E·XFL

Microchip Technology - <u>A2F500M3G-CS288 Datasheet</u>

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	288-TFBGA, CSPBGA
Supplier Device Package	288-CSP (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-cs288

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	VCCMSSIOBx (V)	Static Power PDC7 (mW)	Dynamic Power PAC9 (µW/MHz)
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.21
3.3 V LVCMOS / 3.3 V LVCMOS – Schmitt trigger	3.3	-	20.00
2.5 V LVCMOS	2.5	-	5.55
2.5 V LVCMOS – Schmitt trigger	2.5	_	7.03
1.8 V LVCMOS	1.8	-	2.61
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.72
1.5 V LVCMOS (JESD8-11)	1.5	_	1.98
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	1.93

Table 2-11 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to MSS I/O Banks

Table 2-12 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings^{*} Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

	C _{LOAD} (pF)	VCCFPGAIOBx (V)	Static Power PDC8 (mW)	Dynamic Power PAC10 (µW/MHz)		
Single-Ended		-		-		
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	475.66		
2.5 V LVCMOS	35	2.5	-	270.50		
1.8 V LVCMOS	35	1.8	-	152.17		
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.44		
3.3 V PCI	10	3.3	-	202.69		
3.3 V PCI-X	10	3.3	-	202.69		
Differential						
LVDS	_	2.5	7.74	88.26		
LVPECL	_	3.3	19.54	164.99		

Note: *Dynamic power consumption is given for standard load and software default drive strength and output slew.

Table 2-13 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Applicable to MSS I/O Banks

	C _{LOAD} (pF)	VCCMSSIOBx (V)	Static Power PDC8 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	10	3.3	_	155.65
2.5 V LVCMOS	10	2.5	_	88.23
1.8 V LVCMOS	10	1.8	_	45.03
1.5 V LVCMOS (JESD8-11)	10	1.5	_	31.01

SmartFusion DC and Switching Characteristics

Power Consumption of Various Internal Resources

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs

		ly	y Device							
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F500	Units			
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	3.39	3.40	5.05	µW/MHz			
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	1.14	1.83	2.50	µW/MHz			
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V	1.15	1.15	1.15	µW/MHz			
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.12	0.12	0.12	µW/MHz			
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.07	0.07	0.07	µW/MHz			
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz			
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz			
PAC8	Average contribution of a routing net	VCC	1.5 V	1.04	0.79	0.79	µW/MHz			
PAC9	Contribution of an I/O input pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	ole 2-10 a	age 2-11					
PAC10	Contribution of an I/O output pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	ee Table 2-12 and Table 2-13 on pa						
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25.00					
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30.00					
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.60		µW/MHz			
PAC15	Contribution of NVM block during a read operation (F < 33MHz)	VCC	1.5 V		358.00		µW/MHz			
PAC16	1st contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		12.88		mW			
PAC17	2nd contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		4.80		µW/MHz			
PAC18	Main Crystal Oscillator contribution	VCCMAINXTAL	3.3 V		1.98		mW			
PAC19a	RC Oscillator contribution	VCCRCOSC	3.3 V		3.30		mW			
PAC19b	RC Oscillator contribution	VCC	1.5 V		3.00		mW			
PAC20a	Analog Block Dynamic Power Contribution of the ADC	VCC33ADCx	3.3 V		8.25		mW			
PAC20b	Analog Block Dynamic Power Contribution of the ADC	VCC15ADCx	1.5 V		3.00		mW			
PAC21	Low Power Crystal Oscillator contribution	VCCLPXTAL	3.3 V		33.00		μW			
PAC22	MSS Dynamic Power Contribution – Running Drysthone at 100MHz ¹	VCC	1.5 V		67.50		mW			
PAC23	Temperature Monitor Power Contribution	See Table 2-94 on page 2-79	_		1.23		mW			

		Power Supp	ly				
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F500	Units
PAC24	Current Monitor Power Contribution	See Table 2-93 on page 2-78	-		1.03		mW
PAC25	ABPS Power Contribution	See Table 2-96 on page 2-82	_		0.70		mW
PAC26	Sigma-Delta DAC Power Contribution ²	See Table 2-98 on page 2-85	_		0.58		mW
PAC27	Comparator Power Contribution	See Table 2-97 on page 2-84	-		1.02		mW
PAC28	Voltage Regulator Power Contribution ³	See Table 2-99 on page 2-87	_		36.30		mW

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs

Notes:

1. For a different use of MSS peripherals and resources, refer to SmartPower.

2. Assumes Input = Half Scale Operation mode.

3. Assumes 100 mA load on 1.5 V domain.

Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs

		Power Supp	ly	Device				
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F200	Units	
PDC1	Core static power contribution in SoC mode	VCC	1.5 V	11.10	23.70	37.95	mW	
PDC2	Device static power contribution in Standby Mode	See Table 2-8 on page 2-10	_	11.10	23.70	37.95	mW	
PDC3	Device static power contribution in Time Keeping mode	See Table 2-8 on page 2-10	3.3 V	33.00	33.00	33.00	μW	
PDC7	Static contribution per input pin (standard dependent contribution)	VCCxxxxIOBx/VCC	See Tabl	e 2-10 and	d Table 2-	11 on page	e 2-11.	
PDC8	Static contribution per output pin (standard dependent contribution)	VCCxxxxIOBx/VCC	See Table 2-12 and Table 2-13 on page					
PDC9	Static contribution per PLL	VCC	1.5 V	2.55	2.55	2.55	mW	

Table 2-16 • eNVM Dynamic Power Consumption

Parameter	Description	Condition	Min.	Тур.	Max.	Units		
eNVM System	eNVM array operating power	Idle		795		μA		
		Read operation	See	Table 2-1	Table 2-14 on page 2-12.			
		Erase		900		μA		
		Write		900		μA		
PNVMCTRL	eNVM controller operating power			20		µW/MHz		

 $P_{PLL} = 0 W$

Embedded Nonvolatile Memory Dynamic Contribution—Penvm

SoC Mode

The eNVM dynamic power consumption is a piecewise linear function of frequency.

 P_{eNVM} = $\mathsf{N}_{eNVM\text{-}BLOCKS}$ * β_4 * P_{AC15} * $\mathsf{F}_{READ\text{-}eNVM}$ when $\mathsf{F}_{READ\text{-}eNVM}$ \leq 33 MHz,

 $P_{eNVM} = N_{eNVM-BLOCKS} * \beta_4 * (P_{AC16} + P_{AC17} * F_{READ-eNVM}) \text{ when } F_{READ-eNVM} > 33 \text{ MHz}$ Where:

 $N_{eNVM-BLOCKS}$ is the number of eNVM blocks used in the design.

 β_4 is the eNVM enable rate for read operations. Default is 0 (eNVM mainly in idle state). $F_{READ-eNVM}$ is the eNVM read clock frequency.

Standby Mode and Time Keeping Mode

 $P_{eNVM} = 0 W$

Main Crystal Oscillator Dynamic Contribution—P_{XTL-OSC}

SoC Mode

 $P_{\text{XTL-OSC}} = P_{\text{AC18}}$

Standby Mode

 $P_{XTL-OSC} = 0 W$

Time Keeping Mode

 $P_{XTL-OSC} = 0 W$

Low Power Oscillator Crystal Dynamic Contribution—P_{LPXTAL-OSC}

Operating, Standby, and Time Keeping Mode

 $P_{LPXTAL-OSC} = P_{AC21}$

RC Oscillator Dynamic Contribution—**P**_{RC-OSC}

SoC Mode

 $P_{RC-OSC} = P_{AC19A} + P_{AC19B}$

Standby Mode and Time Keeping Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—PAB

SoC Mode

```
 P_{AB} = P_{AC23} * N_{TM} + P_{AC24} * N_{CM} + P_{AC25} * N_{ABPS} + P_{AC26} * N_{SDD} + P_{AC27} * N_{COMP} + P_{ADC} * N_{ADC} + P_{VR}
```

Where:

- N_{CM} is the number of current monitor blocks
- N_{TM} is the number of temperature monitor blocks
- N_{SDD} is the number of sigma-delta DAC blocks
- NABPS is the number of ABPS blocks
- N_{ADC} is the number of ADC blocks

N_{COMP} is the number of comparator blocks

P_{VR}= P_{AC28}

 $P_{ADC} = P_{AC20A} + P_{AC20B}$

SmartFusion DC and Switching Characteristics

Microsemi

1

Figure 2-3 • Input Buffer Timing Model and Delays (example)

Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings

-1 Speed Grade, Worst Commercial-Case Conditions: $T_J = 85^{\circ}C$, Worst Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx (per standard)

Applicable to FPGA I/O Banks, Assigned to EMC I/O Pins
--

I/O Standard	Drive Strength	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bout} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	35	-	0.50	2.81	0.03	0.81	0.32	2.86	2.23	2.55	2.82	4.58	3.94	ns
2.5 V LVCMOS	12 mA	High	35	-	0.50	2.73	0.03	1.03	0.32	2.88	2.69	2.62	2.70	4.60	4.41	ns
1.8 V LVCMOS	12 mA	High	35	-	0.50	2.81	0.03	0.95	0.32	2.87	2.38	2.92	3.18	4.58	4.10	ns
1.5 V LVCMOS	12 mA	High	35	_	0.50	3.24	0.03	1.12	0.32	3.30	2.79	3.10	3.27	5.02	4.50	ns
3.3 V PCI	Per PCI spec	High	10	25 ¹	0.50	2.11	0.03	0.68	0.32	2.15	1.57	2.55	2.82	3.87	3.28	ns
3.3 V PCI-X	Per PCI-X spec	High	10	25 ¹	0.50	2.11	0.03	0.64	0.32	2.15	1.57	2.55	2.82	3.87	3.28	ns
LVDS	24 mA	High	-	_	0.50	1.53	0.03	1.55	_	-	-	_	-	_	-	ns
LVPECL	24 mA	High	-	-	0.50	1.46	0.03	1.46	_	_	_	-	_	-	-	ns

Notes:

1. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-10 on page 2-39 for connectivity. This resistor is not required during normal operation.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-1 Speed Grade, Worst Commercial-Case Conditions: T_J = 85°C, Worst Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx (per standard)

I/O Standard	Drive Strength	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bouт} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{pYS} (ns)	t _{EOUT} (ns)	t _{zL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	High	10	-	0.18	1.92	0.07	0.78	1.09	0.18	1.96	1.55	1.83	2.04	ns
2.5 V LVCMOS	8 mA	High	10	-	0.18	1.96	0.07	0.99	1.16	0.18	2.00	1.82	1.82	1.93	ns
1.8 V LVCMOS	4 mA	High	10	_	0.18	2.31	0.07	0.91	1.37	0.18	2.35	2.27	1.84	1.87	ns
1.5 V LVCMOS	2 mA	High	10	-	0.18	2.70	0.07	1.07	1.55	0.18	2.75	2.67	1.87	1.85	ns

Notes:

1. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-10 on page 2-39 for connectivity. This resistor is not required during normal operation.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than 2200 operation hours to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-32 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-33 • Schmitt Trigger Input Hysteresis

Hysteresis Voltage Value (typical) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typical)
3.3 V LVTTL / LVCMOS / PCI / PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-34 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS	No requirement	10 ns *	20 years (100°C)
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi SoC Products Group recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Timing Characteristics

Table 2-79 • Register Delays

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.56	0.67	ns
t _{SUD}	Data Setup Time for the Core Register	0.44	0.52	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.46	0.55	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.41	0.49	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.41	0.49	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.23	0.27	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register		0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	0.27	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.22	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.22	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.32	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.36	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-82 • A2F060 Global Resource Worst Commercial-Case Conditions: T_J = 85°C, VCC = 1.425 V

			·1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.75	0.96	0.90	1.15	ns
t _{RCKH}	Input High Delay for Global Clock	0.72	0.98	0.86	1.17	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		1.00		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.31	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

RC Oscillator

The table below describes the electrical characteristics of the RC oscillator.

RC Oscillator Characteristics

Table 2-83 • Electrical Characteristics of the RC Oscillator

Parameter	Description	Condition	Min.	Тур.	Max.	Units
FRC	Operating frequency			100		MHz
	Accuracy	Temperature: –40°C to 100°C Voltage: 3.3 V ± 5%		1		%
	Output jitter	Period jitter (at 5 K cycles)		100		ps RMS
		Cycle-to-cycle jitter (at 5 K cycles)		100		ps RMS
		Period jitter (at 5 K cycles) with 1 KHz / 300 mV peak-to-peak noise on power supply		150		ps RMS
		Cycle-to-cycle jitter (at 5 K cycles) with 1 KHz / 300 mV peak-to-peak noise on power supply		150		ps RMS
	Output duty cycle			50		%
IDYNRC	Operating current	3.3 V domain		1		mA
		1.5 V domain		2		mA

FPGA Fabric SRAM and FIFO Characteristics

FPGA Fabric SRAM

Figure 2-29 • RAM Models

Programmable Analog Specifications

Current Monitor

Unless otherwise noted, current monitor performance is specified at 25°C with nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 91 Ksps, after digital compensation. All results are based on averaging over 16 samples.

 Table 2-93 • Current Monitor Performance Specification

Specification	Test Conditions	Min.	Typical	Max.	Units
Input voltage range (for driving ADC over full range)		0 – 48	0 – 50	1 – 51	mV
Analog gain	From the differential voltage across the input pads to the ADC input		50		V/V
Input referred offset voltage	Input referred offset voltage	0	0.1	0.5	mV
	-40°C to +100°C	0	0.1	0.5	mV
Gain error	Slope of BFSL vs. 50 V/V		±0.1	±0.5	% nom.
	-40°C to +100°C			±0.5	% nom.
Overall Accuracy	Peak error from ideal transfer function, 25°C		±(0.1 + 0.25%)	±(0.4 + 1.5%)	mV plus % reading
Input referred noise	0 VDC input (no output averaging)	0.3	0.4	0.5	mVrms
Common-mode rejection ratio	0 V to 12 VDC common-mode voltage -8		-87		dB
Analog settling time	To 0.1% of final value (with ADC load)				
	From CM_STB (High)	5			μs
	From ADC_START (High)	5		200	μs
Input capacitance			8		pF
Input biased current	CM[n] or TM[n] pad, -40°C to +100°C over maximum input voltage range (plus is into pad)				
	Strobe = 0; IBIAS on CM[n]		0		μA
	Strobe = 1; IBIAS on CM[n]		1		μA
	Strobe = 0; IBIAS on TM[n]		2		μA
	Strobe = 1; IBIAS on TM[n]		1		μA
Power supply rejection ratio	DC (0 – 10 KHz)	41	42		dB
Incremental operational current	VCC33A		150		μA
monitor power supply current requirements (per current monitor	VCC33AP		140		μA
instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: Under no condition should the TM pad ever be greater than 10 mV above the CM pad. This restriction is applicable only if current monitor is used.

SmartFusion Ecosystem

The Microsemi SoC Products Group has a long history of supplying comprehensive FPGA development tools and recognizes the benefit of partnering with industry leaders to deliver the optimum usability and productivity to customers. Taking the same approach with processor development, Microsemi has partnered with key industry leaders in the microcontroller space to provide the robust SmartFusion ecosystem.

Microsemi is partnering with Keil and IAR to provide Software IDE support to SmartFusion system designers. The result is a robust solution that can be easily adopted by developers who are already doing embedded design. The learning path is straightforward for FPGA designers.

Support for the SoC Products Group device and ecosystem resources is represented in Figure 3-3.

Figure 3-3 • SmartFusion Ecosystem

Figure 3-3 shows the SmartFusion stack with examples of drivers, RTOS, and middleware from Microsemi and partners. By leveraging the SmartFusion stack, designers can decide at which level to add their own customization to their design, thus speeding time to market and reducing overhead in the design.

ARM

Because an ARM processor was chosen for SmartFusion cSoCs, Microsemi's customers can benefit from the extensive ARM ecosystem. By building on Microsemi supplied hardware abstraction layer (HAL) and drivers, third party vendors can easily port RTOS and middleware for the SmartFusion cSoC.

- ARM Cortex-M Series Processors
- ARM Cortex-M3 Processor Resource
- ARM Cortex-M3 Technical Reference Manual
- ARM Cortex-M3 Processor Software Development for ARM7TDMI Processor Programmers
 White Paper

Compile and Debug

Microsemi's SoftConsole is a free Eclipse-based IDE that enables the rapid production of C and C++ executables for Microsemi FPGA and cSoCs using Cortex-M3, Cortex-M1 and Core8051s. For SmartFusion support, SoftConsole includes the GNU C/C++ compiler and GDB debugger. Additional examples can be found on the SoftConsole page:

- Using UART with SmartFusion: SoftConsole Standalone Flow Tutorial
 - Design Files
- Displaying POT Level with LEDs: Libero SoC and SoftConsole Flow Tutorial for SmartFusion
 - Design Files

IAR Embedded Workbench[®] for ARM/Cortex is an integrated development environment for building and debugging embedded ARM applications using assembler, C and C++. It includes a project manager, editor, build and debugger tools with support for RTOS-aware debugging on hardware or in a simulator.

- Designing SmartFusion cSoC with IAR Systems
- IAR Embedded Workbench IDE User Guide for ARM
- · Download Evaluation or Kickstart version of IAR Embedded Workbench for ARM

Keil's Microcontroller Development Kit comes in two editions: MDK-ARM and MDK Basic. Both editions feature μ Vision[®], the ARM Compiler, MicroLib, and RTX, but the MDK Basic edition is limited to 256K so that small applications are more affordable.

- Designing SmartFusion cSoC with Keil
- Using Keil µVision and Microsemi SmartFusion cSoC
 - Programming file for use with this tutorial
- Keil Microcontroller Development Kit for ARM Product Manuals
- Download Evaluation version of Keil MDK-ARM

COMPLIANT ARM" Cortex" Microcontroller Software Interface Standard	Microsemi.	An ARM [®] Company	EIAR SYSTEMS
Software IDE	SoftConsole	Vision IDE	Embedded Workbench
Website	www.microsemi.com/soc	www.keil.com	www.iar.com
Free versions from SoC Products Group	Free with Libero SoC	32 K code limited	32 K code limited
Available from Vendor	N/A	Full version	Full version
Compiler	GNU GCC	RealView C/C++	IAR ARM Compiler
Debugger	GDB debug	Vision Debugger	C-SPY Debugger
Instruction Set Simulator	No	Vision Simulator	Yes
Debug Hardware	FlashPro4	ULINK2 or ULINK-ME	J-LINK or J-LINK Lite

Operating Systems

FreeRTOS[™] is a portable, open source, royalty free, mini real-time kernel (a free-to-download and freeto-deploy RTOS that can be used in commercial applications without any requirement to expose your proprietary source code). FreeRTOS is scalable and designed specifically for small embedded systems. This FreeRTOS version ported by Microsemi is 6.0.1. For more information, visit the FreeRTOS website: www.freertos.org

- SmartFusion Webserver Demo Using uIP and FreeRTOS
- SmartFusion cSoC: Running Webserver, TFTP on IwIP TCP/IP Stack Application Note

Re-Programming the eNVM Blocks Using the Cortex-M3

In this mode the Cortex-M3 is executing the eNVM programming algorithm from eSRAM. Since individual pages (132 bytes) of the eNVM can be write-protected, the programming algorithm software can be protected from inadvertent erasure. When reprogramming the eNVM, both MSS I/Os and FPGA I/Os are available as interfaces for sourcing the new eNVM image. The SoC Products Group provides working example projects for SoftConsole, IAR, and Keil development environments. These can be downloaded via the SoC Products Group Firmware Catalog.

Alternately, the eNVM can be reprogrammed by the Cortex-M3 via the IAP driver. This is necessary when using an encrypted image.

Secure Programming

For background, refer to the "Security in Low Power Flash Devices" chapter of the *Fusion FPGA Fabric User's Guide* on the SoC Products Group website. SmartFusion ISP behaves identically to Fusion ISP. IAP of SmartFusion cSoCs is accomplished by using the IAP driver. Only the FPGA fabric and the eNVM can be reprogrammed with the protection of security measures by using the IAP driver.

Typical Programming and Erase Times

Table 4-3 documents the typical programming and erase times for two components of SmartFusion cSoCs, FPGA fabric and eNVM, using the SoC Products Group's FlashPro hardware and software. These times will be different for other ISP and IAP methods. The **Program** action in FlashPro software includes erase, program, and verify to complete.

The typical programming (including erase) time per page of the eNVM is 8 ms.

	FPGA Fabric (seconds)			eNVM (seconds)			FlashROM (seconds)		
	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500
Erase	21	21	21	N/A	N/A	N/A	21	21	21
Program	28	35	48	18	39	71	22	22	22
Verify	2	6	12	9	18	37	1	1	1

Table 4-3 • Typical Programming and Erase Times

References

User's Guides

DirectC User's Guide

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132588 In-System Programming (ISP) of Microsemi's Low-Power Flash Devices Using FlashPro4/3/3X http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129973 Programming Flash Devices HandBook

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129930

Application Notes on IAP Programming Technique

SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming Interface App Note

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129818 SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface App Note http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823

5 – Pin Descriptions

Supply Pins

Name	Туре	Description
GND	Ground	Digital ground to the FPGA fabric, microcontroller subsystem and GPIOs
GND15ADC0	Ground	Quiet analog ground to the 1.5 V circuitry of the first analog-to-digital converter (ADC)
GND15ADC1	Ground	Quiet analog ground to the 1.5 V circuitry of the second ADC
GND15ADC2	Ground	Quite analog ground to the 1.5 V circuitry of the third ADC
GND33ADC0	Ground	Quiet analog ground to the 3.3 V circuitry of the first ADC
GND33ADC1	Ground	Quiet analog ground to the 3.3 V circuitry of the second ADC
GND33ADC2	Ground	Quiet analog ground to the 3.3 V circuitry of the third ADC
GNDA	Ground	Quiet analog ground to the analog front-end
GNDAQ	Ground	Quiet analog ground to the analog I/O of SmartFusion cSoCs
GNDENVM	Ground	Digital ground to the embedded nonvolatile memory (eNVM)
GNDLPXTAL	Ground	Analog ground to the low power 32 KHz crystal oscillator circuitry
GNDMAINXTAL	Ground	Analog ground to the main crystal oscillator circuitry
GNDQ	Ground	Quiet digital ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND.
GNDRCOSC	Ground	Analog ground to the integrated RC oscillator circuit
GNDSDD0	Ground	Analog ground to the first sigma-delta DAC
GNDSDD1	Ground	Common analog ground to the second and third sigma-delta DACs
GNDTM0	Ground	Analog temperature monitor common ground for signal conditioning blocks SCB 0 and SCB 1 (see information for pins "TM0" and "TM1" in the "Analog Front-End (AFE)" section on page 5-14).
GNDTM1	Ground	Analog temperature monitor common ground for signal conditioning block SCB 2 and SBCB 3 (see information for pins "TM2" and "TM3" in the "Analog Front-End (AFE)" section on page 5-14).
GNDTM2	Ground	Analog temperature monitor common ground for signal conditioning block SCB4
GNDVAREF	Ground	Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.
VCC	Supply	Digital supply to the FPGA fabric and MSS, nominally 1.5 V. VCC is also required for powering the JTAG state machine, in addition to VJTAG. Even when a SmartFusion cSoC is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the SmartFusion cSoC.

Notes:

1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33ADCx, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL.

2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.

3. For more details on VCCPLLx capacitor recommendations, refer to the application note AC359, SmartFusion cSoC Board Design Guidelines, the "PLL Power Supply Decoupling Scheme" section.

			Associat	ted With
Name	Туре	Description	ADC/SDD	SCB
TM0	In	SCB 0 / low side of current monitor / comparator	ADC0	SCB0
		Negative input / high side of temperature monitor. See the Temperature Monitor section.		
TM1	In	SCB 1 / low side of current monitor / comparator. Negative input / high side of temperature monitor.	ADC0	SCB1
TM2	In	SCB 2 / low side of current monitor / comparator. Negative input / high side of temperature monitor.	ADC1	SCB2
ТМ3	In	SCB 3 low side of current monitor / comparator. Negative input / high side of temperature monitor.	ADC1	SCB3
TM4	In	SCB 4 low side of current monitor / comparator. Negative input / high side of temperature monitor.	ADC2	SCB4
SDD0	Out	Output of SDD0	SDD0	N/A
		See the Sigma-Delta Digital-to-Analog Converter (DAC) section in the <i>SmartFusion Programmable Analog User's Guide</i> .		
SDD1	Out	Output of SDD1	SDD1	N/A
SDD2	Out	Output of SDD2	SDD2	N/A

Note: Unused analog inputs should be grounded. This aids in shielding and prevents an undesired coupling path.

Pin Assignment Tables

TQ144

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

	TQ144
Pin Number	A2F060 Function
73	VCC33A
74	PTEM
75	PTBASE
76	SPI_0_DO/GPIO_16
77	SPI_0_DI/GPIO_17
78	SPI_0_CLK/GPIO_18
79	SPI_0_SS/GPIO_19
80	UART_0_RXD/GPIO_21
81	UART_0_TXD/GPIO_20
82	UART_1_RXD/GPIO_29
83	UART_1_TXD/GPIO_28
84	VCC
85	VCCMSSIOB2
86	GND
87	I2C_1_SDA/GPIO_30
88	I2C_1_SCL/GPIO_31
89	I2C_0_SDA/GPIO_22
90	I2C_0_SCL/GPIO_23
91	GNDENVM
92	VCCENVM
93	JTAGSEL
94	ТСК
95	TDI
96	TMS
97	TDO
98	TRSTB
99	VJTAG
100	VDDBAT
101	VCCLPXTAL
102	LPXOUT
103	LPXIN
104	GNDLPXTAL
105	GNDMAINXTAL
106	MAINXOUT
107	MAINXIN
108	VCCMAINXTAL

Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Revision	Changes	Page
Revision 10 (continued)	Corrected the Start-up time unit from "ms" to "µs" in Table 2-99 • Voltage Regulator (SAR 39395).	2-87
	Added the "References" section for "SmartFusion Development Tools" (SAR 43460).	3-1
	Updated the "References" section for Programming (SAR 43304). Added the "Application Notes on IAP Programming Technique" section (SAR 43458).	4-9
	A note was added to the "Supply Pins" table, referring to the <i>SmartFusion cSoC Board Design Guidelines</i> application note for details on VCCPLLx capacitor recommendations (SAR 42183).	5-1
	In the "Supply Pins" section, the VPP capacitor value section has been modified to: "For proper programming, 0.01μ F, and 0.1μ F to 1μ F capacitors, (both rated at 16 V) are to be connected in parallel across VPP and GND, and positioned as close to the FPGA pins as possible." (SAR 43569).	5-1
	In the "User-Defined Supply Pins" section, added description 'These pins are located in Bank-2 (GPIO_16 to GPIO_31) for A2F060, A2F200, and A2F500 devices.' for GPIO_x (SAR 28595).	5-5
	Updated the MAINXIN and MAINXOUT pin descriptions in the "Special Function Pins" section to read "If an external RC network or clock input is used, the RC components are connected to the MAINXIN pin, with MAINXOUT left floating. When the main crystal oscillator is not being used, MAINXIN and MAINXOUT pins can be left floating." (SAR 42807).	5-8
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 9 (September 2012)	The number of signal conditioning blocks (SCBs) for A2F500 in the "SmartFusion cSoC Family Product Table" was corrected to 4. Previously it had incorrectly been listed as 2 (SAR 39536).	Ш
	The "Product Ordering Codes" section was revised to clarify that only one eNVM size for each device is currently available (SAR 40333).	VI
	Information pertaining to analog I/Os was added to the "Specifying I/O States During Programming" section on page 1-3 (SAR 34836).	1-3
	The formulas in the table notes for Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34757).	2-27
	Maximum values for VIL and VIH were corrected in LVPECL Table 2-66 • Minimum and Maximum DC Input and Output Levels (SAR 37695).	2-43
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 29270).	2-59
	The temperature range for accuracy in Table 2-83 • Electrical Characteristics of the RC Oscillator was changed from "0°C to 85°C" to "-40°C to 100°C" (SAR 33670). The units for jitter were changed from ps to ps RMS (SAR 34270).	2-61
	In Table 2-84 • Electrical Characteristics of the Main Crystal Oscillator, the output jitter for the 10 MHz crystal was corrected from 50 ps RMS to 1 ns RS (SAR 32939). Values for the startup time of VILXTAL were added (SAR 25248).	2-62
	In Table 2-85 • Electrical Characteristics of the Low Power Oscillator, output jitter was changed from 50 ps RMS to 30 ps RMS (SAR 32939). A value for ISTBXTAL standby current was added (SAR 25249). Startup time for a test load of 30 pF was added (SAR 27436).	2-62