E·XFL

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	Ethernet, I ² C, SPI, UART/USART
Speed	100MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-1pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timing Characteristics

Table 2-50 • 1.8 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 1.7 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

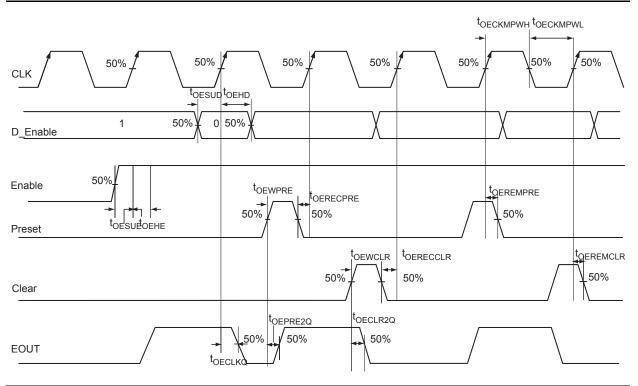
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
e	orado	50001	٩UP	SDIN	Ψř	LOOI	•2L	•ZH	۴LZ	٩٢	·2L5	·2H5	0
2 mA	Std.	0.60	11.06	0.04	1.14	0.39	8.61	11.06	2.61	1.59	10.67	13.12	ns
	-1	0.50	9.22	0.03	0.95	0.32	7.17	9.22	2.18	1.33	8.89	10.93	ns
4 mA	Std.	0.60	6.46	0.04	1.14	0.39	5.53	6.46	3.04	2.66	7.59	8.51	ns
	-1	0.50	5.38	0.03	0.95	0.32	4.61	5.38	2.54	2.22	6.33	7.10	ns
6 mA	Std.	0.60	4.16	0.04	1.14	0.39	3.99	4.16	3.34	3.18	6.05	6.22	ns
	-1	0.50	3.47	0.03	0.95	0.32	3.32	3.47	2.78	2.65	5.04	5.18	ns
8 mA	Std.	0.60	3.69	0.04	1.14	0.39	3.76	3.67	3.40	3.31	5.81	5.73	ns
	-1	0.50	3.07	0.03	0.95	0.32	3.13	3.06	2.84	2.76	4.85	4.78	ns
12 mA	Std.	0.60	3.38	0.04	1.14	0.39	3.44	2.86	3.50	3.82	5.50	4.91	ns
	-1	0.50	2.81	0.03	0.95	0.32	2.87	2.38	2.92	3.18	4.58	4.10	ns
16 mA	Std.	0.60	3.38	0.04	1.14	0.39	3.44	2.86	3.50	3.82	5.50	4.91	ns
	–1	0.50	2.81	0.03	0.95	0.32	2.87	2.38	2.92	3.18	4.58	4.10	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-51 • 1.8 V LVCMOS Low Slew


Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 1.7 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.60	14.24	0.04	1.14	0.39	13.47	14.24	2.62	1.54	15.53	16.30	ns
	-1	0.50	11.87	0.03	0.95	0.32	11.23	11.87	2.18	1.28	12.94	13.59	ns
4 mA	Std.	0.60	9.74	0.04	1.14	0.39	9.92	9.62	3.05	2.57	11.98	11.68	ns
	-1	0.50	8.11	0.03	0.95	0.32	8.26	8.02	2.54	2.14	9.98	9.74	ns
6 mA	Std.	0.60	7.67	0.04	1.14	0.39	7.81	7.24	3.34	3.08	9.87	9.30	ns
	-1	0.50	6.39	0.03	0.95	0.32	6.51	6.03	2.79	2.56	8.23	7.75	ns
8 mA	Std.	0.60	7.15	0.04	1.14	0.39	7.29	6.75	3.41	3.21	9.34	8.80	ns
	-1	0.50	5.96	0.03	0.95	0.32	6.07	5.62	2.84	2.68	7.79	7.34	ns
12 mA	Std.	0.60	6.76	0.04	1.14	0.39	6.89	6.75	3.50	3.70	8.95	8.81	ns
	-1	0.50	5.64	0.03	0.95	0.32	5.74	5.62	2.92	3.08	7.46	7.34	ns
16 mA	Std.	0.60	6.76	0.04	1.14	0.39	6.89	6.75	3.50	3.70	8.95	8.81	ns
	-1	0.50	5.64	0.03	0.95	0.32	5.74	5.62	2.92	3.08	7.46	7.34	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Output Enable Register

Figure 2-18 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-73 • Output Enable Register Propagation DelaysWorst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.45	0.54	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.32	0.38	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.53	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.68	0.81	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.68	0.81	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.23	0.27	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.23	0.27	ns
tOEWCLR	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.22	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.22	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.36	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.32	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Parameter	Description	-1	Std.	Units	
t _{RSTB2Q}	Reset to Q (data out)	26.67	30.67	ns	
F _{TCKMAX}	TCK Maximum Frequency	19.00	21.85	MHz	
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	ns	
t _{TRSTREC}	ResetB Recovery Time	0.27	0.31	ns	
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	ns	

Table 2-92 • JTAG 1532 Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Temperature Monitor

Unless otherwise noted, temperature monitor performance is specified with a 2N3904 diode-connected bipolar transistor from National Semiconductor or Infineon Technologies, nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 62.5 Ksps. After digital compensation. Unless otherwise noted, the specifications pertain to conditions where the SmartFusion cSoC and the sensing diode are at the same temperature.

Table 2-94 • Temperature Monitor Performance Specifications

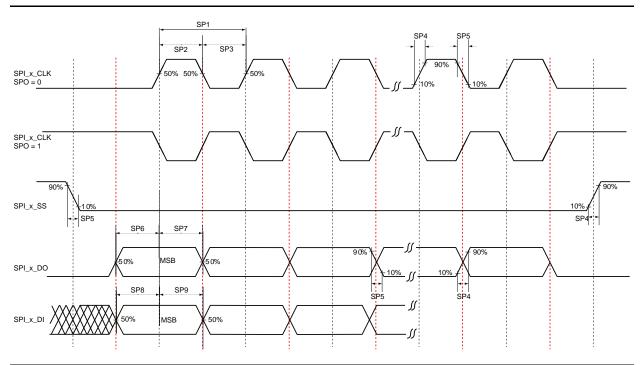
Specification	Test Conditions	Min.	Typical	Max.	Units
Input diode temperature range		-55		150	°C
		233.2		378.15	K
Temperature sensitivity			2.5		mV/K
Intercept	Extrapolated to 0K		0		V
Input referred temperature offset error	At 25°C (298.15K)		±1	1.5	°C
Gain error	Slope of BFSL vs. 2.5 mV/K		±1	2.5	% nom.
Overall accuracy	Peak error from ideal transfer function		±2	±3	°C
Input referred noise	At 25°C (298.15K) – no output averaging		4		°C rms
Output current	Idle mode		100		μA
	Final measurement phases		10		μA
Analog settling time	Measured to 0.1% of final value, (with ADC load)				
	From TM_STB (High)	5			μs
	From ADC_START (High)	5		105	μs
AT parasitic capacitance				500	pF
Power supply rejection ratio	DC (0–10 KHz)	1.2	0.7		°C/V
Input referred temperature sensitivity error	Variation due to device temperature (–40°C to +100°C). External temperature sensor held constant.		0.005	0.008	°C/°C
Temperature monitor (TM)	VCC33A		200		μA
operational power supply current requirements (per temperature	VCC33AP		150		μA
monitor instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: All results are based on averaging over 64 samples.

static Microsemi.

SmartFusion DC and Switching Characteristics

Table 2-100 • SPI Characteristics


Commercial Case Conditions: T_J = 85°C, VDD = 1.425 V, -1 Speed Grade (continued)


Symbol	Description and Condition	A2F060	A2F200	A2F500	Unit
sp6	Data from master (SPI_x_DO) setup time ²	1	1	1	pclk cycles
sp7	Data from master (SPI_x_DO) hold time ²	1	1	1	pclk cycles
sp8	SPI_x_DI setup time ²	1	1	1	pclk cycles
sp9	SPI_x_DI hold time ²	1	1	1	pclk cycles

Notes:

1. These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/index.php?option=com_microsemi&Itemid=489&Iang=en&view=salescontact.

 For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion Microcontroller Subsystem User's Guide.

Inter-Integrated Circuit (I²C) Characteristics

This section describes the DC and switching of the I C interface. Unless otherwise noted, all output characteristics given are for a 100 pF load on the pins. For timing parameter definitions, refer to Figure 2-48 on page 2-92.

Table 2-101 • I²C Characteristics

Commercial Case Conditions: T_J = 85°C, V_{DD} = 1.425 V, –1 Speed Grade

Parameter	Definition	Condition	Value	Unit
V _{IL}	Minimum input low voltage	_	SeeTable 2-36 on page 2-30	_
	Maximum input low voltage	-	See Table 2-36	-
V _{IH}	Minimum input high voltage	_	See Table 2-36	-
	Maximum input high voltage	_	See Table 2-36	-
V _{OL}	Maximum output voltage low	I _{OL} = 8 mA	See Table 2-36	_
IIL	Input current high	_	See Table 2-36	-
I _{IH}	Input current low	_	See Table 2-36	-
V _{hyst}	Hysteresis of Schmitt trigger inputs	_	See Table 2-33 on page 2-29	V
T _{FALL}	Fall time ²	VIHmin to VILMax, C _{load} = 400 pF	15.0	ns
		VIHmin to VILMax, C _{load} = 100 pF	4.0	ns
T _{RISE}	Rise time ²	VILMax to VIHmin, C _{load} = 400pF	19.5	ns
		VILMax to VIHmin, C _{load} = 100pF	5.2	ns
Cin	Pin capacitance	VIN = 0, f = 1.0 MHz	8.0	pF
R _{pull-up}	Output buffer maximum pull- down Resistance ¹	_	50	:
R _{pull-down}	Output buffer maximum pull-up Resistance ¹	_	150	:
D _{max}	Maximum data rate	Fast mode	400	Kbps
t _{LOW}	Low period of I2C_x_SCL ³	_	1	pclk cycles
t _{HIGH}	High period of I2C_x_SCL ³	_	1	pclk cycles
t _{HD;STA}	START hold time ³	_	1	pclk cycles
t _{SU;STA}	START setup time ³	_	1	pclk cycles
t _{HD;DAT}	DATA hold time ³	-	1	pclk cycles
t _{SU;DAT}	DATA setup time ³	_	1	pclk cycles

Notes:

1. These maximum values are provided for information only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/index.php?option=com_microsemi&Itemid=489&Iang=en&view=salescontact.

 These values are provided for a load of 100 pF and 400 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/index.php?option=com_microsemi&Itemid=489&Iang=en&view=salescontact.

3. For allowable Pclk configurations, refer to the Inter-Integrated Circuit (I²C) Peripherals section in the SmartFusion Microcontroller Subsystem User's Guide.

3 – SmartFusion Development Tools

Designing with SmartFusion cSoCs involves three different types of design: FPGA design, embedded design and analog design. These roles can be filled by three different designers, two designers or even a single designer, depending on company structure and project complexity.

Types of Design Tools

Microsemi has developed design tools and flows to meet the needs of these three types of designers so they can work together smoothly on a single project (Figure 3-1).

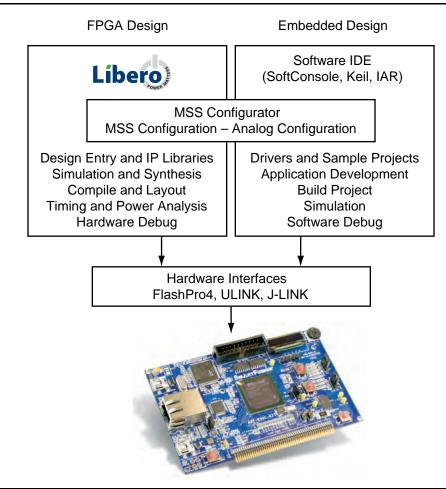


Figure 3-1 • Three Design Roles

FPGA Design

Libero System-on-Chip (SoC) software is Microsemi's comprehensive software toolset for designing with all Microsemi FPGAs and cSoCs. Libero SoC includes industry-leading synthesis, simulation and debug tools from Synopsys[®] and Mentor Graphics[®], as well as innovative timing and power optimization and analysis.

Embedded Design

Microsemi offers FREE SoftConsole Eclipse based IDE, which includes the GNU C/C++ compiler and GDB debugger. Microsemi also offers evaluation versions of software from Keil and IAR, with full versions available from respective suppliers.

Analog Design

The MSS configurator provides graphical configuration for current, voltage and temperature monitors, sample sequencing setup and post-processing configuration, as well as DAC output.

The MSS configurator creates a bridge between the FPGA fabric and embedded designers so device configuration can be easily shared between multiple developers.

The MSS configurator includes the following:

- A simple configurator for the embedded designer to control the MSS peripherals and I/Os
- A method to import and view a hardware configuration from the FPGA flow into the embedded flow containing the memory map
- · Automatic generation of drivers for any peripherals or soft IP used in the system configuration
- · Comprehensive analog configuration for the programmable analog components
- Creation of a standard MSS block to be used in SmartDesign for connection of FPGA fabric designs and IP

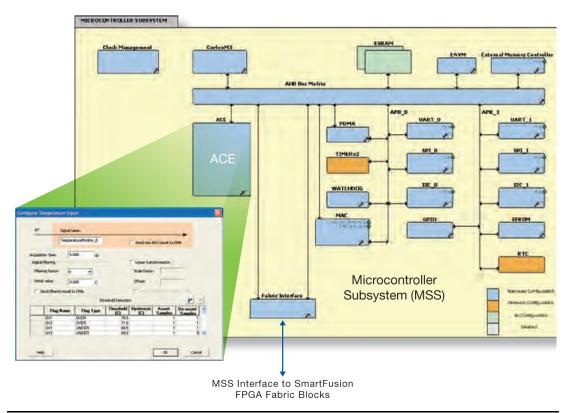


Figure 3-2 • MSS Configurator

Global I/O Naming Conventions

Gmn (Gxxx) refers to Global I/Os. These Global I/Os are used to connect the input to global networks. Global networks have high fanout and low skew. The naming convention for Global I/Os is as follows:

G = Global

m = Global pin location associated with each CCC on the device:

- A (northwest corner)
- B (northeast corner)
- C (east middle)
- D (southeast corner)
- E (southwest corner)
- F (west middle)

n = Global input MUX and pin number of the associated Global location m—A0, A1, A2, B0, B1, B2, C0, C1, or C2.

Global (GL) I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities.

Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the clocking resources chapter of the *SmartFusion FPGA Fabric User's Guide* and the clock conditioning circuitry chapter of the *SmartFusion Microcontroller Subsystem User's Guide*.

All inputs other than GC/GF are direct inputs into the quadrant clocks. The inputs to the global network are multiplexed, and only one input can be used as a global input. For example, if GAA0 is used as a quadrant global input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs other than GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. For more details, refer to the Global Input Selections section of the SmartFusion Fabric User Guide.

Name	Туре	Polarity/B us Size	Description
GPIO_x	In/out		Microcontroller Subsystem (MSS) General Purpose I/O (GPIO). The MSS GPIO pin functions as an input, output, tristate, or bidirectional buffer with configurable interrupt generation and Schmitt trigger support. Input and output signal levels are compatible with the I/O standard selected.
			Unused GPIO pins are tristated and do not include pull-up or pull-down resistors.
			During power-up, the used GPIO pins are tristated with no pull-up or pull-down resistors until Sys boot configures them.
			Some of these pins are also multiplexed with integrated peripherals in the MSS (SPI, I ² C, and UART). These pins are located in Bank-2 (GPIO_16 to GPIO_31) for A2F060, A2F200, and A2F500 devices.
			GPIOs can be routed to dedicated I/O buffers (MSSIOBUF) or in some cases to the FPGA fabric interface through an IOMUX. This allows GPIO pins to be multiplexed as either I/Os for the FPGA fabric, the ARM [®] Cortex-M3 or for given integrated MSS peripherals. The MSS peripherals are not multiplexed with each other; they are multiplexed only with the GPIO block. For more information, see the General Purpose I/O Block (GPIO) section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> .
IO	In/out		FPGA user I/O

User Pins

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Name	Туре	Polarity/ Bus Size	Description					
SPI_1_DO	Out	1	Data output. Second SPI.					
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).					
SPI_1_SS	Out	1	Slave select (chip select). Second SPI.					
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).					
Universal Asynch	hronous Re	eceiver/Trans	mitter (UART) Peripherals					
UART_0_RXD	In	1	Receive data. First UART.					
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).					
UART_0_TXD	Out	1	Transmit data. First UART.					
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).					
UART_1_RXD	In	1	Receive data. Second UART.					
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).					
UART_1_TXD	Out	1	Transmit data. Second UART.					
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-6).					
Ethernet MAC								
MAC_CLK	In	Rise	Receive clock. 50 MHz ± 50 ppm clock source received from RMII PHY.					
			Can be left floating when unused.					
MAC_CRSDV	In	High	Carrier sense/receive data valid for RMII PHY					
			Can also be used as an FPGA User IO (see "IO" on page 5-6).					
MAC_MDC	Out	Rise	RMII management clock					
			Can also be used as an FPGA User IO (see "IO" on page 5-6).					
MAC_MDIO	In/Out	1	RMII management data input/output					
			Can also be used as an FPGA User IO (see "IO" on page 5-6).					
MAC_RXDx	In	2	Ethernet MAC receive data. Data recovered and decoded by PHY. The RXD[0] signal is the least significant bit.					
			Can also be used as an FPGA User I/O (see "IO" on page 5-6).					
MAC_RXER	In	HIGH	Ethernet MAC receive error. If MACRX_ER is asserted during reception, the frame is received and status of the frame is updated with MACRX_ER.					
			Can also be used as an FPGA user I/O (see "IO" on page 5-6).					
MAC_TXDx	Out	2	Ethernet MAC transmit data. The TXD[0] signal is the least significant bit.					
			Can also be used as an FPGA user I/O (see "IO" on page 5-6).					
MAC_TXEN	Out	HIGH	Ethernet MAC transmit enable. When asserted, indicates valid data for the PHY on the TXD port.					
			Can also be used as an FPGA User I/O (see "IO" on page 5-6).					

Pin Descriptions

Analog Front-End Pin-Level Function Multiplexing

Table 5-2 describes the relationships between the various internal signals found in the analog front-end (AFE) and how they are multiplexed onto the external package pins. Note that, in general, only one function is available for those pads that have numerous functions listed. The exclusion to this rule is when a comparator is used; the ADC can still convert either input side of the comparator.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
ABPS0	ADC0_CH1		ABPS0_IN						
ABPS1	ADC0_CH2		ABPS1_IN						
ABPS2	ADC0_CH5		ABPS2_IN						
ABPS3	ADC0_CH6		ABPS3_IN						
ABPS4	ADC1_CH1		ABPS4_IN						
ABPS5	ADC1_CH2		ABPS5_IN						
ABPS6	ADC1_CH5		ABPS6_IN						
ABPS7	ADC1_CH6		ABPS7_IN						
ABPS8	ADC2_CH1		ABPS8_IN						
ABPS9	ADC2_CH2		ABPS9_IN						
ADC0	ADC0_CH9	Yes				CMP1_P	LVTTL0_IN		
ADC1	ADC0_CH10	Yes				CMP1_N	LVTTL1_IN	SDDM0_OUT	
ADC2	ADC0_CH11	Yes				CMP3_P	LVTTL2_IN		
ADC3	ADC0_CH12	Yes				CMP3_N	LVTTL3_IN	SDDM1_OUT	
ADC4	ADC1_CH9	Yes				CMP5_P	LVTTL4_IN		
ADC5	ADC1_CH10	Yes				CMP5_N	LVTTL5_IN	SDDM2_OUT	
ADC6	ADC1_CH11	Yes				CMP7_P	LVTTL6_IN		
ADC7	ADC1_CH12	Yes				CMP7_N	LVTTL7_IN	SDDM3_OUT	
ADC8	ADC2_CH9	Yes				CMP9_P	LVTTL8_IN		
ADC9	ADC2_CH10	Yes				CMP9_N	LVTTL9_IN	SDDM4_OUT	
ADC10	ADC2_CH11	Yes					LVTTL10_IN		
ADC11	ADC2_CH12	Yes					LVTTL11_IN		
CM0	ADC0_CH3	Yes		CM0_H		CMP0_P			
CM1	ADC0_CH7	Yes		CM1_H		CMP2_P			
CM2	ADC1_CH3	Yes		CM2_H		CMP4_P			
CM3	ADC1_CH7	Yes		CM3_H		CMP6_P			
CM4	ADC2_CH3	Yes		CM4_H		CMP8_P			
SDD0	ADC0_CH15								SDD0_OUT
SDD1	ADC1_CH15								SDD1_OUT

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

3. TMx_IO: Temperature monitor channel x.

4. CMPx_P/N: Comparator channel x, positive/negative input.

5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
SDD2	ADC2_CH15								SDD2_OUT
TM0	ADC0_CH4	Yes		CM0_L	TM0_IO	CMP0_N			
TM1	ADC0_CH8	Yes		CM1_L	TM1_IO	CMP2_N			
TM2	ADC1_CH4	Yes		CM2_L	TM2_IO	CMP4_N			
TM3	ADC1_CH8	Yes		CM3_L	TM3_IO	CMP6_N			
TM4	ADC2_CH4	Yes		CM4_L	TM4_IO	CMP8_N			

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

- 3. TMx_IO: Temperature monitor channel x.
- 4. CMPx_P/N: Comparator channel x, positive/negative input.
- 5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

star i Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	CS288							
No.	A2F060 Function	A2F200 Function	A2F500 Function GNDLPXTAL					
K17	GNDLPXTAL	GNDLPXTAL						
K19	GNDMAINXTAL	GNDMAINXTAL	GNDMAINXTAL					
K21	MAINXIN	MAINXIN	MAINXIN					
L1	GNDRCOSC	GNDRCOSC	GNDRCOSC					
L3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5					
L5	EMC_DB[2]/IO37NPB5V0	EMC_DB[2]/IO60NPB5V0	EMC_DB[2]/IO77NPB5V0					
L6	NC	GNDQ	GNDQ					
L8	VCC	VCC	VCC					
L9	GND	GND	GND					
L10	VCC	VCC	VCC					
L12	VCC	VCC	VCC					
L13	GND	GND	GND					
L14	VCC	VCC	VCC					
L16	VCCLPXTAL	VCCLPXTAL	VCCLPXTAL					
L17	VDDBAT	VDDBAT	VDDBAT					
L19	LPXIN	LPXIN	LPXIN					
L21	MAINXOUT	MAINXOUT	MAINXOUT					
M1	VCCRCOSC	VCCRCOSC	VCCRCOSC					
M3	MSS_RESET_N	MSS_RESET_N	MSS_RESET_N					
M5	GPIO_5/IO28RSB4V0	GPIO_5/IO42RSB4V0	GPIO_5/IO51RSB4V0					
M6	GND	GND	GND					
M8	GND	GND	GND					
M9	VCC	VCC	VCC					
M10	GND	GND	GND					
M11	VCC	VCC	VCC					
M12	GND	GND	GND					
M13	VCC	VCC	VCC					
M14	GND	GND	GND					
M16	TMS	TMS	TMS					
M17	VJTAG	VJTAG	VJTAG					
M19	TDO	TDO	TDO					

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

CS288 Pin A2F060 Function A2F200 Function A2F500 Function No. U5 VCC33SDD0 VCC33SDD0 VCC33SDD0 U6 VCC15A VCC15A VCC15A U7 NC ABPS3 ABPS3 U8 NC ADC2 ADC2 U9 NC VCC33ADC0 VCC33ADC0 U10 GND15ADC0 GND15ADC1 GND15ADC1 U11 VCC33ADC0 VCC33ADC1 VCC33ADC1 U12 ADC10 ADC7 ADC7 U13 ABPS0 ABPS6 ABPS6 U14 **GNDTM0** GNDTM1 GNDTM1 SPI_1_CLK/GPIO_26 U15 SPI_1_CLK/GPIO_26 SPI_1_CLK/GPIO_26 U16 SPI 0 CLK/GPIO 18 SPI 0 CLK/GPIO 18 SPI 0 CLK/GPIO 18 U17 SPI 0 SS/GPIO 19 SPI 0 SS/GPIO 19 SPI 0 SS/GPIO 19 U19 GND GND GND SPI 1 DO/GPIO 24 U21 SPI 1 DO/GPIO 24 SPI 1 DO/GPIO 24 V1 NC MAC CLK MAC CLK V3 GNDSDD0 GNDSDD0 GNDSDD0 V19 SPI 1 DI/GPIO 25 SPI 1 DI/GPIO 25 SPI 1 DI/GPIO 25 VCCMSSIOB2 V21 VCCMSSIOB2 VCCMSSIOB2 W1 PCAP PCAP PCAP W3 NCAP NCAP NCAP W4 ADC2 CM0 CM0 W5 ADC3 TM0 TM0 W6 ADC4 TM1 TM1 W7 NC ADC0 ADC0 W8 NC ADC3 ADC3 W9 NC GND33ADC0 GND33ADC0 W10 VCC15ADC0 VCC15ADC1 VCC15ADC1 W11 GND33ADC0 GND33ADC1 GND33ADC1 W12 ADC5 ADC8 ADC5 W13 CM0 CM3 CM3

Notes:

🔨 🤇 Microsemi

Pin Descriptions

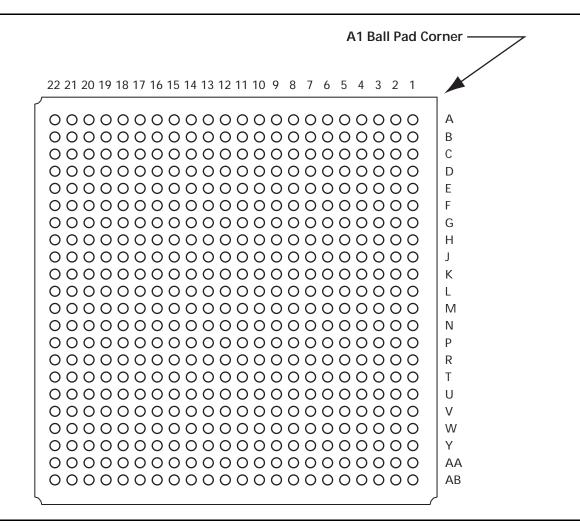
1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

FG256 Pin A2F060 Function A2F200 Function No. A2F500 Function K12 UART 0 RXD/GPIO 21 UART 0 RXD/GPIO 21 UART 0 RXD/GPIO 21 K13 GND GND GND K14 UART 1 TXD/GPIO 28 UART 1 TXD/GPIO 28 UART 1 TXD/GPIO 28 K15 UART 1 RXD/GPIO 29 UART 1 RXD/GPIO 29 UART_1_RXD/GPIO_29 K16 UART_0_TXD/GPIO_20 UART_0_TXD/GPIO_20 UART_0_TXD/GPIO_20 L1 GND GND GND L2 GPIO 2/IO31RSB4V0 MAC TXEN/IO52RSB4V0 MAC TXEN/IO61RSB4V0 L3 GPIO 3/IO30RSB4V0 MAC CRSDV/IO51RSB4V0 MAC CRSDV/IO60RSB4V0 L4 GPIO 4/IO29RSB4V0 MAC RXER/IO50RSB4V0 MAC RXER/IO59RSB4V0 L5 GPIO 9/IO24RSB4V0 MAC CLK MAC CLK GND GND 16 GND L7 VCC VCC VCC GND GND GND L8 L9 VCC VCC VCC L10 GND GND GND L11 VCCMSSIOB2 VCCMSSIOB2 VCCMSSIOB2 L12 SPI 1 DO/GPIO 24 SPI 1 DO/GPIO 24 SPI_1_DO/GPIO_24 L13 SPI 1 SS/GPIO 27 SPI 1 SS/GPIO 27 SPI 1 SS/GPIO 27 L14 SPI 1 CLK/GPIO 26 SPI 1 CLK/GPIO 26 SPI 1 CLK/GPIO 26 L15 SPI_1_DI/GPIO_25 SPI_1_DI/GPIO_25 SPI_1_DI/GPIO_25 L16 GND GND GND M1 GPIO 5/IO28RSB4V0 MAC TXD[0]/IO56RSB4V0 MAC TXD[0]/IO65RSB4V0 M2 GPIO 6/IO27RSB4V0 MAC TXD[1]/IO55RSB4V0 MAC TXD[1]/IO64RSB4V0 MAC RXD[0]/IO54RSB4V0 GPIO 7/IO26RSB4V0 MAC RXD[0]/IO63RSB4V0 M3 M4 GND GND GND NC ADC3 ADC3 M5 M6 NC GND15ADC0 GND15ADC0 GND33ADC1 M7 GND33ADC0 GND33ADC1 M8 GND33ADC0 GND33ADC1 GND33ADC1 ADC7 M9 ADC4 ADC4 M10 **GNDTM0** GNDTM1 GNDTM1

Notes:

🔨 🤇 Microsemi


Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

FG484

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484				
Pin Number	A2F200 Function	A2F500 Function			
A1	GND	GND			
A2	NC	NC			
A3	NC	NC			
A4	GND	GND			
A5	EMC_CS0_N/GAB0/IO01NDB0V0	EMC_CS0_N/GAB0/IO05NDB0V0			
A6	EMC_CS1_N/GAB1/IO01PDB0V0	EMC_CS1_N/GAB1/IO05PDB0V0			
A7	GND	GND			
A8	EMC_AB[0]/IO04NDB0V0	EMC_AB[0]/IO06NDB0V0			
A9	EMC_AB[1]/IO04PDB0V0	EMC_AB[1]/IO06PDB0V0			
A10	GND	GND			
A11	NC	NC			
A12	EMC_AB[7]/IO07PDB0V0	EMC_AB[7]/IO12PDB0V0			
A13	GND	GND			
A14	EMC_AB[12]/IO10NDB0V0	EMC_AB[12]/IO14NDB0V0			
A15	EMC_AB[13]/IO10PDB0V0	EMC_AB[13]/IO14PDB0V0			
A16	GND	GND			
A17	NC	IO16NDB0V0			
A18	NC	IO16PDB0V0			
A19	GND	GND			
A20	NC	NC			
A21	NC	NC			
A22	GND	GND			
AA1	GPIO_4/IO43RSB4V0	GPIO_4/IO52RSB4V0			
AA2	GPIO_12/IO37RSB4V0	GPIO_12/IO46RSB4V0			
AA3	MAC_MDC/IO48RSB4V0	MAC_MDC/IO57RSB4V0			
AA4	MAC_RXER/IO50RSB4V0	MAC_RXER/IO59RSB4V0			
AA5	MAC_TXD[0]/IO56RSB4V0	MAC_TXD[0]/IO65RSB4V0			
AA6	ABPS0	ABPS0			
AA7	TM1	TM1			
AA8	ADC1	ADC1			
AA9	GND15ADC1	GND15ADC1			
AA10	GND33ADC1	GND33ADC1			
AA11	CM3	CM3			
AA12	GNDTM1	GNDTM1			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

Datasheet Information

Revision	Changes	Page
Revision 10 (January 2013)	The "SmartFusion cSoC Family Product Table" section has been updated to specify that External Memory Controller support for A2F060-TQ144 is not available (SAR 41555).	
	The following Note was added to the "Package I/Os: MSS + FPGA I/Os" table (SAR 41027): "There are no LVTTL capable direct inputs available on A2F060 devices."	
	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43218).	
	Added a note to Table 2-3 • Recommended Operating Conditions ^{5,6} (SAR 43428): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	
	Statements about the state of the I/Os during programming were updated in the following sections: "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" and "User I/O Naming Conventions" (SAR 43380).	
	In Table 2-4 • FPGA and Embedded Flash Programming, Storage and Operating Limits, the upper value of temperature ranges was corrected from "Min." to "Max." (SAR 41826).	
	Information for A2F200M3F-CS288 was added to Table 2-6 • Package Thermal Resistance. The die size column was removed (SARs 41828, 42168). Also added details for A2F200M3F-PQG208I (SAR 35728).	2-7
	Added the following note to Table 2-65 • LVDS and Table 2-68 • LVPECL: "The above mentioned timing parameters correspond to 24mA drive strength." (SAR 43457)	2-41, 2-43
	The note in Table 2-86 • SmartFusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 34816).	2-63
	The SRAM collision data in Table 2-87 • RAM4K9 and Table 2-88 • RAM512X18 was updated (SAR 38583).	2-69,2-70
	The maximum input bias current for comparators 1, 3, 5, 7, and 9, in Table 2-97 • Comparator Performance Specifications, was revised from 60 to 100 nA (SAR 36008).	2-84