-	2.61
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.72
1.5 V LVCMOS (JESD8-11)	1.5	_	1.98
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	1.93

Table 2-11 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to MSS I/O Banks

Table 2-12 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings^{*} Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

	C _{LOAD} (pF)	VCCFPGAIOBx (V)	Static Power PDC8 (mW)	Dynamic Power PAC10 (µW/MHz)
Single-Ended		-		-
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	475.66
2.5 V LVCMOS	35	2.5	-	270.50
1.8 V LVCMOS	35	1.8	-	152.17
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.44
3.3 V PCI	10	3.3	-	202.69
3.3 V PCI-X	10	3.3	-	202.69
Differential				
LVDS	_	2.5	7.74	88.26
LVPECL	_	3.3	19.54	164.99

Note: *Dynamic power consumption is given for standard load and software default drive strength and output slew.

Table 2-13 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Applicable to MSS I/O Banks

	C _{LOAD} (pF)	VCCMSSIOBx (V)	Static Power PDC8 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	10	3.3	_	155.65
2.5 V LVCMOS	10	2.5	_	88.23
1.8 V LVCMOS	10	1.8	_	45.03
1.5 V LVCMOS (JESD8-11)	10	1.5	_	31.01

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs/CCCs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- The number of eNVM blocks used in the design
- The analog block used in the design, including the temperature monitor, current monitor, ABPS, sigma-delta DAC, comparator, low power crystal oscillator, RC oscillator and the main crystal oscillator
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-17 on page 2-18.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-18 on page 2-18.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-18 on page 2-18.
- Read rate to the eNVM blocks

The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

SoC Mode, Standby Mode, and Time Keeping Mode.

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

SoC Mode

 $\mathsf{P}_{\mathsf{STAT}} = \mathsf{P}_{\mathsf{DC1}} + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{P}_{\mathsf{DC7}}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{P}_{\mathsf{DC8}}) + (\mathsf{N}_{\mathsf{PLLS}} * \mathsf{P}_{\mathsf{DC9}})$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

 $P_{STAT} = P_{DC2}$

Time Keeping Mode

 $P_{STAT} = P_{DC3}$

Total Dynamic Power Consumption—P_{DYN}

SoC Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{eNVM} + P_{XTL-OSC} + P_{RC-OSC} + P_{AB} + P_{LPXTAL-OSC} + P_{MSS}

Table 2-30 • I/O Short Currents I_{OSH}/I_{OSL} Applicable to FPGA I/O Banks

	Drive Strength	I _{OSL} (mA) [*]	I _{OSH} (mA) [*]
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	127	132
	24 mA	181	268
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
	16 mA	87	83
	24 mA	124	169
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	51	45
	12 mA	74	91
	16 mA	74	91
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
	6 mA	39	32
	8 mA	55	66
	12 mA	55	66
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

Note: $^{*}T_{J} = 85^{\circ}C.$

Table 2-31 • I/O Short Currents I_{OSH}/I_{OSL} Applicable to MSS I/O Banks

	Drive Strength	l _{OSL} (mA)*	I _{OSH} (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	54	51
2.5 V LVCMOS	8 mA	37	32
1.8 V LVCMOS	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Note: $^{*}T_{J} = 85^{\circ}C$

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-35 • Minimum and Maximum DC Input and Output Levels Applicable to FPGA I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	VOL	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	15	15
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	15	15
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	15	15
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	15	15
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	15	15
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	15	15
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Table 2-36 • Minimum and Maximum DC Input and Output Levels Applicable to MSS I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	ін	VOL	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	IIL	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	15	15

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-37 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-24 for a complete table of trip points.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-59 • Minimum	and Maximum DC	Input and Output Levels
----------------------	----------------	-------------------------

3.3 V PCI/PCI-X	V	ΊL	V	ΊH	VOL	VOH	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	Ι _{ΙL}	Ι _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
Per PCI specification					Per PCI	curves					15	15

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; SoC Products Group loadings for enable path characterization are described in Figure 2-10.

Figure 2-10 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; SoC Products Group loading for tristate is described in Table 2-60.

Table 2-60 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCxxxxIOBx for t _{DP(R)}	-	10
		0.615 * VCCxxxxIOBx for $t_{DP(F)}$		

* Measuring point = V_{trip.} See Table 2-22 on page 2-24 for a complete table of trip points.

Timing Characteristics

Table 2-61 • 3.3 V PCI

```
Worst Commercial-Case Conditions: T_J = 85^{\circ}C, Worst-Case VCC = 1.425 V,
Worst-Case VCCxxxxIOBx = 3.0 V
Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.54	0.04	0.82	0.39	2.58	1.88	3.06	3.39	4.64	3.94	ns
-1	0.50	2.11	0.03	0.68	0.32	2.15	1.57	2.55	2.82	3.87	3.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-62 • 3.3 V PCI-X

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.60	2.54	0.04	0.77	0.39	2.58	1.88	3.06	3.39	4.64	3.94	ns
-1	0.50	2.11	0.03	0.64	0.32	2.15	1.57	2.55	2.82	3.87	3.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by SoC Products Group Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-11. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, SmartFusion cSoCs also support bus LVDS structure and multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-11 • LVDS Circuit Diagram and Board-Level Implementation

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-15 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Output Register

Figure 2-17 • Output Register Timing Diagram

Timing Characteristics

Table 2-72 • Output Data Register Propagation DelaysWorst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.60	0.72	ns
tosud	Data Setup Time for the Output Data Register	0.32	0.38	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.53	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.82	0.98	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.82	0.98	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.23	0.27	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.23	0.27	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.22	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.22	ns
t _{ОСКМРWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.36	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.32	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Output Enable Register

Figure 2-18 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-73 • Output Enable Register Propagation DelaysWorst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.45	0.54	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.32	0.38	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.53	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.68	0.81	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.68	0.81	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.23	0.27	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.23	0.27	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.22	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.22	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.36	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The SmartFusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO/e, Fusion, ProASIC3/E, and SmartFusion Macro Library Guide*.

Figure 2-23 • Sample of Combinatorial Cells

Timing Waveforms

Figure 2-30 • RAM Read for Pass-Through Output. Applicable to both RAM4K9 and RAM512x18.

Figure 2-31 • RAM Read for Pipelined Output Applicable to both RAM4K9 and RAM512x18.

Analog Sigma-Delta Digital to Analog Converter (DAC)

Unless otherwise noted, sigma-delta DAC performance is specified at 25°C with nominal power supply voltages, using the internal sigma-delta modulators with 16-bit inputs, HCLK = 100 MHz, modulator inputs updated at a 100 KHz rate, in voltage output mode with an external 160 pF capacitor to ground, after trimming and digital [pre-]compensation.

Table 2-98 • Analog Sigma-D	elta DAC
-----------------------------	----------

Specification	Test Conditions	Min.	Тур.	Max.	Units
Resolution		8		24	Bits
Output range			0 to 2.56		V
	Current output mode		0 to 256		μA
Output Impedance		6	10	12	KΩ
	Current output mode	10			MΩ
Output voltage compliance	Current output mode		0–3.0		V
	-40°C to +100°C	0–2.7		0–3.4	V
Gain error	Voltage output mode		0.3	±2	%
	A2F060: -40°C to +100°C		0.3	±2	%
	A2F200: -40°C to +100°C		1.2	±5.3	%
	A2F500: -40°C to +100°C		0.3	±2	%
	Current output mode		0.3	±2	%
	A2F060: -40°C to +100°C		0.3	±2	%
	A2F200: -40°C to +100°C		1.2	±5.3	%
	A2F500: -40°C to +100°C		0.3	±2	%
Output referred offset	DACBYTE0 = h'00 (8-bit)		0.25	±1	mV
	-40°C to +100°C		1	±2.5	mV
	Current output mode		0.3	±1	μA
	-40°C to +100°C		1	±2.5	μA
Integral non-linearity	RMS deviation from BFSL		0.1	0.3	% FS*
Differential non-linearity			0.05	0.4	% FS*
Analog settling time			Refer to Figure 2-44 on page 2-86		μs
Power supply rejection ratio	DC, full scale output	33	34		dB

Note: *FS is full-scale error, defined as the difference between the actual value that triggers the transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error. Refer to the Analog-to-Digital Converter chapter of the SmartFusion Programmable Analog User's Guide for more information.

Serial Peripheral Interface (SPI) Characteristics

This section describes the DC and switching of the SPI interface. Unless otherwise noted, all output characteristics given for a 35 pF load on the pins and all sequential timing characteristics are related to SPI_x_CLK. For timing parameter definitions, refer to Figure 2-47 on page 2-90.

Symbol	Description and Condition	A2F060	A2F200	A2F500	Unit
sp1	SPI_x_CLK minimum period				
	SPI_x_CLK = PCLK/2	20	NA	20	ns
	SPI_x_CLK = PCLK/4	40	40	40	ns
	SPI_x_CLK = PCLK/8	80	80	80	ns
	SPI_x_CLK = PCLK/16	0.16	0.16	0.16	μs
	SPI_x_CLK = PCLK/32	0.32	0.32	0.32	μs
	SPI_x_CLK = PCLK/64	0.64	0.64	0.64	μs
	SPI_x_CLK = PCLK/128	1.28	1.28	1.28	μs
	SPI_x_CLK = PCLK/256	2.56	2.56	2.56	μs
sp2	SPI_x_CLK minimum pulse width high				
	SPI_x_CLK = PCLK/2	10	NA	10	ns
	SPI_x_CLK = PCLK/4	20	20	20	ns
	SPI_x_CLK = PCLK/8	40	40	40	ns
	SPI_x_CLK = PCLK/16	0.08	0.08	0.08	μs
	SPI_x_CLK = PCLK/32	0.16	0.16	0.16	μs
	SPI_x_CLK = PCLK/64	0.32	0.32	0.32	μs
	SPI_x_CLK = PCLK/128	0.64	0.64	0.64	μs
	SPI_x_CLK = PCLK/256	1.28	1.28	1.28	us
sp3	SPI_x_CLK minimum pulse width low				
	SPI_x_CLK = PCLK/2	10	NA	10	ns
	SPI_x_CLK = PCLK/4	20	20	20	ns
	SPI_x_CLK = PCLK/8	40	40	40	ns
	SPI_x_CLK = PCLK/16	0.08	0.08	0.08	μs
	SPI_x_CLK = PCLK/32	0.16	0.16	0.16	μs
	SPI_x_CLK = PCLK/64	0.32	0.32	0.32	μs
	SPI_x_CLK = PCLK/128	0.64	0.64	0.64	μs
	SPI_x_CLK = PCLK/256	1.28	1.28	1.28	μs
sp4	SPI_x_CLK, SPI_x_DO, SPI_x_SS rise time (10%-90%) ¹	4.7	4.7	4.7	ns
sp5	SPI_x_CLK, SPI_x_DO, SPI_x_SS fall time (10%-90%) ¹	3.4	3.4	3.4	ns

Table 2-100 • SPI Characteristics

Commercial Case Conditions: T_J = 85°C, VDD = 1.425 V, -1 Speed Grade

Notes:

 These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/index.php?option=com_microsemi<emid=489&lang=en&view=salescontact.

2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion Microcontroller Subsystem User's Guide.

Inter-Integrated Circuit (I²C) Characteristics

This section describes the DC and switching of the I^2C interface. Unless otherwise noted, all output characteristics given are for a 100 pF load on the pins. For timing parameter definitions, refer to Figure 2-48 on page 2-92.

Parameter	Definition	Condition	Value	Unit				
V _{IL}	Minimum input low voltage	_	SeeTable 2-36 on page 2-30	-				
	Maximum input low voltage	_	See Table 2-36	-				
V _{IH}	Minimum input high voltage	_	See Table 2-36	-				
	Maximum input high voltage	_	See Table 2-36	-				
V _{OL}	Maximum output voltage low	I _{OL} = 8 mA	See Table 2-36	-				
I _{IL}	Input current high	_	See Table 2-36	-				
I _{IH}	Input current low	_	See Table 2-36	-				
V _{hyst}	Hysteresis of Schmitt trigger inputs	_	See Table 2-33 on page 2-29	V				
T _{FALL}	Fall time ²	VIHmin to VILMax, C _{load} = 400 pF	15.0	ns				
		VIHmin to VILMax, C _{load} = 100 pF	4.0	ns				
T _{RISE}	Rise time ²	VILMax to VIHmin, C _{load} = 400pF	19.5	ns				
		VILMax to VIHmin, C _{load} = 100pF	5.2	ns				
Cin	Pin capacitance	VIN = 0, f = 1.0 MHz	8.0	pF				
R _{pull-up}	Output buffer maximum pull- down Resistance ¹	_	50	Ω				
R _{pull-down}	Output buffer maximum pull-up Resistance ¹	_	150	Ω				
D _{max}	Maximum data rate	Fast mode	400	Kbps				
t _{LOW}	Low period of I2C_x_SCL ³	_	1	pclk cycles				
t _{HIGH}	High period of I2C_x_SCL ³	_	1	pclk cycles				
t _{HD;STA}	START hold time ³	-	1	pclk cycles				
t _{SU;STA}	START setup time ³	-	1	pclk cycles				
t _{HD;DAT}	DATA hold time ³	-	1	pclk cycles				
t _{SU;DAT}	DATA setup time ³	_	1	pclk cycles				

Table 2-101 • I²C Characteristics

Commercial Case Conditions: T_J = 85°C, V_{DD} = 1.425 V, -1 Speed Grade

Notes:

1. These maximum values are provided for information only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/index.php?option=com_microsemi<emid=489&lang=en&view=salescontact.

 These values are provided for a load of 100 pF and 400 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/index.php?option=com_microsemi&Itemid=489&Iang=en&view=salescontact.

3. For allowable Pclk configurations, refer to the Inter-Integrated Circuit (I²C) Peripherals section in the SmartFusion Microcontroller Subsystem User's Guide.

4 – SmartFusion Programming

SmartFusion cSoCs have three separate flash areas that can be programmed:

- 1. The FPGA fabric
- 2. The embedded nonvolatile memories (eNVMs)
- 3. The embedded flash ROM (eFROM)

There are essentially three methodologies for programming these areas:

- 1. In-system programming (ISP)
- 2. In-application programming (IAP)
 - a. A2F060 and A2F500: The FPGA fabric, eNVM, and eFROM
 - b. A2F200: Only the FPGA fabric and the eNVM
- 3. Pre-programming (non-ISP)

Programming, whether ISP or IAP methodologies are employed, can be done in two ways:

- 1. Securely using the on chip AES decryption logic
- 2. In plain text

In-System Programming

In-System Programming is performed with the aid of external JTAG programming hardware. Table 4-1 describes the JTAG programming hardware that will program a SmartFusion cSoC and Table 4-2 defines the JTAG pins that provide the interface for the programming hardware.

Table 4-1 • Supported JTAG Programming Hardware

Dongle	Source	JTAG	SWD ¹	SWV ²	Program FPGA	Program eFROM	Program eNVM
FlashPro3/4	SoC Products Group	Yes	No	No	Yes	Yes	Yes
ULINK Pro	Keil	Yes	Yes	Yes	Yes ³	Yes ³	Yes
ULINK2	Keil	Yes	Yes	Yes	Yes ³	Yes ³	Yes
IAR J-Link	IAR	Yes	Yes	Yes	Yes ³	Yes ³	Yes

Notes:

- 1. SWD = ARM Serial Wire Debug
- 2. SWV = ARM Serial Wire Viewer
- 3. Planned support

Table 4-2 • JTAG Pin Descriptions

Pin Name	Description
JTAGSEL	ARM Cortex-M3 or FPGA test access port (TAP) controller selection
TRSTB	Test reset bar
ТСК	Test clock
TMS	Test mode select
TDI	Test data input
TDO	Test data output

Pin Descriptions

Special Function Pins

Name	Туре	Polarity/Bus Size	Description
NC			No connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.
DC			Do not connect. This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
LPXIN	In	1	Low power 32 KHz crystal oscillator. Input from the 32 KHz oscillator. Pin for connecting a low power 32 KHz watch crystal. If not used, the LPXIN pin can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> .
LPXOUT	In	1	Low power 32 KHz crystal oscillator. Output to the 32 KHz oscillator. Pin for connecting a low power 32 KHz watch crystal. If not used, the LPXOUT pin can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On- Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .
MAINXIN	In	1	Main crystal oscillator circuit. Input to the crystal oscillator circuit. Pin for connecting an external crystal, ceramic resonator, or RC network. When using an external crystal or ceramic oscillator, external capacitors are also recommended. Refer to documentation from the crystal oscillator manufacturer for proper capacitor value. If an external RC network or clock input is used, the RC components are connected to the MAINXIN pin, with MAINXOUT left floating. When the main crystal oscillator is not being used, MAINXIN and MAINXOUT pins can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .
MAINXOUT	Out	1	Main crystal oscillator circuit. Output from the crystal oscillator circuit. Pin for connecting external crystal or ceramic resonator. When using an external crystal or ceramic oscillator, external capacitors are also recommended. Refer to documentation from the crystal oscillator manufacturer for proper capacitor value. If an external RC network or clock input is used, the RC components are connected to the MAINXIN pin, with MAINXOUT left floating. When the main crystal oscillator is not being used, MAINXIN and MAINXOUT pins can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .

Pin Descriptions

Analog Front-End (AFE)

			Associat	ted With
Name	Туре	Description	ADC/SDD	SCB
ABPS0	In	SCB 0 / active bipolar prescaler input 1. See the Active Bipolar Prescaler (ABPS) section in the <i>SmartFusion</i> <i>Programmable Analog User's Guide</i> .	ADC0	SCB0
ABPS1	In	SCB 0 / active bipolar prescaler Input 2	ADC0	SCB0
ABPS2	In	SCB 1 / active bipolar prescaler Input 1	ADC0	SCB1
ABPS3	In	SCB 1 / active bipolar prescaler Input 2	ADC0	SCB1
ABPS4	In	SCB 2 / active bipolar prescaler Input 1	ADC1	SCB2
ABPS5	In	SCB 2 / active bipolar prescaler Input 2	ADC1	SCB2
ABPS6	In	SCB 3 / active bipolar prescaler Input 1	ADC1	SCB3
ABPS7	In	SCB 3 / active bipolar prescaler input 2	ADC1	SCB3
ABPS8	In	SCB 4 / active bipolar prescaler input 1	ADC2	SCB4
ABPS9	In	SCB 4 / active bipolar prescaler input 2	ADC2	SCB4
ADC0	In	ADC 0 direct input 0 / FPGA Input. See the "Sigma-Delta Digital-to-Analog Converter (DAC)" section in the <i>SmartFusion Programmable Analog User's Guide</i> .	ADC0	SCB0
ADC1	In	ADC 0 direct input 1 / FPGA input	ADC0	SCB0
ADC2	In	ADC 0 direct input 2 / FPGA input	ADC0	SCB1
ADC3	In	ADC 0 direct input 3 / FPGA input	ADC0	SCB1
ADC4	In	ADC 1 direct input 0 / FPGA input	ADC1	SCB2
ADC5	In	ADC 1 direct input 1 / FPGA input	ADC1	SCB2
ADC6	In	ADC 1 direct input 2 / FPGA input	ADC1	SCB3
ADC7	In	ADC 1 direct input 3 / FPGA input	ADC1	SCB3
ADC8	In	ADC 2 direct input 0 / FPGA input	ADC2	SCB4
ADC9	In	ADC 2 direct input 1 / FPGA input	ADC2	SCB4
ADC10	In	ADC 2 direct input 2 / FPGA input	ADC2	N/A
ADC11	In	ADC 2 direct input 3 / FPGA input	ADC2	N/A
CM0	In	SCB 0 / high side of current monitor / comparator Positive input. See the Current Monitor section in the <i>SmartFusion</i> <i>Programmable Analog User's Guide</i> .	ADC0	SCB0
CM1	In	SCB 1 / high side of current monitor / comparator. Positive input.	ADC0	SCB1
CM2	In	SCB 2 / high side of current monitor / comparator. Positive input.	ADC1	SCB2
CM3	In	SCB 3 / high side of current monitor / comparator. Positive input.	ADC1	SCB3
CM4	In	SCB 4 / high side of current monitor / comparator. Positive input.	ADC2	SCB4

Note: Unused analog inputs should be grounded. This aids in shielding and prevents an undesired coupling path.

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	CS288			
No.	A2F060 Function	A2F200 Function	A2F500 Function	
F12	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO14NDB0V0	
F13	GND	GND	GND	
F14	GCB1/IO19PPB0V0	GCC1/IO26PPB1V0	GCC1/IO35PPB1V0	
F15	GNDQ	GNDQ	GNDQ	
F16	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1	
F17	GCB0/IO19NPB0V0	IO24NDB1V0	IO33NDB1V0	
F19	IO23NDB1V0	GDB1/IO30PDB1V0	GDB1/IO39PDB1V0	
F21	GCA2/IO21PDB1V0	GDB0/IO30NDB1V0	GDB0/IO39NDB1V0	
G1	IO41NDB5V0	IO67NDB5V0	IO84NDB5V0	
G3	GFC2/IO41PDB5V0	GFC2/IO67PDB5V0	GFC2/IO84PDB5V0	
G5	NC	GFB1/IO65PDB5V0	GFB1/IO82PDB5V0	
G6	EMC_DB[10]/IO43NDB5V0	EMC_DB[10]/IO69NDB5V0	EMC_DB[10]/IO86NDB5V0	
G9	NC	GFC0/IO66NPB5V0	GFC0/IO83NPB5V0	
G13	GCA0/IO20NPB0V0	GCC0/IO26NPB1V0	GCC0/IO35NPB1V0	
G16	NC	GDA0/IO31NDB1V0	GDA0/IO40NDB1V0	
G17	IO22NPB1V0	GDC1/IO29PDB1V0	GDC1/IO38PDB1V0	
G19	GCC2/IO23PDB1V0	GDC0/IO29NDB1V0	GDC0/IO38NDB1V0	
G21	GND	GND	GND	
H1	EMC_DB[9]/IO40PPB5V0	EMC_DB[9]/GEC1/IO63PPB5V0	EMC_DB[9]/GEC1/IO80PPB5V0	
H3	GND	GND	GND	
H5	NC	GFB0/IO65NDB5V0	GFB0/IO82NDB5V0	
H6	EMC_DB[7]/IO39PDB5V0	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0	
H8	GND	GND	GND	
H9	VCC	VCC	VCC	
H10	GND	GND	GND	
H11	VCC	VCC	VCC	
H12	GND	GND	GND	
H13	VCC	VCC	VCC	
H14	GND	GND	GND	
H16	NC	GDA1/IO31PDB1V0	GDA1/IO40PDB1V0	
H17	NC	GDC2/IO32PPB1V0	GDC2/IO41PPB1V0	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	FG256			
No.	A2F060 Function	A2F200 Function	A2F500 Function	
M11	ADC6	TM2	TM2	
M12	ADC5	CM2	CM2	
M13	SPI_0_SS/GPIO_19	SPI_0_SS/GPIO_19	SPI_0_SS/GPIO_19	
M14	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2	
M15	SPI_0_CLK/GPIO_18	SPI_0_CLK/GPIO_18	SPI_0_CLK/GPIO_18	
M16	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	
N1	GPIO_8/IO25RSB4V0	MAC_RXD[1]/IO53RSB4V0	MAC_RXD[1]/IO62RSB4V0	
N2	VCCMSSIOB4	VCCMSSIOB4	VCCMSSIOB4	
N3	VCC15A	VCC15A	VCC15A	
N4	VCC33AP	VCC33AP	VCC33AP	
N5	NC	ABPS3	ABPS3	
N6	ADC4	TM1	TM1	
N7	NC	GND33ADC0	GND33ADC0	
N8	VCC33ADC0	VCC33ADC1	VCC33ADC1	
N9	ADC8	ADC5	ADC5	
N10	CM0	CM3	CM3	
N11	GNDAQ	GNDAQ	GNDAQ	
N12	VAREFOUT	VAREFOUT	VAREFOUT	
N13	NC	GNDSDD1	GNDSDD1	
N14	NC	VCC33SDD1	VCC33SDD1	
N15	GND	GND	GND	
N16	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	
P1	GNDSDD0	GNDSDD0	GNDSDD0	
P2	VCC33SDD0	VCC33SDD0	VCC33SDD0	
P3	VCC33N	VCC33N	VCC33N	
P4	GNDA	GNDA	GNDA	
P5	GNDAQ	GNDAQ	GNDAQ	
P6	NC	CM1	CM1	
P7	NC	ADC2	ADC2	
P8	NC	VCC15ADC0	VCC15ADC0	
P9	ADC9	ADC6	ADC6	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.