E·XFL

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This enables reduction or complete removal of expensive voltage monitor and brownout detection devices from the PCB design. Flash-based SmartFusion cSoCs simplify total system design and reduce cost and design risk, while increasing system reliability.

Immunity to Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O configuration behavior in an unpredictable way.

Another source of radiation-induced firm errors is alpha particles. For alpha radiation to cause a soft or firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in the package molding compound or in the die itself. While low-alpha molding compounds are being used increasingly, this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not occur in SmartFusion cSoCs. Once it is programmed, the flash cell configuration element of SmartFusion cSoCs cannot be altered by high energy neutrons and is therefore immune to errors from them. Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate driver in software v9.0.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
- 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-1 on page 1-4).
- Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Microsemi.

SmartFusion DC and Switching Characteristics

Table 2-2 • Analog Maximum Ratings

Parameter	Conditions	Min.	Max.	Units				
ABPS[n] pad voltage (relative to ground)	GDEC[1:0] = 00 (±15.36 V range)							
	Absolute maximum	-11.5	14.4	V				
	Recommended	-11	14	V				
	GDEC[1:0] = 01 (±10.24 V range)	-11.5	12	V				
	GDEC[1:0] = 10 (±5.12 V range)	-6	6	V				
	GDEC[1:0] = 11 (±2.56 V range)	-3	3	V				
CM[n] pad voltage relative to ground)	CMB_DI_ON = 0 (ADC isolated)							
	COMP_EN = 0 (comparator off, for the associated even-numbered comparator)							
	Absolute maximum	-0.3	14.4	V				
	Recommended	-0.3	14	V				
	CMB_DI_ON = 0 (ADC isolated) COMP_EN = 1 (comparator on)	-0.3	3	V				
	TMB_DI_ON = 1 (direct ADC in)	-0.3	3	V				
TM[n] pad voltage (relative to ground)	TMB_DI_ON = 0 (ADC isolated)	-0.3	3	V				
	COMP_EN = 1(comparator on)							
	TMB_DI_ON = 1 (direct ADC in)	-0.3	3	V				
ADC[n] pad voltage (relative to ground)		-0.3	3.6	V				

SmartFusion DC and Switching Characteristics

Power Consumption of Various Internal Resources

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs

		Power Supp	Power Supply		Device		
Parameter	Definition	Name	Domain	A2F060	A2F200	A2F500	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	3.39	3.40	5.05	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	1.14	1.14 1.83 2.50		
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V	1.15	1.15	1.15	µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.12	0.12	0.12	µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.07	0.07	0.07	µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V	0.29	0.29	0.29	µW/MHz
PAC8	Average contribution of a routing net	VCC	1.5 V	1.04	0.79	0.79	µW/MHz
PAC9	Contribution of an I/O input pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	See Table 2-10 and Table 2-11 on pa			
PAC10	Contribution of an I/O output pin (standard dependent)	VCCxxxxIOBx/VCC	See Tab	ole 2-12 a	age 2-11		
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V	25.00			µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V	30.00			µW/MHz
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.60		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < 33MHz)	VCC	1.5 V		358.00		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		12.88		mW
PAC17	2nd contribution of NVM block during a read operation (F > 33MHz)	VCC	1.5 V		4.80		µW/MHz
PAC18	Main Crystal Oscillator contribution	VCCMAINXTAL	3.3 V		1.98		mW
PAC19a	RC Oscillator contribution	VCCRCOSC	3.3 V		3.30		mW
PAC19b	RC Oscillator contribution	VCC	1.5 V		3.00		mW
PAC20a	Analog Block Dynamic Power Contribution of the ADC	VCC33ADCx	3.3 V	8.25		mW	
PAC20b	Analog Block Dynamic Power Contribution of the ADC	VCC15ADCx	1.5 V	3.00		mW	
PAC21	Low Power Crystal Oscillator contribution	VCCLPXTAL	3.3 V	33.00 33.00		μW	
PAC22	MSS Dynamic Power Contribution – Running Drysthone at 100MHz ¹	VCC	1.5 V	/ 67.50			mW
PAC23	Temperature Monitor Power Contribution	See Table 2-94 on page 2-79	_	- 1.23			mW

Standby Mode

 $P_{DYN} = P_{RC-OSC} + P_{LPXTAL-OSC}$

Time Keeping Mode

 $P_{DYN} = P_{LPXTAL-OSC}$

Global Clock Dynamic Contribution—**P**_{CLOCK}

SoC Mode

 $P_{CLOCK} = (P_{AC1} + N_{SPINE} * P_{AC2} + N_{ROW} * PAC3 + N_{S-CELL} * P_{AC4}) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Device Architecture" chapter of the *SmartFusion FPGA Fabric User's Guide.*

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Device Architecture" chapter of the *SmartFusion FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Time Keeping Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

SoC Mode

 $P_{S-CELL} = N_{S-CELL} * (P_{AC5} + (\alpha_1 / 2) * P_{AC6}) * F_{CLK}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

 $P_{S-CELL} = 0 W$

Combinatorial Cells Dynamic Contribution—P_{C-CELL}

SoC Mode

 $P_{C-CELL} = N_{C-CELL} * (\alpha_1 / 2) * P_{AC7} * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

 $P_{C-CELL} = 0 W$

Routing Net Dynamic Contribution—P_{NET}

SoC Mode

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 / 2) * \mathsf{P}_{\mathsf{AC8}} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number VersaTiles used as sequential modules in the design.

 $N_{C\mbox{-}C\mbox{-}E\mbox{-}L\mbox{-}L}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the frequency of the clock driving the logic including these nets.

SmartFusion DC and Switching Characteristics

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-35 • Minimum and Maximum DC Input and Output Levels Applicable to FPGA I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	VOL	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	15	15
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	15	15
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	15	15
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	15	15
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	15	15
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	15	15
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Table 2-36 • Minimum and Maximum DC Input and Output Levels Applicable to MSS I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	ін	VOL	VOH	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	IIL	I _{IH}
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	15	15

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Figure 2-6 • AC Loading

Table 2-37 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-24 for a complete table of trip points.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-15 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-86 • SmartFusion CCC/PLL Specification

Parameter	Minir	num	Тур	ical	Maxir	num	Un	its	
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		350		MI	Ηz			
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.	75			350 ¹		MHz		
Delay Increments in Programmable Delay Blocks ^{2,3,4}			16	60			р	S	
Number of Programmable Values in Each Programmable Delay Block					32	2			
Input Period Jitter					1.	5	n	S	
Acquisition Time									
LockControl = 0					30	0	μ	S	
LockControl = 1					6.	0	ms		
Tracking Jitter ⁵									
LockControl = 0					1.6		ns		
LockControl = 1					0.8		ns		
Output Duty Cycle	48	.5			5.1	5	%		
Delay Range in Block: Programmable Delay 1 ^{2,3}	0.	6			5.5	56	n	ns	
Delay Range in Block: Programmable Delay 2 ^{2,3}	0.0	25			5.5	56	n	S	
Delay Range in Block: Fixed Delay ^{2,3}			2	.2			n	S	
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} ^{6,7}		Ma	iximum	Peak-to	-Peak F	Period J	itter		
) ≤ 2	SSC) ≤ 4	SSO ≤ 8		SSO	≤ 16	
	FG/CS	PQ	FG/CS	PQ	FG/CS	PQ	FG/CS	PQ	
0.75 MHz to 50 MHz	0.5%	1.6%	0.9%	1.6%	0.9%	1.6%	0.9%	1.8%	
50 MHz to 250 MHz	1.75%	3.5%	9.3%	9.3%	9.3%	17.9%	10.0%	17.9%	
250 MHz to 350 MHz		5.2%	13.0%	13.0%	13.0%	25.0%	14.0%	25.0%	

Notes:

- One of the CCC outputs (GLA0) is used as an MSS clock and is limited to 100 MHz (maximum) by software. Details regarding CCC/PLL are in the "PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators" chapter of the SmartFusion Microcontroller Subsystem User's Guide.
- 2. This delay is a function of voltage and temperature. See Table 2-7 on page 2-9 for deratings.

3. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 6. Measurement done with LVTTL 3.3 V 12 mA I/O drive strength and High slew rate. VCC/VCCPLL = 1.425 V, VCCI = 3.3V, 20 pF output load. All I/Os are placed outside of the PLL bank.
- 7. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out within ± 200 ps of each other.
- 8. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps.

FPGA Fabric SRAM and FIFO Characteristics

FPGA Fabric SRAM

Figure 2-29 • RAM Models

static Microsemi.

SmartFusion DC and Switching Characteristics

Table 2-88 • RAM512X18

Parameter	Description	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.30	ns
t _{AH}	Address hold time	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.09	0.11	ns
t _{ENH}	REN, WEN hold time	0.06	0.07	ns
t _{DS}	Input data (WD) setup time	0.19	0.22	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained, WMODE = 0)	2.19	2.63	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.91	1.09	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—applicable to opening edge	0.38	0.43	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—applicable to opening edge	0.44	0.50	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.94	1.12	ns
	RESET Low to data out Low on RD (pipelined)	0.94	1.12	ns
t _{REMRSTB}	RESET removal	0.29	0.35	ns
t _{RECRSTB}	RESET recovery	1.52	1.83	ns
t _{MPWRSTB}	RESET minimum pulse width	0.22	0.22	ns
t _{CYC}	Clock cycle time	3.28	3.28	ns
F _{MAX}	Maximum clock frequency	305	305	MHz

Notes:

1. For more information, refer to the Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs application note.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

SmartFusion Customizable System-on-Chip (cSoC)

Figure 2-39 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Temperature Monitor

Unless otherwise noted, temperature monitor performance is specified with a 2N3904 diode-connected bipolar transistor from National Semiconductor or Infineon Technologies, nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 62.5 Ksps. After digital compensation. Unless otherwise noted, the specifications pertain to conditions where the SmartFusion cSoC and the sensing diode are at the same temperature.

Table 2-94 • Temperature Monitor	Performance Specifications
----------------------------------	----------------------------

Specification	Test Conditions	Min.	Typical	Max.	Units
Input diode temperature range		-55		150	°C
		233.2		378.15	K
Temperature sensitivity			2.5		mV/K
Intercept	Extrapolated to 0K		0		V
Input referred temperature offset error	At 25°C (298.15K)		±1	1.5	°C
Gain error	Slope of BFSL vs. 2.5 mV/K		±1	2.5	% nom.
Overall accuracy	Peak error from ideal transfer function		±2	±3	°C
Input referred noise	At 25°C (298.15K) – no output averaging		4		°C rms
Output current	Idle mode		100		μA
	Final measurement phases		10		μA
Analog settling time	Measured to 0.1% of final value, (with ADC load)				
	From TM_STB (High)	5			μs
	From ADC_START (High)	5		105	μs
AT parasitic capacitance				500	pF
Power supply rejection ratio	DC (0–10 KHz)	1.2	0.7		°C/V
Input referred temperature sensitivity error	Variation due to device temperature (-40°C to +100°C). External temperature sensor held constant.		0.005	0.008	°C/°C
Temperature monitor (TM)	VCC33A		200		μA
operational power supply current requirements (per temperature	VCC33AP		150		μA
monitor instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: All results are based on averaging over 64 samples.

3 – SmartFusion Development Tools

Designing with SmartFusion cSoCs involves three different types of design: FPGA design, embedded design and analog design. These roles can be filled by three different designers, two designers or even a single designer, depending on company structure and project complexity.

Types of Design Tools

Microsemi has developed design tools and flows to meet the needs of these three types of designers so they can work together smoothly on a single project (Figure 3-1).

Figure 3-1 • Three Design Roles

FPGA Design

Libero System-on-Chip (SoC) software is Microsemi's comprehensive software toolset for designing with all Microsemi FPGAs and cSoCs. Libero SoC includes industry-leading synthesis, simulation and debug tools from Synopsys[®] and Mentor Graphics[®], as well as innovative timing and power optimization and analysis.

Compile and Debug

Microsemi's SoftConsole is a free Eclipse-based IDE that enables the rapid production of C and C++ executables for Microsemi FPGA and cSoCs using Cortex-M3, Cortex-M1 and Core8051s. For SmartFusion support, SoftConsole includes the GNU C/C++ compiler and GDB debugger. Additional examples can be found on the SoftConsole page:

- Using UART with SmartFusion: SoftConsole Standalone Flow Tutorial
 - Design Files
- Displaying POT Level with LEDs: Libero SoC and SoftConsole Flow Tutorial for SmartFusion
 - Design Files

IAR Embedded Workbench[®] for ARM/Cortex is an integrated development environment for building and debugging embedded ARM applications using assembler, C and C++. It includes a project manager, editor, build and debugger tools with support for RTOS-aware debugging on hardware or in a simulator.

- Designing SmartFusion cSoC with IAR Systems
- IAR Embedded Workbench IDE User Guide for ARM
- · Download Evaluation or Kickstart version of IAR Embedded Workbench for ARM

Keil's Microcontroller Development Kit comes in two editions: MDK-ARM and MDK Basic. Both editions feature μ Vision[®], the ARM Compiler, MicroLib, and RTX, but the MDK Basic edition is limited to 256K so that small applications are more affordable.

- Designing SmartFusion cSoC with Keil
- Using Keil µVision and Microsemi SmartFusion cSoC
 - Programming file for use with this tutorial
- Keil Microcontroller Development Kit for ARM Product Manuals
- Download Evaluation version of Keil MDK-ARM

COMPLIANT ARM" Cortex" Microcontroller Software Interface Standard	Microsemi.	An ARM [®] Company	EIAR SYSTEMS
Software IDE	SoftConsole	Vision IDE	Embedded Workbench
Website	www.microsemi.com/soc	www.keil.com	www.iar.com
Free versions from SoC Products Group	Free with Libero SoC	32 K code limited	32 K code limited
Available from Vendor	N/A	Full version	Full version
Compiler	GNU GCC	RealView C/C++	IAR ARM Compiler
Debugger	GDB debug	Vision Debugger	C-SPY Debugger
Instruction Set Simulator	No	Vision Simulator	Yes
Debug Hardware	FlashPro4	ULINK2 or ULINK-ME	J-LINK or J-LINK Lite

Operating Systems

FreeRTOS[™] is a portable, open source, royalty free, mini real-time kernel (a free-to-download and freeto-deploy RTOS that can be used in commercial applications without any requirement to expose your proprietary source code). FreeRTOS is scalable and designed specifically for small embedded systems. This FreeRTOS version ported by Microsemi is 6.0.1. For more information, visit the FreeRTOS website: www.freertos.org

- SmartFusion Webserver Demo Using uIP and FreeRTOS
- SmartFusion cSoC: Running Webserver, TFTP on IwIP TCP/IP Stack Application Note

Pin Assignment Tables

TQ144

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Note: Bottom view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

stanti 🖌 🔨 🔨 🔨

SmartFusion Customizable System-on-Chip (cSoC)

Pin No.	CS288			
	A2F060 Function	A2F200 Function	A2F500 Function	
K17	GNDLPXTAL	GNDLPXTAL	GNDLPXTAL	
K19	GNDMAINXTAL	GNDMAINXTAL	GNDMAINXTAL	
K21	MAINXIN	MAINXIN	MAINXIN	
L1	GNDRCOSC	GNDRCOSC	GNDRCOSC	
L3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5	
L5	EMC_DB[2]/IO37NPB5V0	EMC_DB[2]/IO60NPB5V0	EMC_DB[2]/IO77NPB5V0	
L6	NC	GNDQ	GNDQ	
L8	VCC	VCC	VCC	
L9	GND	GND	GND	
L10	VCC	VCC	VCC	
L12	VCC	VCC	VCC	
L13	GND	GND	GND	
L14	VCC	VCC	VCC	
L16	VCCLPXTAL	VCCLPXTAL	VCCLPXTAL	
L17	VDDBAT	VDDBAT	VDDBAT	
L19	LPXIN	LPXIN	LPXIN	
L21	MAINXOUT	MAINXOUT	MAINXOUT	
M1	VCCRCOSC	VCCRCOSC	VCCRCOSC	
M3	MSS_RESET_N	MSS_RESET_N	MSS_RESET_N	
M5	GPIO_5/IO28RSB4V0	GPIO_5/IO42RSB4V0	GPIO_5/IO51RSB4V0	
M6	GND	GND	GND	
M8	GND	GND	GND	
M9	VCC	VCC	VCC	
M10	GND	GND	GND	
M11	VCC	VCC	VCC	
M12	GND	GND	GND	
M13	VCC	VCC	VCC	
M14	GND	GND	GND	
M16	TMS	TMS	TMS	
M17	VJTAG	VJTAG	VJTAG	
M19	TDO	TDO	TDO	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

CS288 Pin A2F060 Function A2F200 Function A2F500 Function No. TRSTB TRSTB TRSTB M21 N1 VCCMSSIOB4 VCCMSSIOB4 VCCMSSIOB4 GND N3 GND GND N5 GPIO 4/IO29RSB4V0 GPIO 4/IO43RSB4V0 GPIO 4/IO52RSB4V0 GPIO 8/IO25RSB4V0 GPIO 8/IO39RSB4V0 GPIO 8/IO48RSB4V0 N6 GPIO 9/IO24RSB4V0 GPIO 9/IO38RSB4V0 GPIO 9/IO47RSB4V0 N7 VCC VCC N8 VCC GND N9 GND GND VCC VCC VCC N10 GND GND N11 GND N12 VCC VCC VCC GND GND N13 GND N14 VCC VCC VCC N15 GND GND GND N16 TCK TCK TCK N17 TDI TDI TDI GNDENVM N19 **GNDENVM** GNDENVM VCCENVM VCCENVM VCCENVM N21 P1 GPIO 0/IO33RSB4V0 MAC MDC/IO48RSB4V0 MAC MDC/IO57RSB4V0 P3 GPIO 7/IO26RSB4V0 GPIO 7/IO40RSB4V0 GPIO 7/IO49RSB4V0 P5 GPIO 6/IO27RSB4V0 GPIO 6/IO41RSB4V0 GPIO 6/IO50RSB4V0 P6 VCCMSSIOB4 VCCMSSIOB4 VCCMSSIOB4 P8 GND GND GND VCC VCC VCC P9 P10 GND GND GND VCC P11 VCC VCC P12 GND GND GND VCC P13 VCC VCC P14 GND GND GND P16 JTAGSEL JTAGSEL **JTAGSEL** P17 I2C 0 SCL/GPIO 23 I2C 0 SCL/GPIO 23 I2C 0 SCL/GPIO 23

Notes:

🔨 🤇 Microsemi

Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

Pin No.	CS288		
	A2F060 Function	A2F200 Function	A2F500 Function
W14	ADC5	CM2	CM2
W15	NC	ABPS5	ABPS5
W16	GNDAQ	GNDAQ	GNDAQ
W17	NC	VCC33SDD1	VCC33SDD1
W18	NC	GNDSDD1	GNDSDD1
W19	PTBASE	PTBASE	PTBASE
W21	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17	SPI_0_DI/GPIO_17
Y1	VCC33AP	VCC33AP	VCC33AP
Y21	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16	SPI_0_DO/GPIO_16

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

Pin Descriptions

🔨 Microsemi

Pin	FG256			
No.	A2F060 Function	A2F200 Function	A2F500 Function	
F14	IO21NDB1V0	GCB0/IO27NDB1V0	GCB0/IO34NDB1V0	
F15	GND	GND	GND	
F16	VCCENVM	VCCENVM	VCCENVM	
G1	EMC_DB[8]/IO40NDB5V0	EMC_DB[8]/GEC0/IO63NDB5V0	EMC_DB[8]/GEC0/IO80NDB5V0	
G2	EMC_DB[7]/IO39PDB5V0	EMC_DB[7]/GEB1/IO62PDB5V0	EMC_DB[7]/GEB1/IO79PDB5V0	
G3	EMC_DB[6]/IO39NDB5V0	EMC_DB[6]/GEB0/IO62NDB5V0	EMC_DB[6]/GEB0/IO79NDB5V0	
G4	GFC2/IO41PDB5V0	GFC2/IO67PDB5V0	GFC2/IO84PDB5V0	
G5	IO41NDB5V0	IO67NDB5V0	IO84NDB5V0	
G6	GND	GND	GND	
G7	VCC	VCC	VCC	
G8	GND	GND	GND	
G9	VCC	VCC	VCC	
G10	GND	GND	GND	
G11	VCCFPGAIOB1	VCCFPGAIOB1	VCCFPGAIOB1	
G12	VPP	VPP	VPP	
G13	TRSTB	TRSTB	TRSTB	
G14	TMS	TMS	TMS	
G15	ТСК	ТСК	ТСК	
G16	GNDENVM	GNDENVM	GNDENVM	
H1	GND	GND	GND	
H2	EMC_DB[5]/IO38PPB5V0	EMC_DB[5]/GEA1/IO61PPB5V0	EMC_DB[5]/GEA1/IO78PPB5V0	
H3	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5	
H4	EMC_DB[1]/IO36PDB5V0	EMC_DB[1]/GEB2/IO59PDB5V0	EMC_DB[1]/GEB2/IO76PDB5V0	
H5	EMC_DB[0]/IO36NDB5V0	EMC_DB[0]/GEA2/IO59NDB5V0	EMC_DB[0]/GEA2/IO76NDB5V0	
H6	VCCFPGAIOB5	VCCFPGAIOB5	VCCFPGAIOB5	
H7	GND	GND	GND	
H8	VCC	VCC	VCC	
H9	GND	GND	GND	
H10	VCC	VCC	VCC	
H11	GND	GND	GND	
H12	VJTAG	VJTAG	VJTAG	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

	FG484		
Pin Number	A2F200 Function	A2F500 Function	
H7	GND	GND	
H8	VCC	VCC	
H9	GND	GND	
H10	VCC	VCC	
H11	GND	GND	
H12	VCC	VCC	
H13	GND	GND	
H14	VCC	VCC	
H15	GND	GND	
H16	VCCFPGAIOB1	VCCFPGAIOB1	
H17	IO25NDB1V0	IO29NDB1V0	
H18	GCC2/IO25PDB1V0	GCC2/IO29PDB1V0	
H19	GND	GND	
H20	GCC0/IO26NPB1V0	GCC0/IO35NPB1V0	
H21	VCCFPGAIOB1	VCCFPGAIOB1	
H22	GCB0/IO27NDB1V0	GCB0/IO34NDB1V0	
J1	EMC_DB[6]/GEB0/IO62NDB5V0	EMC_DB[6]/GEB0/IO79NDB5V0	
J2	EMC_DB[5]/GEA1/IO61PDB5V0	EMC_DB[5]/GEA1/IO78PDB5V0	
J3	EMC_DB[4]/GEA0/IO61NDB5V0	EMC_DB[4]/GEA0/IO78NDB5V0	
J4	EMC_DB[3]/GEC2/IO60PPB5V0	EMC_DB[3]/GEC2/IO77PPB5V0	
J5	VCCFPGAIOB5	VCCFPGAIOB5	
J6	GFA0/IO64NDB5V0	GFA0/IO81NDB5V0	
J7	VCCFPGAIOB5	VCCFPGAIOB5	
J8	GND	GND	
J9	VCC	VCC	
J10	GND	GND	
J11	VCC	VCC	
J12	GND	GND	
J13	VCC	VCC	
J14	GND	GND	
J15	VCC	VCC	
J16	GND	GND	
J17	NC	IO37PDB1V0	
J18	VCCFPGAIOB1	VCCFPGAIOB1	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.