

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-LCC (J-Lead)
Supplier Device Package	28-PLCC (11.48x11.48)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc982fa-529

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Additional features

- A high performance 80C51 CPU provides instruction cycle times of 111 ns to 222 ns for all instructions except multiply and divide when executing at 18 MHz. This is six times the performance of the standard 80C51 running at the same clock frequency. A lower clock frequency for the same performance results in power savings and reduced EMI.
- Serial flash In-Circuit Programming (ICP) allows simple production coding with commercial EPROM programmers. Flash security bits prevent reading of sensitive application programs.
- Serial flash In-System Programming (ISP) allows coding while the device is mounted in the end application.
- In-Application Programming (IAP) of the flash code memory. This allows changing the code in a running application.
- Clock switching on the fly among internal RC oscillator, watchdog oscillator, external clock source provides optimal support of minimal power active mode with fast switching to maximum performance.
- Idle and two different power-down reduced power modes. Improved wake-up from Power-down mode (a LOW interrupt input starts execution). Typical power-down current is 1 µA (total power-down with voltage comparators disabled).
- Integrated PMU (Power Management Unit) automatically adjusts internal regulators to minimize power consumption during Idle mode, Power-down mode and Total power-down mode. In addition, the power consumption can be further reduced in Normal or Idle mode through configuring regulators modes according to the applications.
- Active-LOW reset. On-chip power-on reset allows operation without external reset components. A software reset function is also available.
- Configurable on-chip oscillator with frequency range options selected by user programmed flash configuration bits. Oscillator options support frequencies from 20 kHz to the maximum operating frequency of 18 MHz.
- Oscillator fail detect. The watchdog timer has a separate fully on-chip oscillator allowing it to perform an oscillator fail detect function.
- Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.
- High current sourcing/sinking (20 mA) on eight I/O pins (P0.3 to P0.7, P1.4, P1.6, P1.7). All other port pins have high sinking capability (20 mA). A maximum limit is specified for the entire chip.
- Port 'input pattern match' detect. Port 0 may generate an interrupt when the value of the pins match or do not match a programmable pattern.
- Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns minimum ramp times.
- Only power and ground connections are required to operate the P89LPC980/982/983/985 when internal reset option is selected.
- Four interrupt priority levels.
- Eight keypad interrupt inputs, plus two additional external interrupt inputs.
- Schmitt trigger port inputs.
- Second data pointer.
- Emulation support.

6.2 Pin description

Symbol	Pin	Туре	Description
	PLCC28, TSSOP28		
P0.0 to P0.7		I/O	Port 0: Port 0 is an 8-bit I/O port with a user-configurable output type. During reset Port 0 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 0 pins as inputs and outputs depends upon the port configuration selected. Each port pin is configured independently. Refer to <u>Section</u> 7.16.1 "Port configurations" and <u>Table 13 "Static characteristics"</u> for details.
			The Keypad Interrupt feature operates with Port 0 pins.
			All pins have Schmitt trigger inputs.
			Port 0 also provides various special functions as described below:
P0.0/CMP2/KBI0/	3	I/O	P0.0 — Port 0 bit 0.
AD05/SPICLK		0	CMP2 — Comparator 2 output
		Ι	KBI0 — Keyboard input 0.
		I	AD05 — ADC0 channel 5 analog input. (P89LPC985)
		I/O	SPICLK — SPI clock. When configured as master, this pin is output; when configured as slave, this pin is input. (pin remap)
P0.1/CIN2B/	26	I/O	P0.1 — Port 0 bit 1.
KBI1/AD00		I	CIN2B — Comparator 2 positive input B.
		I	KBI1 — Keyboard input 1.
		I	AD00 — ADC0 channel 0 analog input. (P89LPC983/985)
P0.2/CIN2A/	25	I/O	P0.2 — Port 0 bit 2.
KBI2/AD01		I	CIN2A — Comparator 2 positive input A.
		I	KBI2 — Keyboard input 2.
		I	AD01 — ADC0 channel 1 analog input. (P89LPC983/985)
P0.3/CIN1B/	24	I/O	P0.3 — Port 0 bit 3. High current source.
KBI3/AD02/T2		I	CIN1B — Comparator 1 positive input B.
		I	KBI3 — Keyboard input 3.
		I	AD02 — ADC0 channel 2 analog input. (P89LPC983/985)
		I/O	T2 — Timer/counter 2 external count input or overflow output.
P0.4/CIN1A/	23	I/O	P0.4 — Port 0 bit 4. High current source.
KBI4/AD03		I	CIN1A — Comparator 1 positive input A.
		I	KBI4 — Keyboard input 4.
		I	AD03 — ADC0 channel 3 analog input. (P89LPC983/985)
P0.5/CMPREF/	22	I/O	P0.5 — Port 0 bit 5. High current source.
KBI5/T3		I	CMPREF — Comparator reference (negative) input.
		I	KBI5 — Keyboard input 5.
		I/O	T3 — Timer/counter 3 external count input or overflow output.

Symbol	Pin	Туре	Description
	PLCC28, TSSOP28		
P1.7/AD04/T3EX/	4	I/O	P1.7 — Port 1 bit 7. High current source.
MOSI		Ι	AD04 — ADC0 channel 4 analog input. (P89LPC985)
		Ι	T3EX — Timer/counter 3 external capture input.
		I/O	MOSI — SPI master out slave in. When configured as master, this pin is output; when configured as slave, this pin is input. (pin remap)
P2.0 to P2.7		I/O	Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type. During rese Port 2 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 2 pins as inputs and outputs depends upon the por configuration selected. Each port pin is configured independently. Refer to <u>Section</u> <u>7.16.1 "Port configurations"</u> and <u>Table 13 "Static characteristics"</u> for details.
			All pins have Schmitt trigger inputs.
			Port 2 also provides various special functions as described below:
P2.0/AD07/TXD	1	I/O	P2.0 — Port 2 bit 0.
			AD07 — ADC0 channel 7 analog input. (P89LPC985)
		0	TXD — Transmitter output for serial port. (pin remap)
P2.1/AD06/RXD	2	I/O	P2.1 — Port 2 bit 1.
		1	AD06 — ADC0 channel 6 analog input. (P89LPC985)
		I	RXD — Receiver input for serial port. (pin remap)
P2.2/MOSI	13	I/O	P2.2 — Port 2 bit 2.
		I/O	MOSI — SPI master out slave in. When configured as master, this pin is output; when configured as slave, this pin is input.
P2.3/MISO	14	I/O	P2.3 — Port 2 bit 3.
		I/O	MISO — SPI master in slave out. When configured as master, this pin is input, when configured as slave, this pin is output.
P2.4/SS	15	I/O	P2.4 — Port 2 bit 4.
		I	SS — SPI Slave select.
P2.5/SPICLK	16	I/O	P2.5 — Port 2 bit 5.
		I/O	SPICLK — SPI clock. When configured as master, this pin is output; when configured as slave, this pin is input.
P2.6/SCL	27	I/O	P2.6 — Port 2 bit 6.
		I/O	SCL — I ² C-bus serial clock input/output. (pin remap)
P2.7/SDA	28	I/O	P2.7 — Port 2 bit 7.
		I/O	SDA — I ² C-bus serial data input/output. (pin remap)
P3.0 to P3.1		I/O	Port 3: Port 3 is a 2-bit I/O port with a user-configurable output type. During rese Port 3 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 3 pins as inputs and outputs depends upon the po configuration selected. Each port pin is configured independently. Refer to <u>Sectio</u> <u>7.16.1 "Port configurations"</u> and <u>Table 13 "Static characteristics"</u> for details.
			All pins have Schmitt trigger inputs.

 Table 3.
 Pin description ...continued

Port 3 also provides various special functions as described below:

Table 4. Special function registers - P89LPC980/982 ...continued * indicates SFRs that are bit addressable.

Product	P89LPC980_
t data	982_983
sheet	985

Re	
ev.	
4	
1	
G	
5	
5	
e	
N	
2	
ō	

Name	Description	SFR	Bit functions and addresses								Reset value	
		addr.	MSB							LSB	Hex	Binary
P3M1	Port 3 output mode 1	B1H	-	-	-	-	-	-	(P3M1.1)	(P3M1.0)	03 <u>[2]</u>	xxxx xx11
P3M2	Port 3 output mode 2	B2H	-	-	-	-	-	-	(P3M2.1)	(P3M2.0)	00 <u>[2]</u>	xxxx xx00
PCON	Power control register	87H	SMOD1	SMOD0	-	BOI	GF1	GF0	PMOD1	PMOD0	00	0000 0000
PCONA	Power control register A	B5H	RTCPD	-	VCPD	-	I2PD	SPPD	SPD	-	00 <u>[2]</u>	0000 0000
PINCON	Pin remap control register	CFH	-	-	-	-	-	UART	SPI	I2C	00 <u>[2]</u>	0000 0000
PMUCON	Power Management Unit control register	FAH	LPMOD	-	-	-	-	-	-	HCOK		0xxx xxx1
	Bit a	address	D7	D6	D5	D4	D3	D2	D1	D0		
PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00	0000 0000
PT0AD	Port 0 digital input disable	F6H	-	-	PT0AD.5	PT0AD.4	PT0AD.3	PT0AD.2	PT0AD.1	-	00	xx00 000x
PWMD2H	PWM Free Cycle Register 2 High Byte	AEH									00	0000 0000
PWMD2L	PWM Free Cycle Register 2 Low Byte	AFH									00	0000 0000
PWMD3H	PWM Free Cycle Register 3 High Byte	E9H									00	0000 0000
PWMD3L	PWM Free Cycle Register 3 Low Byte	EAH									00	0000 0000
PWMD4H	PWM Free Cycle Register 4 High Byte	AAH									00	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

© NXP B.V. 2010. All rights reserved. 18 of 85

Table 4. Special function registers - P89LPC980/982 ...continued * indicates SFRs that are bit addressable. P89LPC9

Name	Description	SFR	Bit function	ns and addr	esses						Reset value	
		addr.	MSB							LSB	Hex	Binary
SPCTL	SPI control register	E2H	SSIG	SPEN	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	04	0000 0100
SPSTAT	SPI status register	E1H	SPIF	WCOL	-	-	-	-	-	-	00	00xx xxxx
SPDAT	SPI data register	E3H									00	0000 0000
TAMOD	Timer 0 and 1 auxiliary mode	8FH	-	-	-	T1M2	-	-	-	T0M2	00	xxx0 xxx0
	Bit a	address	8F	8E	8D	8C	8B	8A	89	88		
TCON*	Timer 0 and 1 control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00	0000 0000
TH0	Timer 0 high	8CH									00	0000 0000
TH1	Timer 1 high	8DH									00	0000 0000
TL0	Timer 0 low	8AH									00	0000 0000
TL1	Timer 1 low	8BH									00	0000 0000
TMOD	Timer 0 and 1 mode	89H	T1GATE	T1C/T	T1M1	T1M0	TOGATE	T0C/T	T0M1	T0M0	00	0000 0000
T2CON	Timer/Counter 2 Control	FFH	PSEL2	ENT2	TIEN2	PWM2	EXEN2	TR2	C/NT2	CP/NRL2	00	0000 0000
TH2	Timer/Counter 2 High Byte	FEH									00	0000 0000
TL2	Timer/Counter 2 Low Byte	FDH									00	0000 0000
T3CON	Timer/Counter 3 Control	EFH	PSEL3	ENT3	TIEN3	PWM3	EXEN3	TR3	C/NT3	CP/NRL3	00	0000 0000
TH3	Timer/Counter 3 High Byte	EEH									00	0000 0000
TL3	Timer/Counter 3 Low Byte	EDH									00	0000 0000
T4CON	Timer/Counter 2 Control	CDH	PSEL4	ENT4	TIEN4	PWM4	EXEN4	TR4	C/NT4	CP/NRL4	00	0000 0000
TH4	Timer/Counter 4 High Byte	ССН									00	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

20 of 85

Product data sheet

Rev. 4 — 15 June 2010

Table 6.Special function registers - P89LPC983/985* indicates SFRs that are bit addressable. P89LPC98

Name	Description	SFR	Bit function	Bit functions and addresses								value
		addr.	MSB							LSB	Hex	Binary
	Bit	address	E7	E6	E5	E4	E3	E2	E1	E0		
ACC*	Accumulator	E0H									00	0000 0000
AD0CON	A/D control register 0	97H	ENBI0	ENADCI0	TMM10	EDGE0	ADCI0	ENADC0	ADCS01	ADCS00	00	0000 0000
AD0INS	A/D input select	A3H	AIN07	AIN06	AIN05	AIN04	AIN03	AIN02	AIN01	AIN00	00	0000 0000
AD0MODA	A/D mode register A	C0H	BNDI0	BURST0	SCC0	SCAN0	-	-	-	-	00	0000 0000
AD0MODB	A/D mode register B	A1H	CLK2	CLK1	CLK0	INBND0	-	-	BSA0	FCIIS	00	000x 0000
AUXR1	Auxiliary function register	A2H	CLKLP	EBRR	ENT1	ENT0	SRST	0	-	DPS	00	0000 00x0
	Bit	address	F7	F6	F5	F4	F3	F2	F1	F0		
B*	B register	F0H									00	0000 0000
BRGR0[1]	Baud rate generator 0 rate low	BEH									00	0000 0000
BRGR1[1]	Baud rate generator 0 rate high	BFH									00	0000 0000
BRGCON	Baud rate generator 0 control	BDH	-	-	-	-	-	-	SBRGS	BRGEN	00 <u>[1]</u>	xxxx xx00
CMP1	Comparator 1 control register	ACH	-	-	CE1	CP1	CN1	OE1	CO1	CMF1	00 <u>[2]</u>	xx00 0000
CMP2	Comparator 2 control register	ADH	-	-	CE2	CP2	CN2	OE2	CO2	CMF2	00 <u>[2]</u>	xx00 0000
DIVM	CPU clock divide-by-M control	95H									00	0000 0000
DPTR	Data pointer (2 bytes)											
DPH	Data pointer high	83H									00	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

ights reserved. 23 of 85

Product data sheet

Rev. 4 — 15 June 2010

Table 6.Special function registers - P89LPC983/985 ...continued* indicates SFRs that are bit addressable. P89LPC9

I	Name	Description	SFR	Bit functio	ns and add	resses						Reset v	value
T *			addr.	MSB							LSB	Hex	Binary
1	P1M2	Port 1 output mode 2	92H	(P1M2.7)	(P1M2.6)	-	(P1M2.4)	(P1M2.3)	(P1M2.2)	(P1M2.1)	(P1M2.0)	00 <u>[2]</u>	00x0 xx0
I	P2M1	Port 2 output mode 1	A4H	(P2M1.7)	(P2M1.6)	(P2M1.5)	(P2M1.4)	(P2M1.3)	(P2M1.2)	(P2M1.1)	(P2M1.0)	FF <u>[2]</u>	1111 1111
I	P2M2	Port 2 output mode 2	A5H	(P2M2.7)	(P2M2.6)	(P2M2.5)	(P2M2.4)	(P2M2.3)	(P2M2.2)	(P2M2.1)	(P2M2.0)	00 <u>[2]</u>	0000 000
I	P3M1	Port 3 output mode 1	B1H	-	-	-	-	-	-	(P3M1.1)	(P3M1.0)	03 <u>[2]</u>	xxxx xx11
I	P3M2	Port 3 output mode 2	B2H	-	-	-	-	-	-	(P3M2.1)	(P3M2.0)	00 <u>[2]</u>	xxxx xx00
I	PCON	Power control register	87H	SMOD1	SMOD0	-	BOI	GF1	GF0	PMOD1	PMOD0	00	0000 000
I	PCONA	Power control register A	B5H	RTCPD	-	VCPD	ADPD	I2PD	SPPD	SPD	-	00[2]	0000 000
I	PINCON	Pin remap control register	CFH	-	-	-	-	-	UART	SPI	I2C	00 <u>[2]</u>	0000 000
i	PMUCON	Power Management Unit control register	FAH	LPMOD	-	-	-	-	-	-	HCOK		0xxx xxx
_		Bit	address	D7	D6	D5	D4	D3	D2	D1	D0		
I	PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Ρ	00	0000 000
I	PT0AD	Port 0 digital input disable	F6H	-	-	PT0AD.5	PT0AD.4	PT0AD.3	PT0AD.2	PT0AD.1	-	00	xx00 000
I	PWMD2H	PWM Free Cycle Register 2 High Byte	AEH									00	0000 000
	PWMD2L	PWM Free Cycle Register 2 Low Byte	AFH									00	0000 000
I	PWMD3H	PWM Free Cycle Register 3 High Byte	E9H									00	0000 000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

rights reserved. 26 of 85

Table 6. Special function registers - P89LPC983/985 ... continued

* indicates SFRs that are bit addressable.

Name	Description	SFR	Bit functio	ns and add	resses						Reset	value
		addr.	MSB LSB							Hex	Binary	
TH3	Timer/Counter 3 High Byte	EEH									00	0000 0000
TL3	Timer/Counter 3 Low Byte	EDH									00	0000 0000
T4CON	Timer/Counter 2 Control	CDH	PSEL4	ENT4	TIEN4	PWM4	EXEN4	TR4	C/NT4	CP/NRL4	00	0000 0000
TH4	Timer/Counter 4 High Byte	CCH									00	0000 0000
TL4	Timer/Counter 4 Low Byte	CBH									00	0000 0000
TINTF	Timer/Counters 2/3/4 Overflow and External Flags	CEH	-	-	TF4	EXF4	TF3	EXF3	TF2	EXF2	00	0000 0000
TRIM	Internal oscillator trim register	96H	RCCLK	ENCLK	TRIM.5	TRIM.4	TRIM.3	TRIM.2	TRIM.1	TRIM.0	[4][5]	
WDCON	Watchdog control register	A7H	PRE2	PRE1	PRE0	-	-	WDRUN	WDTOF	WDCLK	[4][6]	
WDL	Watchdog load	C1H									FF	1111 1111
WFEED1	Watchdog feed 1	C2H										
WFEED2	Watchdog feed 2	СЗН										

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core

P89LPC980/982/983/985

[1] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.

[2] All ports are in input only (high-impedance) state after power-up.

[3] The RSTSRC register reflects the cause of the P89LPC980/982/983/985 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is x011 0000.

[4] The only reset sources that affect these SFRs are power-on reset and watchdog reset.

[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.

[6] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset. Other resets will not affect WDTOF.

PR9LPC980_982_983_985 Product data sheet

Rev. 4 — 15 June 2010

NXP E

2010.

. A

29 of 85

7.5 Clock output

The P89LPC980/982/983/985 supports a user-selectable clock output function on the P3.0/XTAL2/CLKOUT pin when crystal oscillator is not being used. This condition occurs if another clock source has been selected (on-chip RC oscillator, watchdog oscillator, external clock input on XTAL1) and if the RTC and WDT are not using the crystal oscillator as their clock source. This allows external devices to synchronize to the P89LPC980/982/983/985. This output is enabled by the ENCLK bit in the TRIM register.

The frequency of this clock output is $\frac{1}{2}$ that of the CCLK. If the clock output is not needed in Idle mode, it may be turned off prior to entering Idle, saving additional power.

7.6 On-chip RC oscillator option

The P89LPC980/982/983/985 has a 6-bit TRIM register that can be used to tune the frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory preprogrammed value to adjust the oscillator frequency to 7.373 MHz \pm 1 % at room temperature. End-user applications can write to the TRIM register to adjust the on-chip RC oscillator to other frequencies. When the clock doubler option is enabled (UCFG2.7 = 1), the output frequency is 14.746 MHz. If CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to logic 1 to reduce power consumption. On reset, CLKLP is logic 0 allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower. When clock doubler option is enabled, BOE0 to BOE2 bits (UCFG1[3:5]) are required to hold the device in reset at power-up until V_{DD} has reached its specified level.

7.7 Watchdog oscillator option

The watchdog has a separate oscillator which provides two options: 400 kHz and 25 kHz. It is calibrated to ± 10 % at 400 kHz. The oscillator can be used to save power when a high clock frequency is not needed.

7.8 External clock input option

In this configuration, the processor clock is derived from an external source driving the P3.1/XTAL1 pin. The rate may be from 0 Hz up to 18 MHz. The P3.0/XTAL2/CLKOUT pin may be used as a standard port pin or a clock output. When using an oscillator frequency above 12 MHz, BOE0 to BOE2 bits (UCFG1[3:5]) are required to hold the device in reset at power-up until V_{DD} has reached its specified level.

7.9 Clock source switching on the fly

P89LPC980/982/983/985 can implement clock switching on any sources of watchdog oscillator, 7 MHz/14 MHz internal RC oscillator, crystal oscillator and external clock input during code is running. CLKOK bit in CLKCON register is used to indicate the clock switch status. CLKOK is cleared when starting clock source switch and set when completed. Notice that when CLKOK is '0', writing to CLKCON register is not allowed.

8-bit microcontroller with accelerated two-clock 80C51 core

Peripherals	Function	Primary pin out	Alternative pin out
SPI	SPICLK	P2.5	P0.0
	MOSI	P2.2	P1.7
	MISO	P2.3	P1.6
	SS	P2.4	P1.4
12C	SDA	P1.3	P2.7
	SCL	P1.2	P2.6
JART	TXD	P1.0	P2.0
	RXD	P1.1	P2.1

Please refer to P89LPC980/982/983/985 User manual for detail configurations.

7.17 Power management

The P89LPC980/982/983/985 support a variety of power management features.

Power-on detect and brownout detect are designed to prevent incorrect operation during initial power-up and power loss or reduction during operation.

The P89LPC980/982/983/985 support three different power reduction modes: Idle mode, Power-down mode, and total Power-down mode. In addition, individual on-chip peripherals can be disabled to eliminate unnecessary dynamic power use in any peripherals that are not required for the application.

Integrated PMU automatically adjusts internal regulators to minimize power consumption during Idle mode, Power-down mode and total Power-down mode. In addition, the power consumption can be further reduced in Normal or Idle mode through configuring regulators mode according to the applications.

7.17.1 Brownout detection

The brownout detect function determines if the power supply voltage drops below a certain level. Enhanced brownout detection has 3 independent functions: BOD reset, BOD interrupt and BOD flash.

These three functions are disabled in Power-down mode and Total Power-down mode. In Normal or Idle mode, BOD reset and BOD flash are always on and can not be disabled in software. BOD interrupt may be enabled or disabled in software.

BOD reset and BOD interrupt, each has 6 levels. BOE0 to BOE2 (UCFG1[3:5]) are used as trip point configuration bits of BOD reset. BOICFG0 to BOICFG2 in register BODCFG are used as trip point configuration bits of BOD interrupt.

BOD reset voltage should be lower than BOD interrupt trip point. BOD flash is used for flash programming/erase protection and has only 1 trip point at 2.4 V. Please refer to *P89LPC980/982/983/985 User manual* for detail configurations.

If brownout detection works, the brownout condition occurs when V_{DD} falls below the brownout falling trip voltage and is negated when V_{DD} rises above the brownout rising trip voltage.

For correct activation of brownout detect, the V_{DD} rise and fall times must be observed. Please see <u>Table 13 "Static characteristics"</u> for specifications.

7.17.2 Power-on detection

The Power-on detect has a function similar to the brownout detect, but is designed to work as power comes up initially to ensure that the device is reset from Power-on. The POF flag in the RSTSRC register is set to indicate an initial power-up condition. The POF flag will remain set until cleared by software.

7.17.3 Power reduction modes

The P89LPC980/982/983/985 supports three different power reduction modes. These modes are Idle mode, Power-down mode, and total Power-down mode.

7.17.3.1 Idle mode

Idle mode leaves peripherals running in order to allow them to activate the processor

when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle mode.

7.17.3.2 Power-down mode

The Power-down mode stops the oscillator in order to minimize power consumption. Brownout detection circuitry is disabled. The P89LPC980/982/983/985 exits Power-down mode via any reset, or certain interrupts.

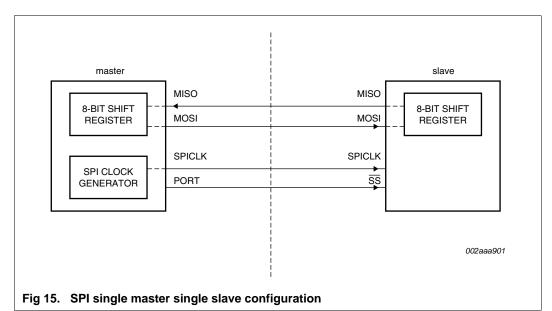
Some chip functions continue to operate and draw power during Power-down mode, increasing the total power used during power-down. These include: watchdog timer, comparators and RTC/system timer (note that watchdog timer, comparators and RTC/system timer can be powered down separately). The internal RC oscillator is disabled unless both the RC oscillator has been selected as the system clock and the RTC is enabled.

7.17.3.3 Total Power-down mode

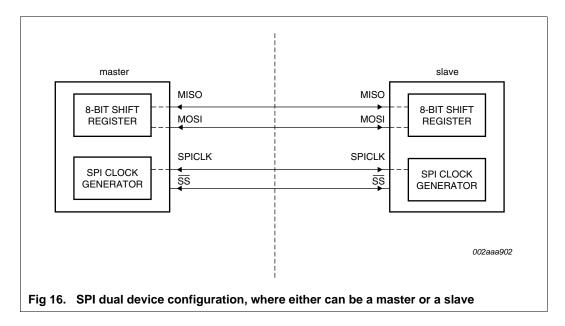
The total Power-down mode is a deeper power reduction mode. Brownout detection circuitry and analog comparators are disabled, as well as the internal RC oscillator.

Please use an external low frequency clock or 25 kHz watchdog oscillator to achieve low power with the RTC running during power-down.

7.17.4 Regulators


Internal regulators can be adjusted automatically to minimize power consumption during different power reduction modes. In Normal or Idle modes, power consumption can be further reduced by configuring PMUCON register.

In Normal or Idle mode, regulators have two operation modes: high speed mode and low current mode.


The regulators can be configured to low current mode to reduce the power consumption.

After power-on-reset, internal regulators enter into High-speed mode as default. PMUCON register is used to configure the regulators operation modes. LPMOD bit is used to select the regulator's mode and HCOK bit indicates whether the switch completed

8-bit microcontroller with accelerated two-clock 80C51 core

7.24.1 Typical SPI configurations

7.26 KBI

The Keypad Interrupt function (KBI) is intended primarily to allow a single interrupt to be generated when Port 0 is equal to or not equal to a certain pattern. This function can be used for bus address recognition or keypad recognition. The port can be configured via SFRs for different tasks.

The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag (KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is matched while the Keypad Interrupt function is active. An interrupt will be generated if enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to define equal or not-equal for the comparison.

In order to use the Keypad Interrupt as an original KBI function like in P87LPC76x series, the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key connected to Port 0 which is enabled by the KBMASK register will cause the hardware to set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in handheld, battery-powered systems that need to carefully manage power consumption yet also need to be convenient to use.

In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer than six CCLKs.

7.27 Watchdog timer

The watchdog timer causes a system reset when it underflows as a result of a failure to feed the timer prior to the timer reaching its terminal count. It consists of a programmable 12-bit prescaler, and an 8-bit down counter. The down counter is decremented by a tap taken from the prescaler. The clock source for the prescaler can be the PCLK, the nominal 400 kHz/25 kHz watchdog oscillator or low speed crystal oscillator. The watchdog timer can only be reset by a power-on reset. When the watchdog feature is disabled, it can be used as an interval timer and may generate an interrupt. Figure 19 shows the watchdog timer in Watchdog mode. Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the watchdog clock and the CPU is powered down, the watchdog is disabled. The watchdog timer has a time-out period that ranges from a few μ s to a few seconds. Please refer to the *P89LPC980/982/983/985 User manual* for more details.

8.4.4 Auto scan, continuous conversion mode

Any combination of the eight input channels can be selected for conversion. A conversion of each selected input will be performed and the result placed in the result register pair which corresponds to the selected input channel. The user may select whether an interrupt, if enabled, will be generated after either the first four conversions have occurred or all selected channels have been converted. If the user selects to generate an interrupt after the four input channels have been converted, a second interrupt will be generated after the remaining input channels have been converted. After all selected channels have been converted, the process will repeat starting with the first selected channel. Additional conversion results will again cycle through the eight result register pairs, overwriting the previous results. Continuous conversions continue until terminated by the user.

8.4.5 Dual channel, continuous conversion mode

This is a variation of the auto scan continuous conversion mode where conversion occurs on two user-selectable inputs. The result of the conversion of the first channel is placed in the result register pair, AD0DAT0R and AD0DAT0L. The result of the conversion of the second channel is placed in result register pair, AD0DAT1R and AD0DAT1L. The first channel is again converted and its result stored in AD0DAT2R and AD0DAT2L. The second channel is again converted and its result placed in AD0DAT3R and AD0DAT3L. An interrupt is generated, if enabled, after every set of four or eight conversions (user selectable).

8.4.6 Single step mode

This special mode allows 'single-stepping' in an auto scan conversion mode. Any combination of the eight input channels can be selected for conversion. After each channel is converted, an interrupt is generated, if enabled, and the A/D waits for the next start condition. May be used with any of the start modes.

8.5 Conversion start modes

8.5.1 Timer triggered start

An A/D conversion is started by the overflow of Timer 0. Once a conversion has started, additional Timer 0 triggers are ignored until the conversion has completed. The Timer triggered start mode is available in all ADC operating modes.

8.5.2 Start immediately

Programming this mode immediately starts a conversion. This start mode is available in all ADC operating modes.

8.5.3 Edge triggered

An A/D conversion is started by rising or falling edge of P1.4. Once a conversion has started, additional edge triggers are ignored until the conversion has completed. The edge triggered start mode is available in all ADC operating modes.

8-bit microcontroller with accelerated two-clock 80C51 core

11. Dynamic characteristics

Table 14. Dynamic characteristics (12 MHz)

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V unless otherwise specified.}$

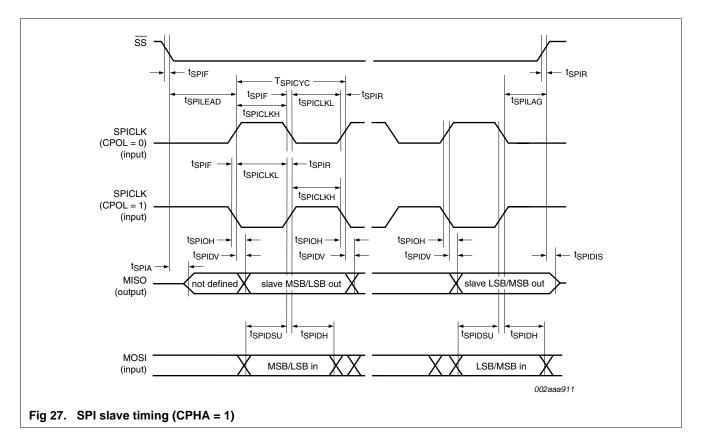
 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified.}$

Symbol	Parameter	Conditions	Varia	able clock	f _{osc} = '	Unit	
			Min	Max	Min	Max	
f _{osc(RC)}	internal RC oscillator frequency	nominal f = 7.3728 MHz trimmed to \pm 1 % at T _{amb} = 25 °C; clock doubler option = OFF (default)	7.189	7.557	7.189	7.557	MHz
		nominal f = 14.7456 MHz; clock doubler option = ON, V_{DD} = 2.7 V to 5.5 V	14.378	15.114	14.378	15.114	MHz
f _{osc(WD)}	internal watchdog oscillator frequency		360	440	360	440	kHz
f _{osc}	oscillator frequency		0	12	-	-	MHz
T _{cy(clk)}	clock cycle time	see Figure 22	83	-	-	-	ns
f _{CLKLP}	low-power select clock frequency		0	8	-	-	MHz
Glitch filte	r						
t _{gr}	glitch rejection time	P1.5/RST pin	-	50	-	50	ns
		any pin except P1.5/RST	-	15	-	15	ns
t _{sa}	signal acceptance time	P1.5/RST pin	125	-	125	-	ns
		any pin except P1.5/RST	50	-	50	-	ns
External c	lock						
t _{CHCX}	clock HIGH time	see Figure 22	33	${\sf T}_{{\sf cy}({\sf clk})}-{\sf t}_{{\sf CLCX}}$	33	-	ns
t _{CLCX}	clock LOW time	see Figure 22	33	${\sf T}_{{\sf cy}({\sf clk})}-{\sf t}_{{\sf CHCX}}$	33	-	ns
t _{CLCH}	clock rise time	see Figure 22	-	8	-	8	ns
t _{CHCL}	clock fall time	see Figure 22	-	8	-	8	ns
Shift regis	ter (UART mode 0)						
T _{XLXL}	serial port clock cycle time	see Figure 23	16T _{cy(clk)}	-	1333	-	ns
t _{QVXH}	output data set-up to clock rising edge time	see <u>Figure 23</u>	13T _{cy(clk)}	-	1083	-	ns
t _{XHQX}	output data hold after clock rising edge time	see <u>Figure 23</u>	-	$T_{cy(clk)}$ + 20	-	103	ns
t _{XHDX}	input data hold after clock rising edge time	see Figure 23	-	0	-	0	ns
t _{XHDV}	input data valid to clock rising edge time	see Figure 23	150	-	150	-	ns
SPI interfa	ice						
f _{SPI}	SPI operating frequency						
	slave		0	CCLK/6	0	2.0	MHz
	master		-	CCLK/4	-	3.0	MHz

8-bit microcontroller with accelerated two-clock 80C51 core

Table 14. Dynamic characteristics (12 MHz) ... continued

 $V_{DD} = 2.4$ V to 5.5 V unless otherwise specified.


 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified } \frac{[1][2]}{2}$

Symbol	Parameter	Conditions	Varia	Variable clock		f _{osc} = 12 MHz	
			Min	Max	Min	Max	
T _{SPICYC}	SPI cycle time	see <u>Figure 24, 25, 26, 27</u>					
	slave		⁶ ∕ _{CCLK}	-	500	-	ns
	master		4/CCLK	-	333	-	ns
t _{SPILEAD}	SPI enable lead time	see Figure 26, 27					
	slave		250	-	250	-	ns
t _{SPILAG}	SPI enable lag time	see Figure 26, 27					
	slave		250	-	250	-	ns
t _{SPICLKH}	SPICLK HIGH time	see <u>Figure 24, 25, 26, 27</u>					
	master		² / _{CCLK}	-	165	-	ns
	slave		³ ⁄CCLK	-	250	-	ns
t _{SPICLKL}	SPICLK LOW time	see <u>Figure 24, 25, 26, 27</u>					
	master		² / _{CCLK}	-	165	-	ns
	slave		³ /CCLK	-	250	-	ns
t _{SPIDSU}	SPI data set-up time	see <u>Figure 24, 25, 26, 27</u>	100	-	100	-	ns
	master or slave						
t _{SPIDH}	SPI data hold time	see <u>Figure 24, 25, 26, 27</u>	100	-	100	-	ns
	master or slave						
t _{SPIA}	SPI access time	see <u>Figure 26,</u> <u>27</u>					
	slave		0	120	0	120	ns
t _{SPIDIS}	SPI disable time	see <u>Figure 26,</u> 27					
	slave		0	240	-	240	ns
t _{SPIDV}	SPI enable to output data valid time	see <u>Figure 24, 25, 26, 27</u>					
	slave		-	240	-	240	ns
	master		-	167	-	167	ns
t _{SPIOH}	SPI output data hold time	see Figure 24, 25, 26, 27	0	-	0	-	ns
t _{SPIR}	SPI rise time	see Figure 24, 25, 26, 27					
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns
t _{SPIF}	SPI fall time	see Figure 24, <u>25, 26, 27</u>					
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.

8-bit microcontroller with accelerated two-clock 80C51 core

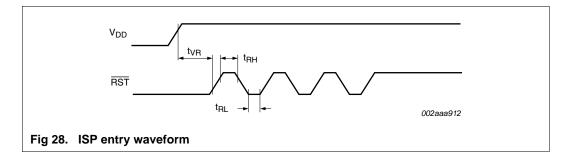
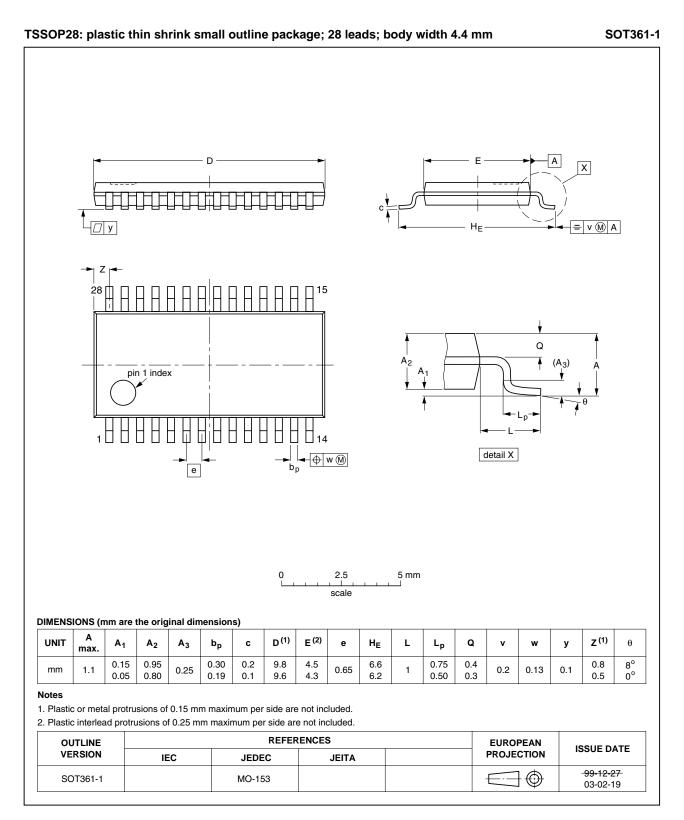
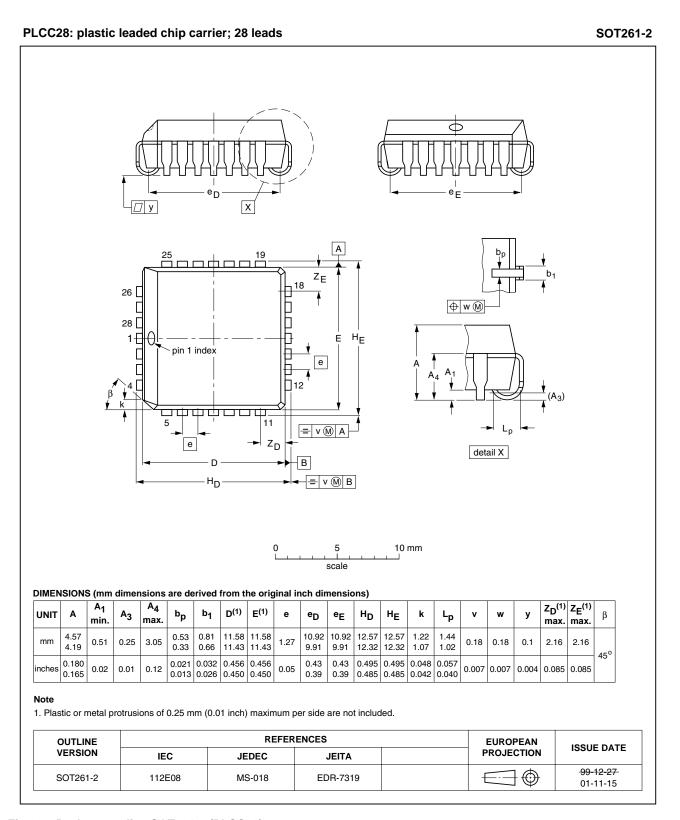

11.2 ISP entry mode

Table 16. Dynamic characteristics, ISP entry mode

 $V_{DD} = 2.4$ V to 5.5 V, unless otherwise specified.


 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VR}	V_{DD} active to \overline{RST} active delay time	pin P1.5/RST	50	-	-	μs
t _{RH}	RST HIGH time	pin P1.5/RST	1	-	32	μs
t _{RL}	RST LOW time	pin P1.5/RST	1	-	-	μs


8-bit microcontroller with accelerated two-clock 80C51 core

13. Package outline

Fig 29. Package outline SOT361-1 (TSSOP28)

8-bit microcontroller with accelerated two-clock 80C51 core

Fig 30. Package outline SOT261-2 (PLCC28)

8-bit microcontroller with accelerated two-clock 80C51 core

14. Abbreviations

Table 19.	Abbreviations		
Acronym	Description		
ADC	Analog to Digital Converter		
BOD	BrownOut Detect		
CPU	Central Processing Unit		
CCU	Capture/Compare Unit		
CRC	Cyclic Redundancy Check		
DAC	Digital to Analog Converter		
EPROM	Erasable Programmable Read-Only Memory		
EEPROM	Electrically Erasable Programmable Read-Only Memory		
EMI	ElectroMagnetic Interference		
GPIO	General Purpose Input/Output		
LSB	Least Significant Bit		
MSB	Most Significant Bit		
PLL	Phase-Locked Loop		
PWM	Pulse Width Modulator		
RAM	Random Access Memory		
RC	Resistance-Capacitance		
RTC	Real-Time Clock		
SAR	Successive Approximation Register		
SFR	Special Function Register		
SPI	Serial Peripheral Interface		
UART	Universal Asynchronous Receiver/Transmitter		
WDT	WatchDog Timer		