

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

E-XF

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timing Characteristics

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	7.20	0.04	0.97	0.39	7.34	6.18	2.52	2.46	9.39	8.23	ns
	-1	0.50	6.00	0.03	0.81	0.32	6.11	5.15	2.10	2.05	7.83	6.86	ns
8 mA	Std.	0.60	4.64	0.04	0.97	0.39	4.73	3.84	2.85	3.02	6.79	5.90	ns
	–1	0.50	3.87	0.03	0.81	0.32	3.94	3.20	2.37	2.52	5.65	4.91	ns
12 mA	Std.	0.60	3.37	0.04	0.97	0.39	3.43	2.67	3.07	3.39	5.49	4.73	ns
	-1	0.50	2.81	0.03	0.81	0.32	2.86	2.23	2.55	2.82	4.58	3.94	ns
16 mA	Std.	0.60	3.18	0.04	0.97	0.39	3.24	2.43	3.11	3.48	5.30	4.49	ns
	-1	0.50	2.65	0.03	0.81	0.32	2.70	2.03	2.59	2.90	4.42	3.74	ns
24 mA	Std.	0.60	2.93	0.04	0.97	0.39	2.99	2.03	3.17	3.83	5.05	4.09	ns
	-1	0.50	2.45	0.03	0.81	0.32	2.49	1.69	2.64	3.19	4.21	3.41	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	9.75	0.04	0.97	0.39	9.93	8.22	2.52	2.31	11.99	10.28	ns
	-1	0.50	8.12	0.03	0.81	0.32	8.27	6.85	2.10	1.93	9.99	8.57	ns
8 mA	Std.	0.60	6.96	0.04	0.97	0.39	7.09	5.85	2.84	2.87	9.15	7.91	ns
	-1	0.50	5.80	0.03	0.81	0.32	5.91	4.88	2.37	2.39	7.62	6.59	ns
12 mA	Std.	0.60	5.35	0.04	0.97	0.39	5.45	4.58	3.06	3.23	7.51	6.64	ns
	-1	0.50	4.46	0.03	0.81	0.32	4.54	3.82	2.55	2.69	6.26	5.53	ns
16 mA	Std.	0.60	5.01	0.04	0.97	0.39	5.10	4.30	3.11	3.32	7.16	6.36	ns
	-1	0.50	4.17	0.03	0.81	0.32	4.25	3.58	2.59	2.77	5.97	5.30	ns
24 mA	Std.	0.60	4.67	0.04	0.97	0.39	4.75	4.28	3.16	3.66	6.81	6.34	ns
	-1	0.50	3.89	0.03	0.81	0.32	3.96	3.57	2.64	3.05	5.68	5.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 3.0 V Applicable to MSS I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
8 mA	Std.	0.22	2.31	0.09	0.94	1.30	0.22	2.35	1.86	2.20	2.45	ns
	–1	0.18	1.92	0.07	0.78	1.09	0.18	1.96	1.55	1.83	2.04	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-69 • Parameter Definition and Measuring Nodes

* See Figure 2-14 on page 2-44 for more information.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-15 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

SmartFusion DC and Switching Characteristics

Figure 2-20 • Input DDR Timing Diagram

Timing Characteristics

Table 2-75 • Input DDR Propagation Delays Worst Commercial-Case Conditions: T_J = 85°C, Worst Case VCC = 1.425 V

Parameter	Description	-1	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.39	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.28	ns
t _{DDRISUD}	Data Setup for Input DDR	0.29	ns
t _{DDRIHD}	Data Hold for Input DDR	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.58	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.47	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery time for Input DDR	0.23	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.36	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	350	MHz

Note: For derating values at specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

SmartFusion DC and Switching Characteristics

Figure	2-22 •	Output	DDR	Timing	Diagram
, iguic		Output			, Diagrain

Timing Characteristics

Table 2-77 • Output DDR Propagation Delays Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.71	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.81	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	350	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The SmartFusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO/e, Fusion, ProASIC3/E, and SmartFusion Macro Library Guide*.

Figure 2-23 • Sample of Combinatorial Cells

Timing Characteristics

worst com						
Combinatorial Cell	Equation	Parameter	-1	Std.	Units	
INV	Y = !A	t _{PD}	0.41	0.49	ns	
AND2	$Y = A \cdot B$	t _{PD}	0.48	0.57	ns	
NAND2	Y = !(A · B)	t _{PD}	0.48	0.57	ns	
OR2	Y = A + B	t _{PD}	0.49	0.59	ns	
NOR2	Y = !(A + B)	t _{PD}	0.49	0.59	ns	
XOR2	Y = A ⊕ B	t _{PD}	0.75	0.90	ns	
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.71	0.85	ns	
XOR3	$Y=A\oplusB\oplusC$	t _{PD}	0.89	1.07	ns	
MUX2	Y = A !S + B S	t _{PD}	0.51	0.62	ns	
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.57	0.68	ns	

Table 2-78 • Combinatorial Cell Propagation Delays Worst Commercial-Case Conditions: T = 85°C. Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

VersaTile Specifications as a Sequential Module

The SmartFusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *IGLOO/e, Fusion, ProASIC3/E, and SmartFusion Macro Library Guide*.

Figure 2-25 • Sample of Sequential Cells

Global Resource Characteristics

A2F200 Clock Tree Topology

Clock delays are device-specific. Figure 2-27 is an example of a global tree used for clock routing. The global tree presented in Figure 2-27 is driven by a CCC located on the west side of the A2F200 device. It is used to drive all D-flip-flops in the device.

Figure 2-27 • Example of Global Tree Use in an A2F200 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-63. Table 2-80 through Table 2-82 on page 2-61 present minimum and maximum global clock delays for the SmartFusion cSoCs. Minimum and maximum delays are measured with minimum and maximum loading.

SmartFusion DC and Switching Characteristics

Table 2-95 • ADC Specifications (continued)

Specification	Test Conditions	Min.	Тур.	Max.	Units
Input leakage current	–40°C to +100°C		1		μA
Power supply rejection ratio	DC	44	53		dB
ADC power supply operational current	VCC33ADCx			2.5	mA
requirements	VCC15A			2	mA

Note: All 3.3 V supplies are tied together and varied from 3.0 V to 3.6 V. 1.5 V supplies are held constant.

Analog Bipolar Prescaler (ABPS)

With the ABPS set to its high range setting (GDEC = 00), a hypothetical input voltage in the range -15.36 V to +15.36 V is scaled and offset by the ABPS input amplifier to match the ADC full range of 0 V to 2.56 V using a nominal gain of -0.08333 V/V. However, due to reliability considerations, the voltage applied to the ABPS input should never be outside the range of -11.5 V to +14.4 V, restricting the usable ADC input voltage to 2.238 V to 0.080 V and the corresponding 12-bit output codes to the range of 3581 to 128 (decimal), respectively.

Unless otherwise noted, ABPS performance is specified at 25°C with nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 100 KHz sampling frequency, after trimming and digital compensation; and applies to all ranges.

Specification	Test Conditions	Min.	Тур.	Max.	Units
Input voltage range (for driving ADC	GDEC[1:0] = 11		±2.56		V
over its full range)	GDEC[1:0] = 10		±5.12		V
	GDEC[1:0] = 01		±10.24		V
	GDEC[1:0] = 00 (limited by maximum rating)		See note 1		V
Analog gain (from input pad to ADC	GDEC[1:0] = 11		-0.5		V/V
input)	GDEC[1:0] = 10		-0.25		V/V
	GDEC[1:0] = 01		-0.125		V/V
	GDEC[1:0] = 00		-0.0833		V/V
Gain error		-2.8	-0.4	0.7	%
	–40°C to +100°C	-2.8	-0.4	0.7	%

Table 2-96 • ABPS Performance Specifications

Note: *FS is full-scale error, defined as the difference between the actual value that triggers the transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error. Refer to the Analog-to-Digital Converter chapter of the SmartFusion Programmable Analog User's Guide for more information.

static Microsemi.

SmartFusion DC and Switching Characteristics

Comparator

Unless otherwise specified, performance is specified at 25°C with nominal power supply voltages.

Table 2-97 • Compara	or Performance Specifications
----------------------	-------------------------------

Specification	Test Conditions			Тур.	Max.	Units
Input voltage range	Minimum			0		V
	Maximum		2.56		V	
Input offset voltage	HYS[1:0] = 00	HYS[1:0] = 00			±3	mV
	(no hysteresis)	(no hysteresis)				
Input bias current	Comparator 1,	3, 5, 7, 9 (measured at 2.56 V)		40	100	nA
	Comparator 0, 2, 4, 6, 8 (measured at 2.56 V)			150	300	nA
Input resistance			10			MΩ
Power supply rejection ratio	DC (0 – 10 KH:	z)	50	60		dB
Propagation delay	100 mV overdr	ve				
	HYS[1:0] = 00					
	(no hysteresis)			15	18	ns
	100 mV overdrive					
	HYS[1:0] = 10					
	(with hysteresis)			25	30	ns
Hysteresis	HYS[1:0] = 00	Typical (25°C)	0	0	±5	mV
(± refers to rising and falling		Across all corners (-40°C to +100°C)	0		±5	mV
(intestiola sinits, respectively)	HYS[1:0] = 01	Typical (25°C)	±3	± 16	±30	mV
		Across all corners (–40°C to +100°C)	0		±36	mV
	HYS[1:0] = 10	Typical (25°C)	±19	± 31	±48	mV
		Across all corners (-40°C to +100°C)	±12		±54	mV
	HYS[1:0] = 11	Typical (25°C)	±80	± 105	±190	mV
		Across all corners (-40°C to +100°C)	±80		±194	mV
Comparator current	VCC33A = 3.3 V (operational mode); COMP_EN = 1					<u>.</u>
requirements (per comparator)	VCC33A			150	165	μA
u /	VCC33AP			140	165	μA
	VCC15A		1	3	μA	

 Flash File System (RL-Flash) allows your embedded applications to create, save, read, and modify files in standard storage devices such as ROM, RAM, or FlashROM, using a standard serial peripheral interface (SPI). Many ARM-based microcontrollers have a practical requirement for a standard file system. With RL-FlashFS you can implement new features in embedded applications such as data logging, storing program state during standby modes, or storing firmware upgrades.

Micrium, in addition to $\mu C/OS-III^{(R)}$, offers the following support for SmartFusion cSoC:

- µC/TCP-IP[™] is a compact, reliable, and high-performance stack built from the ground up by Micrium and has the quality, scalability, and reliability that translates into a rapid configuration of network options, remarkable ease-of-use, and rapid time-to-market.
- µC/Probe[™] is one of the most useful tools in embedded systems design and puts you in the driver's seat, allowing you to take charge of virtually any variable, memory location, and I/O port in your embedded product, while your system is running.

References

PCB Files

A2F500 SmartFusion Development Kit PCB Files http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130770 A2F200 SmartFusion Development Kit PCB Files http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130773

Application Notes

SmartFusion cSoC Board Design Guidelines http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129815

Re-Programming the eNVM Blocks Using the Cortex-M3

In this mode the Cortex-M3 is executing the eNVM programming algorithm from eSRAM. Since individual pages (132 bytes) of the eNVM can be write-protected, the programming algorithm software can be protected from inadvertent erasure. When reprogramming the eNVM, both MSS I/Os and FPGA I/Os are available as interfaces for sourcing the new eNVM image. The SoC Products Group provides working example projects for SoftConsole, IAR, and Keil development environments. These can be downloaded via the SoC Products Group Firmware Catalog.

Alternately, the eNVM can be reprogrammed by the Cortex-M3 via the IAP driver. This is necessary when using an encrypted image.

Secure Programming

For background, refer to the "Security in Low Power Flash Devices" chapter of the *Fusion FPGA Fabric User's Guide* on the SoC Products Group website. SmartFusion ISP behaves identically to Fusion ISP. IAP of SmartFusion cSoCs is accomplished by using the IAP driver. Only the FPGA fabric and the eNVM can be reprogrammed with the protection of security measures by using the IAP driver.

Typical Programming and Erase Times

Table 4-3 documents the typical programming and erase times for two components of SmartFusion cSoCs, FPGA fabric and eNVM, using the SoC Products Group's FlashPro hardware and software. These times will be different for other ISP and IAP methods. The **Program** action in FlashPro software includes erase, program, and verify to complete.

The typical programming (including erase) time per page of the eNVM is 8 ms.

	FPGA Fabric (seconds)			eNVM (seconds)			FlashROM (seconds)		
	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500	A2F060	A2F200	A2F500
Erase	21	21	21	N/A	N/A	N/A	21	21	21
Program	28	35	48	18	39	71	22	22	22
Verify	2	6	12	9	18	37	1	1	1

Table 4-3 • Typical Programming and Erase Times

References

User's Guides

DirectC User's Guide

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132588 In-System Programming (ISP) of Microsemi's Low-Power Flash Devices Using FlashPro4/3/3X http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129973 Programming Flash Devices HandBook

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129930

Application Notes on IAP Programming Technique

SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming Interface App Note

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129818 SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface App Note http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129823

Pin Descriptions

Name	Туре	Description
VJTAG	Supply	Digital supply to the JTAG controller
		SmartFusion cSoCs have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the V_{JTAG} pin together with the TRSTB pin could be tied to GND. Note that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a SmartFusion cSoC is in a JTAG chain of interconnected boards and it is desired to power down the board containing the device, this can be done provided both VJTAG and VCC to the device remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode. See "JTAG Pins" section on page 5-10.
VPP	Supply	Digital programming circuitry supply
		SmartFusion cSoCs support single-voltage in-system programming (ISP) of the configuration flash, embedded FlashROM (eFROM), and embedded nonvolatile memory (eNVM).
		For programming, VPP should be in the 3.3 V \pm 5% range. During normal device operation, VPP can be left floating or can be tied to any voltage between 0 V and 3.6 V. When the VPP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. For proper programming, 0.01µF, and 0.1µF to 1µF capacitors, (both rated at 16 V) are to be connected in parallel across VPP and GND, and positioned as close to the FPGA pins as possible.

Notes:

1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33ADCx, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL.

2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.

3. For more details on VCCPLLx capacitor recommendations, refer to the application note AC359, SmartFusion cSoC Board Design Guidelines, the "PLL Power Supply Decoupling Scheme" section.

Pin Descriptions

Analog Front-End (AFE)

			Associated With	
Name	Туре	Description	ADC/SDD	SCB
ABPS0	In	SCB 0 / active bipolar prescaler input 1. See the Active Bipolar Prescaler (ABPS) section in the <i>SmartFusion</i> <i>Programmable Analog User's Guide</i> .	ADC0	SCB0
ABPS1	In	SCB 0 / active bipolar prescaler Input 2	ADC0	SCB0
ABPS2	In	SCB 1 / active bipolar prescaler Input 1	ADC0	SCB1
ABPS3	In	SCB 1 / active bipolar prescaler Input 2	ADC0	SCB1
ABPS4	In	SCB 2 / active bipolar prescaler Input 1	ADC1	SCB2
ABPS5	In	SCB 2 / active bipolar prescaler Input 2	ADC1	SCB2
ABPS6	In	SCB 3 / active bipolar prescaler Input 1	ADC1	SCB3
ABPS7	In	SCB 3 / active bipolar prescaler input 2	ADC1	SCB3
ABPS8	In	SCB 4 / active bipolar prescaler input 1	ADC2	SCB4
ABPS9	In	SCB 4 / active bipolar prescaler input 2	ADC2	SCB4
ADC0	In	ADC 0 direct input 0 / FPGA Input. See the "Sigma-Delta Digital-to-Analog Converter (DAC)" section in the <i>SmartFusion Programmable Analog User's Guide</i> .	ADC0	SCB0
ADC1	In	ADC 0 direct input 1 / FPGA input	ADC0	SCB0
ADC2	In	ADC 0 direct input 2 / FPGA input	ADC0	SCB1
ADC3	In	ADC 0 direct input 3 / FPGA input	ADC0	SCB1
ADC4	In	ADC 1 direct input 0 / FPGA input	ADC1	SCB2
ADC5	In	ADC 1 direct input 1 / FPGA input	ADC1	SCB2
ADC6	In	ADC 1 direct input 2 / FPGA input	ADC1	SCB3
ADC7	In	ADC 1 direct input 3 / FPGA input	ADC1	SCB3
ADC8	In	ADC 2 direct input 0 / FPGA input	ADC2	SCB4
ADC9	In	ADC 2 direct input 1 / FPGA input	ADC2	SCB4
ADC10	In	ADC 2 direct input 2 / FPGA input	ADC2	N/A
ADC11	In	ADC 2 direct input 3 / FPGA input	ADC2	N/A
CM0	In	SCB 0 / high side of current monitor / comparator Positive input. See the Current Monitor section in the <i>SmartFusion</i> <i>Programmable Analog User's Guide</i> .	ADC0	SCB0
CM1	In	SCB 1 / high side of current monitor / comparator. Positive input.	ADC0	SCB1
CM2	In	SCB 2 / high side of current monitor / comparator. Positive input.	ADC1	SCB2
CM3	In	SCB 3 / high side of current monitor / comparator. Positive input.	ADC1	SCB3
CM4	In	SCB 4 / high side of current monitor / comparator. Positive input.	ADC2	SCB4

Note: Unused analog inputs should be grounded. This aids in shielding and prevents an undesired coupling path.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
SDD2	ADC2_CH15								SDD2_OUT
TM0	ADC0_CH4	Yes		CM0_L	TM0_IO	CMP0_N			
TM1	ADC0_CH8	Yes		CM1_L	TM1_IO	CMP2_N			
TM2	ADC1_CH4	Yes		CM2_L	TM2_IO	CMP4_N			
TM3	ADC1_CH8	Yes		CM3_L	TM3_IO	CMP6_N			
TM4	ADC2_CH4	Yes		CM4_L	TM4_IO	CMP8_N			

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

- 3. TMx_IO: Temperature monitor channel x.
- 4. CMPx_P/N: Comparator channel x, positive/negative input.
- 5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

Pin Assignment Tables

TQ144

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

CS288 Pin A2F060 Function A2F200 Function A2E500 Eunction No. IO17NDB0V0 GBA2/IO20PDB1V0 GBA2/IO27PDB1V0 C21 EMC DB[14]/IO45NDB5V0 EMC DB[14]/GAB2/IO71NDB5V0 EMC DB[14]/GAB2/IO88NDB5V0 D1 D3 VCCFPGAIOB5 VCCFPGAIOB5 VCCFPGAIOB5 D19 GND GND GND VCCFPGAIOB1 D21 VCCFPGAIOB1 VCCFPGAIOB1 EMC DB[13]/GAC2/IO70PDB5V0 EMC DB[13]/GAC2/IO87PDB5V0 E1 EMC DB[13]/IO44PDB5V0 EMC DB[12]/IO44NDB5V0 EMC DB[12]/IO70NDB5V0 EMC DB[12]/IO87NDB5V0 E3 E5 GNDQ GNDQ GNDQ EMC BYTEN[0]/IO02NDB0V0 EMC BYTEN[0]/GAC0/IO02NDB0V0 EMC BYTEN[0]/GAC0/IO07NDB0V0 E6 EMC BYTEN[1]/IO02PDB0V0 EMC BYTEN[1]/GAC1/IO02PDB0V0 EMC BYTEN[1]/GAC1/IO07PDB0V0 E7 EMC OEN1 N/IO03PDB0V0 EMC OEN1 N/IO03PDB0V0 EMC OEN1 N/IO08PDB0V0 F8 EMC AB[3]/IO05PDB0V0 EMC AB[3]/IO05PDB0V0 EMC AB[3]/IO09PDB0V0 E9 E10 EMC AB[10]/IO09NDB0V0 EMC AB[10]/IO09NDB0V0 EMC AB[10]/IO11NDB0V0 EMC AB[7]/IO07PDB0V0 EMC AB[7]/IO07PDB0V0 EMC AB[7]/IO12PDB0V0 F11 E12 EMC AB[13]/IO10PDB0V0 EMC AB[13]/IO10PDB0V0 EMC AB[13]/IO14PDB0V0 E13 EMC AB[16]/IO12NDB0V0 EMC AB[16]/IO12NDB0V0 EMC AB[16]/IO17NDB0V0 E14 EMC AB[17]/IO12PDB0V0 EMC AB[17]/IO12PDB0V0 EMC AB[17]/IO17PDB0V0 E15 GCC0/IO18NPB0V0 GCB0/IO27NDB1V0 GCB0/IO34NDB1V0 E16 GCA1/IO20PPB0V0 GCB1/IO27PDB1V0 GCB1/IO34PDB1V0 E17 GCC1/IO18PPB0V0 GCB2/IO24PDB1V0 GCB2/IO33PDB1V0 GCA0/IO36NDB1V0 * E19 GCB2/IO22PPB1V0 GCA0/IO28NDB1V0 E21 IO21NDB1V0 GCA1/IO28PDB1V0 GCA1/IO36PDB1V0 * VCCFPGAIOB5 F1 VCCFPGAIOB5 VCCFPGAIOB5 F3 GFB2/IO42NDB5V0 GFB2/IO68NDB5V0 GFB2/IO85NDB5V0 F5 GFA2/IO42PDB5V0 GFA2/IO68PDB5V0 GFA2/IO85PDB5V0 F6 EMC DB[11]/IO43PDB5V0 EMC DB[11]/IO69PDB5V0 EMC DB[11]/IO86PDB5V0 F7 GND GND GND NC GFC1/IO66PPB5V0 GFC1/IO83PPB5V0 F8 F9 VCCFPGAIOB0 VCCFPGAIOB0 VCCFPGAIOB0 EMC AB[11]/IO09PDB0V0 F10 EMC AB[11]/IO09PDB0V0 EMC AB[11]/IO11PDB0V0 F11 EMC AB[6]/IO07NDB0V0 EMC AB[6]/IO07NDB0V0 EMC AB[6]/IO12NDB0V0

Notes:

🔨 🤄 Microsemi

Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

SmartFusion Customizable System-on-Chip (cSoC)

Pin		CS288	
No.	A2F060 Function	A2F200 Function	A2F500 Function
P19	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
P21	GND	GND	GND
R1	GPIO_2/IO31RSB4V0	MAC_MDIO/IO49RSB4V0	MAC_MDIO/IO58RSB4V0
R3	GPIO_1/IO32RSB4V0	MAC_TXEN/IO52RSB4V0	MAC_TXEN/IO61RSB4V0
R5	GPIO_3/IO30RSB4V0	MAC_TXD[0]/IO56RSB4V0	MAC_TXD[0]/IO65RSB4V0
R6	GPIO_10/IO35RSB4V0	MAC_CRSDV/IO51RSB4V0	MAC_CRSDV/IO60RSB4V0
R9	GNDA	GNDA	GNDA
R13	GNDA	GNDA	GNDA
R16	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29	UART_1_RXD/GPIO_29
R17	UART_1_TXD/GPIO_28	UART_1_TXD/GPIO_28	UART_1_TXD/GPIO_28
R19	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22	I2C_0_SDA/GPIO_22
R21	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30	I2C_1_SDA/GPIO_30
T1	GND	GND	GND
Т3	NC	MAC_TXD[1]/IO55RSB4V0	MAC_TXD[1]/IO64RSB4V0
T5	NC	MAC_RXD[1]/IO53RSB4V0	MAC_RXD[1]/IO62RSB4V0
Т6	GPIO_11/IO34RSB4V0	MAC_RXER/IO50RSB4V0	MAC_RXER/IO59RSB4V0
T7	NC	CM1	CM1
Т8	NC	ADC1	ADC1
Т9	NC	GND33ADC0	GND33ADC0
T10	NC	VCC15ADC0	VCC15ADC0
T11	GND33ADC0	GND33ADC1	GND33ADC1
T12	VAREF0	VAREF1	VAREF1
T13	ADC7	ADC4	ADC4
T14	TM0	TM3	TM3
T15	SPI_1_SS/GPIO_27	SPI_1_SS/GPIO_27	SPI_1_SS/GPIO_27
T16	VCCMSSIOB2	VCCMSSIOB2	VCCMSSIOB2
T17	UART_0_RXD/GPIO_21	UART_0_RXD/GPIO_21	UART_0_RXD/GPIO_21
T19	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20	UART_0_TXD/GPIO_20
T21	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31	I2C_1_SCL/GPIO_31
U1	NC	MAC_RXD[0]/IO54RSB4V0	MAC_RXD[0]/IO63RSB4V0
U3	VCCMSSIOB4	VCCMSSIOB4	VCCMSSIOB4

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

🕓 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484				
Pin Number	A2F200 Function	A2F500 Function			
L9	VCC	VCC			
L10	GND	GND			
L11	VCC	VCC			
L12	GND	GND			
L13	VCC	VCC			
L14	GND	GND			
L15	VCC	VCC			
L16	GND	GND			
L17	GNDQ	GNDQ			
L18	GDA2/IO33NDB1V0	GDA2/IO42NDB1V0			
L19	VCCFPGAIOB1	VCCFPGAIOB1			
L20	GDB1/IO30PDB1V0	GDB1/IO39PDB1V0			
L21	GDB0/IO30NDB1V0	GDB0/IO39NDB1V0			
L22	GDC2/IO32PDB1V0	GDC2/IO41PDB1V0			
M1	NC	IO71PDB5V0			
M2	NC	IO71NDB5V0			
M3	VCCFPGAIOB5	VCCFPGAIOB5			
M4	NC	IO72NPB5V0			
M5	GNDQ	GNDQ			
M6	NC	IO68PDB5V0			
M7	GND	GND			
M8	VCC	VCC			
M9	GND	GND			
M10	VCC	VCC			
M11	GND	GND			
M12	VCC	VCC			
M13	GND	GND			
M14	VCC	VCC			
M15	GND	GND			
M16	VCCFPGAIOB1	VCCFPGAIOB1			
M17	NC	NC			
M18	GDB2/IO33PDB1V0	GDB2/IO42PDB1V0			
M19	VJTAG	VJTAG			
M20	GND	GND			

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

Datasheet Information

Revision	Changes	Page	
Revision 9 (continued)	The following note was added to Table 2-86 • SmartFusion CCC/PLL Specification in regard to delay increments in programmable delay blocks (SAR 34816):	2-63	
	"When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to SmartGen online help for more information."		
	Figure 2-36 • FIFO Read and Figure 2-37 • FIFO Write have been added (SAR 34851).	2-72	
	Information regarding the MSS resetting itself after IAP of the FPGA fabric was added to the "Reprogramming the FPGA Fabric Using the Cortex-M3" section (SAR 37970).	4-8	
	Instructions for unused VCC33ADCx pins were revised in "Supply Pins" (SAR 41137).	5-1	
	Libero IDE was changed to Libero SoC throughout the document (SAR 40264).	N/A	
Revision 8 (March 2012)	In the "Analog Front-End (AFE)" section, the resolution for the first-order sigma delta DAC was corrected from 12-bit to "8-bit, 16-bit, or 24-bit." The same correction was made in the "SmartFusion cSoC Family Product Table" (SAR 36541).	I, II	
	The "SmartFusion cSoC Family Product Table" was revised to break out the features by package as well as device.	П	
	The table now indicates that only one SPI is available for the PQ208 package in A2F200 and A2F500, and in the TQ144 package for A2F060 (SAR 33477).		
	The EMC address bus size has been corrected to 26 bits (SAR 35664).		
	The "SmartFusion cSoC Device Status" table was revised to change the CS288 package for A2F200 and A2F500 from preliminary to production status (SAR 37811).		
	TQ144 package information for A2F060 was added to the "Package I/Os: MSS + FPGA I/Os" table, "SmartFusion cSoC Device Status" table, "Product Ordering Codes", and "Temperature Grade Offerings" table (SAR 36246).	III, VI	
	Table 1 • SmartFusion cSoC Package Sizes Dimensions is new (SAR 31178).	Ш	
	The Halogen-Free Packaging code (H) was removed from the "Product Ordering Codes" table (SAR 34017).	VI	
	The "Specifying I/O States During Programming" section is new (SAR 34836).	1-3	
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Dynamic Contribution—P _{CLOCK} " section, was corrected to the "Device Architecture" chapter in the <i>SmartFusion FPGA Fabric User's Guide</i> (SAR 34742).	2-15	
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34891).	2-30, 2-24	
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34799): "It uses a 5 V–tolerant input buffer and push-pull output buffer."	2-32	
	In the SRAM "Timing Characteristics" tables, reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34874).	2-69	
	The note for Table 2-93 • Current Monitor Performance Specification was modified to include the statement that the restriction on the TM pad being no greater than 10 mV above the CM pad.is applicable only if current monitor is used (SAR 26373).	2-78	
	The unit "FR" in Table 2-96 • ABPS Performance Specifications and Table 2-98 • Analog Sigma-Delta DAC, used to designate full-scale error, was changed to "FS" and clarified with a table note (SAR 35342).	2-82, 2-85	