

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active	
Architecture	MCU, FPGA	
Core Processor	ARM® Cortex®-M3	
Flash Size	512KB	
RAM Size	64KB	
Peripherals	DMA, POR, WDT	
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART	
Speed	80MHz	
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops	
Operating Temperature	-40°C ~ 100°C (TJ)	
Package / Case	288-TFBGA, CSPBGA	
Supplier Device Package	288-CSP (11x11)	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-cs288i	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Datasheet Categories			
Microsemi SoC Products Group Safety Critic			

VCCxxxxIOBx Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCxxxxIOBx ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up osc

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Standby Mode and Time Keeping Mode

 $P_{NET} = 0 W$

I/O Input Buffer Dynamic Contribution—PINPUTS

SoC Mode

 $\mathsf{P}_{\mathsf{INPUTS}}$ = $\mathsf{N}_{\mathsf{INPUTS}}$ * $(\alpha_2$ / 2) * $\mathsf{P}_{\mathsf{AC9}}$ * $\mathsf{F}_{\mathsf{CLK}}$ Where:

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

P_{INPUTS} = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

SoC Mode

 $\mathsf{P}_{OUTPUTS} = \mathsf{N}_{OUTPUTS} * (\alpha_2 / 2) * \beta_1 * \mathsf{P}_{AC10} * \mathsf{F}_{CLK}$ Where:

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-17 on page 2-18.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-18 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

P_{OUTPUTS} = 0 W

FPGA Fabric SRAM Dynamic Contribution—P_{MEMORY}

SoC Mode

 $P_{MEMORY} = (N_{BLOCKS} * P_{AC11} * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * P_{AC12} * \beta_3 * F_{WRITE-CLOCK})$ Where:

N_{BLOCKS} is the number of RAM blocks used in the design.

 $F_{READ-CLOCK}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 2-18 on page 2-18.

 β_3 the RAM enable rate for write operations—guidelines are provided in Table 2-18 on page 2-18. F_{WRITE-CLOCK} is the memory write clock frequency.

Standby Mode and Time Keeping Mode

P_{MEMORY} = 0 W

PLL/CCC Dynamic Contribution—P_{PLL}

SoC Mode

P_{PLL} = P_{AC13} * F_{CLKOUT}

F_{CLKIN} is the input clock frequency.

F_{CLKOUT} is the output clock frequency.¹

Standby Mode and Time Keeping Mode

^{1.} The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

Summary of I/O Timing Characteristics – Default I/O Software Settings

SmartFusion Customizable System-on-Chip (cSoC)

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

SmartFusion Customizable System-on-Chip (cSoC)

Pin		CS288		
No.	A2F060 Function	A2F200 Function	A2F500 Function	
K17	GNDLPXTAL	GNDLPXTAL	GNDLPXTAL	
K19	GNDMAINXTAL	GNDMAINXTAL	GNDMAINXTAL	
K21	MAINXIN	MAINXIN	MAINXIN	
L1	GNDRCOSC	GNDRCOSC	GNDRCOSC	
L3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5	
L5	EMC_DB[2]/IO37NPB5VO	EMC_DB[2]/IO60NPB5V0	EMC_DB[2]/IO77NPB5VO	
L6	NC	GNDQ	GNDQ	
L8	VCC	VCC	VCC	
L9	GND	GND	GND	
L10	VCC	VCC	VCC	
L12	VCC	VCC	VCC	
L13 GND		GND	GND	
L14	VCC	VCC	VCC	
L16	VCCLPXTAL	VCCLPXTAL	VCCLPXTAL	
L17	VDDBAT	VDDBAT	VDDBAT	
L19	LPXIN	LPXIN	LPXIN	
L21	MAINXOUT	MAINXOUT	MAINXOUT	
M1	VCCRCOSC	VCCRCOSC	VCCRCOSC	
M3	MSS_RESET_N	MSS_R ESET_N	MSS_RESET_N	
M5	GPIO_5/IO28RSB4VO	GPIO_5/IO42RSB4VO	GPIO_5/IO51RSB4VO	
M6	GND	GND	GND	
M8	GND	GND	GND	
M9	VCC	VCC	VCC	
M10	GND	GND	GND	
M11	VCC	VCC	VCC	
M12	GND	GND	GND	
M13	VCC	VCC	VCC	
M14	GND	GND	GND	
M16	TMS	TMS	TMS	
M17	VJTAG	VJTAG	VJTAG	
M19	TDO	TDO	TDO	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the Glitchless MUX section in SineartFusion Microcontroller Subsystem User s Goodemore details.

SmartFusion Customizable System-on-Chip (cSoC)

Pin	FG256		
No.	A2F060 Function	A2F200 Function	A2F500 Function
M11	ADC6	TM2	TM2
M12	ADC5	CM2	CM2
M13	SPI_0_SS/GPI0_19	SPI_O_SS/GPIO_19	SPI_0_SS/GPI0_19
M14	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
M15	SPI_0_CLK/GPI0_18	SPI_0_CLK/GPI0_18	SPI_0_CLK/GPI0_18
M16	SPI_O_DI/GPIO_17	SPI_0_DI/GPI0_17	SPI_O_DI/GPIO_17
N1	GPIO_8/IO25RSB4VO	MAC_RXD[1]/I053RSB4V0	MAC_RXD[1]/IO62RSB4VO
N2	VCCMSSIOB4	VCCMSSIOB4	VCCMSSIOB4
N3	VCC15A	VCC15A	VCC15A
N4	VCC33AP	VCC33AP	VCC33AP
N5	NC	ABPS3	ABPS3
N6	ADC4	TM1	TM1
N7	NC	GND33ADCO	GND33ADCO
N8	VCC33ADC0	VCC33ADC1	VCC33ADC1
N9	ADC8	ADC5	ADC5
N10	СМО	CM3	CM3
N11	GNDAQ	GNDAQ	GNDAQ
N12	VAREFOUT	VAREFOUT	VAREFOUT
N13	NC	GNDSDD1	GNDSDD1
N14	NC	VCC33SDD1	VCC33SDD1
N15	GND	GND	GND
N16	SPI_0_DO/GPI0_16	SPI_0_DO/GPI0_16	SPI_0_DO/GPI0_16
P1	GNDSDDO	GNDSDDO	GNDSDDO
P2	VCC33SDDO	VCC33SDDO	VCC33SDD0
Р3	VCC33N	VCC33N	VCC33N
P4	GNDA	GNDA	GNDA
P5	GNDAQ	GNDAQ	GNDAQ
P6	NC	CM1	CM1
P7	NC	ADC2	ADC2
P8	NC	VCC15ADCO	VCC15ADCO
P9	ADC9	ADC6	ADC6

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the apina CLKBUF/CLKBUF_LVPECL /CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the Glitchless MUX section in \$heartFusion Microcontroller Subsystem User s Guidemore details.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484		
Pin Number	A2F200 Function	A2F500 Function	
H7	GND	GND	
H8	VCC	VCC	
H9	GND	GND	
H10	VCC	VCC	
H11	GND	GND	
H12	VCC	VCC	
H13	GND	GND	
H14	VCC	VCC	
H15	GND	GND	
H16	VCCFPGAIOB1	VCCFPGAIOB1	
H17	IO25NDB1VO	IO29NDB1VO	
H18	GCC2/IO25PDB1VO	GCC2/IO29PDB1VO	
H19	GND	GND	
H20	GCCO/IO26NPB1VO	GCCO/IO35NPB1VO	
H21	VCCFPGAIOB1	VCCFPGAIOB1	
H22	GCBO/IO27NDB1VO	GCBO/IO34NDB1VO	
J1	EMC_DB[6]/GEBO/IO62NDB5VO	EMC_DB[6]/GEB0/I079NDB5V0	
J2	EMC_DB[5]/GEA1/IO61PDB5VO	EMC_DB[5]/GEA1/IO78PDB5VO	
J3	EMC_DB[4]/GEAO/IO61NDB5VO	EMC_DB[4]/GEAO/IO78NDB5VO	
J4	EMC_DB[3]/GEC2/IO60PPB5V0	EMC_DB[3]/GEC2/IO77PPB5VO	
J5	VCCFPGAIOB5	VCCFPGAIOB5	
J6	GFAO/IO64NDB5VO	GFAO/IO81NDB5VO	
J7	VCCFPGAIOB5	VCCFPGAIOB5	
18	GND	GND	
Jð	VCC	VCC	
J10	GND	GND	
J11	VCC	VCC	
J12	GND	GND	
J13	VCC	VCC	
J14	GND	GND	
J15	VCC	VCC	
J16	GND	GND	
J17	NC	IO37PDB1VO	
J18	VCCFPGAIOB1	VCCFPGAIOB1	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the Glitchless MUX section inSthertFusion Microcontroller Subsystem User s Guidemore details.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "SmartFusion cSoC Device Status" table on page III, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Microsemi SoC Products Group Safety Critical, Life Support, and High-Reliability Applications Policy

The SoC Products Group products described in this advance status document may not have completed the SoC Products Group's qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the SoC Products Group's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available on the SoC Products Group website at:

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131372. Microsemi SoC Products Group also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local SoC Products Group sales office for additional reliability information.