
E·XFL

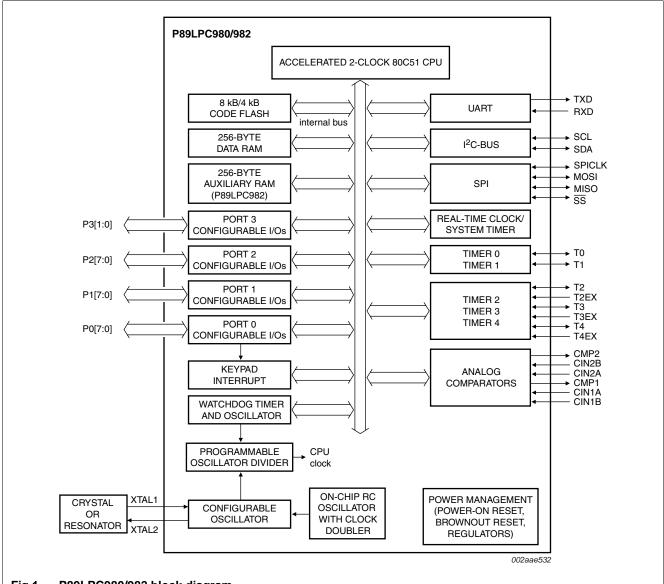
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

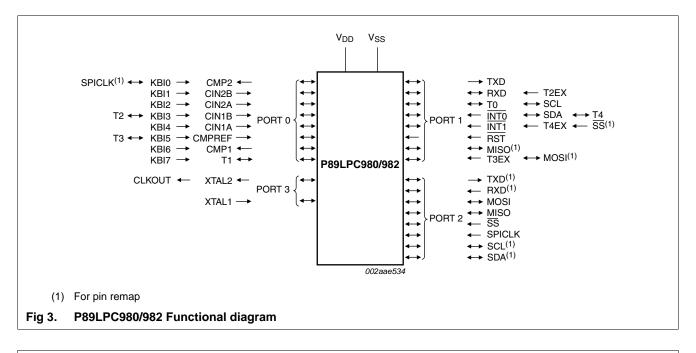
Details


Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc982fdh-529

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-bit microcontroller with accelerated two-clock 80C51 core


4. Block diagram

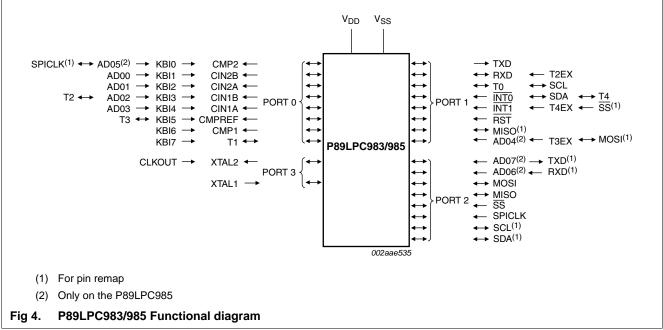
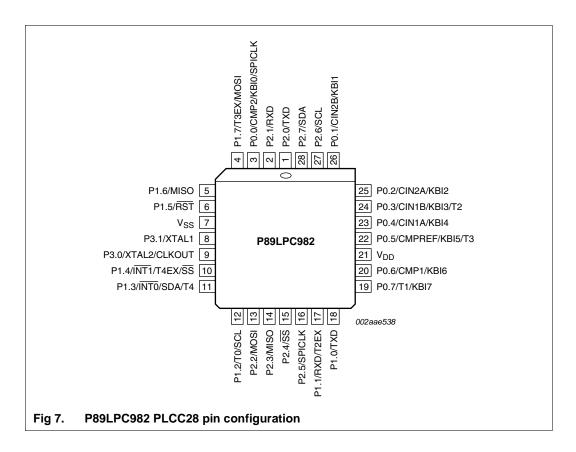


Fig 1. P89LPC980/982 block diagram


8-bit microcontroller with accelerated two-clock 80C51 core

5. Functional diagram

8-bit microcontroller with accelerated two-clock 80C51 core

Symbol	Pin	Туре	Description
	PLCC28, TSSOP28		
P3.0/XTAL2/	9	I/O	P3.0 — Port 3 bit 0.
CLKOUT	SLKOUT		XTAL2 — Output from the oscillator amplifier (when a crystal oscillator option is selected via the flash configuration.
		0	CLKOUT — CPU clock divided by 2 when enabled via SFR bit (ENCLK -TRIM.6). It can be used if the CPU clock is the internal RC oscillator, watchdog oscillator or external clock input, except when XTAL1/XTAL2 are used to generate clock source for the RTC/system timer.
P3.1/XTAL1	8	I/O	P3.1 — Port 3 bit 1.
		I	XTAL1 — Input to the oscillator circuit and internal clock generator circuits (when selected via the flash configuration). It can be a port pin if internal RC oscillator or watchdog oscillator is used as the CPU clock source, and if XTAL1/XTAL2 are not used to generate the clock for the RTC/system timer.
V _{SS}	7	I	Ground: 0 V reference.
V _{DD}	21	I	Power supply: This is the power supply voltage for normal operation as well as Idle and Power-down modes.

 Table 3.
 Pin description ...continued

[1] Input/output for P1.0 to P1.4, P1.6, P1.7. Input for P1.5.

Table 4. Special function registers - P89LPC980/982 ...continued * indicates SFRs that are bit addressable. P89LPC9

Name Description	SFR	Bit function	Bit functions and addresses							Rese	t value	
		addr.	MSB							LSB	Hex	Binary
SPCTL	SPI control register	E2H	SSIG	SPEN	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	04	0000 0100
SPSTAT	SPI status register	E1H	SPIF	WCOL	-	-	-	-	-	-	00	00xx xxxx
SPDAT	SPI data register	E3H									00	0000 0000
TAMOD	Timer 0 and 1 auxiliary mode	8FH	-	-	-	T1M2	-	-	-	T0M2	00	xxx0 xxx0
	Bit a	address	8F	8E	8D	8C	8B	8A	89	88		
TCON*	Timer 0 and 1 control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00	0000 0000
TH0	Timer 0 high	8CH									00	0000 0000
TH1	Timer 1 high	8DH									00	0000 0000
TL0	Timer 0 low	8AH									00	0000 0000
TL1	Timer 1 low	8BH									00	0000 0000
TMOD	Timer 0 and 1 mode	89H	T1GATE	T1C/T	T1M1	T1M0	TOGATE	T0C/T	T0M1	T0M0	00	0000 0000
T2CON	Timer/Counter 2 Control	FFH	PSEL2	ENT2	TIEN2	PWM2	EXEN2	TR2	C/NT2	CP/NRL2	00	0000 0000
TH2	Timer/Counter 2 High Byte	FEH									00	0000 0000
TL2	Timer/Counter 2 Low Byte	FDH									00	0000 0000
T3CON	Timer/Counter 3 Control	EFH	PSEL3	ENT3	TIEN3	PWM3	EXEN3	TR3	C/NT3	CP/NRL3	00	0000 0000
TH3	Timer/Counter 3 High Byte	EEH									00	0000 0000
TL3	Timer/Counter 3 Low Byte	EDH									00	0000 0000
T4CON	Timer/Counter 2 Control	CDH	PSEL4	ENT4	TIEN4	PWM4	EXEN4	TR4	C/NT4	CP/NRL4	00	0000 0000
TH4	Timer/Counter 4 High Byte	ССН									00	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

20 of 85

Product data sheet

Rev. 4 — 15 June 2010

Special function registers - P89LPC980/982 ... continued Table 4. PLPC

* indicates SFRs that are bit addressable.

Name	Description	SFR Bit functions and addresses						Reset value				
		addr.	MSB							LSB	Hex	Binary
TL4	Timer/Counter 4 Low Byte	СВН									00	0000 0000
TINTF	Timer/Counters 2/3/4 Overflow and External Flags	CEH	-	-	TF4	EXF4	TF3	EXF3	TF2	EXF2	00	0000 0000
TRIM	Internal oscillator trim register	96H	RCCLK	ENCLK	TRIM.5	TRIM.4	TRIM.3	TRIM.2	TRIM.1	TRIM.0	[4][5]	
WDCON	Watchdog control register	A7H	PRE2	PRE1	PRE0	-	-	WDRUN	WDTOF	WDCLK	[4][6]	
WDL	Watchdog load	C1H									FF	1111 1111
WFEED1	Watchdog feed 1	C2H										
WFEED2	Watchdog feed 2	СЗН										

Product data sheet

[1] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.

[2] All ports are in input only (high-impedance) state after power-up.

[3] The RSTSRC register reflects the cause of the P89LPC980/982/983/985 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is x011 0000.

[4] The only reset sources that affect these SFRs are power-on reset and watchdog reset.

[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.

[6] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset. Other resets will not affect WDTOF.

Table 6.Special function registers - P89LPC983/985* indicates SFRs that are bit addressable. P89LPC98

Name Description SFR			Bit functions and addresses								Reset value	
		addr.	MSB							LSB	Hex	Binary
	Bit	address	E7	E6	E5	E4	E3	E2	E1	E0		
ACC*	Accumulator	E0H									00	0000 0000
AD0CON	A/D control register 0	97H	ENBI0	ENADCI0	TMM10	EDGE0	ADCI0	ENADC0	ADCS01	ADCS00	00	0000 0000
AD0INS	A/D input select	A3H	AIN07	AIN06	AIN05	AIN04	AIN03	AIN02	AIN01	AIN00	00	0000 0000
AD0MODA	A/D mode register A	C0H	BNDI0	BURST0	SCC0	SCAN0	-	-	-	-	00	0000 0000
AD0MODB	A/D mode register B	A1H	CLK2	CLK1	CLK0	INBND0	-	-	BSA0	FCIIS	00	000x 0000
AUXR1	Auxiliary function register	A2H	CLKLP	EBRR	ENT1	ENT0	SRST	0	-	DPS	00	0000 00x0
	Bit	address	F7	F6	F5	F4	F3	F2	F1	F0		
B*	B register	F0H									00	0000 0000
BRGR0[1]	Baud rate generator 0 rate low	BEH									00	0000 0000
BRGR1[1]	Baud rate generator 0 rate high	BFH									00	0000 0000
BRGCON	Baud rate generator 0 control	BDH	-	-	-	-	-	-	SBRGS	BRGEN	00 <u>[1]</u>	xxxx xx00
CMP1	Comparator 1 control register	ACH	-	-	CE1	CP1	CN1	OE1	CO1	CMF1	00 <u>[2]</u>	xx00 0000
CMP2	Comparator 2 control register	ADH	-	-	CE2	CP2	CN2	OE2	CO2	CMF2	00 <u>[2]</u>	xx00 0000
DIVM	CPU clock divide-by-M control	95H									00	0000 0000
DPTR	Data pointer (2 bytes)											
DPH	Data pointer high	83H									00	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

ights reserved. 23 of 85

Product data sheet

Rev. 4 — 15 June 2010

Name	Description SFF	SFR addr.	Bit functions and addresses		Reset v	alue
			MSB	LSB	Hex	Binary
AD0DAT0L	ADC0 data register 0, left (MSB)	FFFFH	AD0DAT0 [9:2]		00	0000 0000
AD0DAT0R	ADC0 data register 0, right (LSB)	FFFEH	AD0DAT0 [7:0]		00	0000 000
AD0DAT1L	ADC0 data register 1, left (MSB)	FFFDH	AD0DAT1 [9:2]		00	0000 000
AD0DAT1R	ADC0 data register 1, right (LSB)	FFFCH	AD0DAT1 [7:0]		00	0000 000
AD0DAT2L	ADC0 data register 2, left (MSB)	FFFBH	AD0DAT2 [9:2]		00	0000 000
AD0DAT2R	ADC0 data register 2, right (LSB)	FFFAH	AD0DAT2 [7:0]		00	0000 000
AD0DAT3L	ADC0 data register 3, left (MSB)	FFF9H	AD0DAT3 [9:2]		00	0000 000
AD0DAT3R	ADC0 data register 3, right (LSB)	FFF8H	AD0DAT3 [7:0]		00	0000 000
AD0DAT4L	ADC0 data register 4, left (MSB)	FFF7H	AD0DAT4 [9:2]		00	0000 000
AD0DAT4R	ADC0 data register 4, right (LSB)	FFF6H	AD0DAT4 [7:0]		00	0000 000
AD0DAT5L	ADC0 data register 5, left (MSB)	FFF5H	AD0DAT5 [9:2]		00	0000 000
AD0DAT5R	ADC0 data register 5, right (LSB)	FFF4H	AD0DAT5 [7:0]		00	0000 000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core

P89LPC980/982/983/985

rights reserved. 30 of 85

8-bit microcontroller with accelerated two-clock 80C51 core

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the interrupt priority registers IP0, IP0H, IP1 and IP1H. An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. If two requests of different priority level is serviced.

If requests of the same priority level are pending at the start of an instruction, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve pending requests of the same priority level.

7.15.1 External interrupt inputs

The P89LPC980/982/983/985 has two external interrupt inputs as well as the Keypad Interrupt function. The two interrupt inputs are identical to those present on the standard 80C51 microcontrollers.

These external interrupts can be programmed to be level-triggered or edge-triggered by setting or clearing bit IT1 or IT0 in Register TCON.

In edge-triggered mode, if successive samples of the INTn pin show a HIGH in one cycle and a LOW in the next cycle, the interrupt request flag IEn in TCON is set, causing an interrupt request.

If an external interrupt is enabled when the P89LPC980/982/983/985 is put into Power-down or Idle mode, the interrupt will cause the processor to wake-up and resume operation. Refer to <u>Section 7.17.3 "Power reduction modes"</u> for details.

7.16.1.3 Input-only configuration

The input-only port configuration has no output drivers. It is a Schmitt trigger input that also has a glitch suppression circuit.

7.16.1.4 Push-pull output configuration

The push-pull output configuration has the same pull-down structure as both the open-drain and the quasi-bidirectional output modes, but provides a continuous strong pull-up when the port latch contains a logic 1. The push-pull mode may be used when more source current is needed from a port output. A push-pull port pin has a Schmitt triggered input that also has a glitch suppression circuit. The P89LPC980/982/983/985 device has high current source on eight pins in push-pull mode. See Table 12 "Limiting values".

7.16.2 Port 0 analog functions

The P89LPC980/982/983/985 incorporates two Analog Comparators. In order to give the best analog function performance and to minimize power consumption, pins that are being used for analog functions must have the digital outputs and digital inputs disabled.

Digital outputs are disabled by putting the port output into the Input-Only (high-impedance) mode.

Digital inputs on Port 0 may be disabled through the use of the PT0AD register, bits 1:5. On any reset, PT0AD[1:5] defaults to logic 0s to enable digital functions.

7.16.3 Additional port features

After power-up, all pins are in Input-Only mode. Please note that this is different from the LPC76x series of devices.

- After power-up, all I/O pins except P1.5, may be configured by software.
- Pin P1.5 is input only. Pins P1.2 and P1.3 are configurable for either input-only or open-drain.

Every output on the P89LPC980/982/983/985 has been designed to sink typical LED drive current. However, there is a maximum total output current for all ports which must not be exceeded. Please refer to <u>Table 13 "Static characteristics"</u> for detailed specifications.

All ports pins that can function as an output have slew rate controlled outputs to limit noise generated by quickly switching output signals. The slew rate is factory-set to approximately 10 ns rise and fall times.

7.16.4 Pin remap

This feature allows the functions of UART/I2C/SPI to be remapped to other pins. Configuration register controls the multiplexers to allow connection between the pins and the on chip peripherals. See <u>Table 10 "SPI/I2C/UART pin remap</u>".

UART/I2C/SPI, each has two options of pin configuration: primary pin map and alternative pin map. After reset, UART/I2C/SPI chooses the primary pin map as default. User can adjust to the alternative pin map through configuring PINCON register according to the application.

automatic address recognition, selectable double buffering and several interrupt options. The UART can be operated in four modes: shift register, 8-bit UART, 9-bit UART, and CPU clock/32 or CPU clock/16.

7.22.1 Mode 0

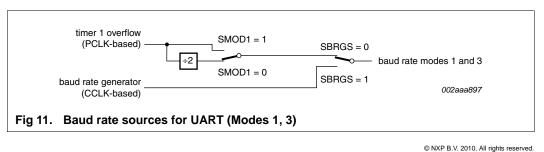
Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted or received, LSB first. The baud rate is fixed at $1/_{16}$ of the CPU clock frequency.

7.22.2 Mode 1

10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored in RB8 in special function register SCON. The baud rate is variable and is determined by the Timer 1 overflow rate or the baud rate generator (described in <u>Section 7.22.5 "Baud</u> rate generator and selection").

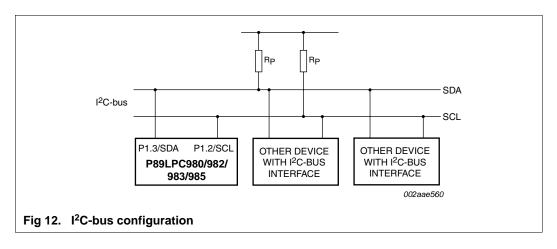
7.22.3 Mode 2

11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of logic 0 or logic 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is received, the 9th data bit goes into RB8 in special function register SCON, while the stop bit is not saved. The baud rate is programmable to either $\frac{1}{16}$ or $\frac{1}{32}$ of the CPU clock frequency, as determined by the SMOD1 bit in PCON.

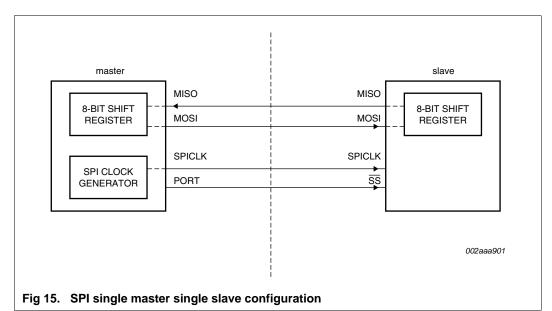

7.22.4 Mode 3

11 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable and is determined by the Timer 1 overflow rate or the baud rate generator (described in Section 7.22.5 "Baud rate generator and selection").

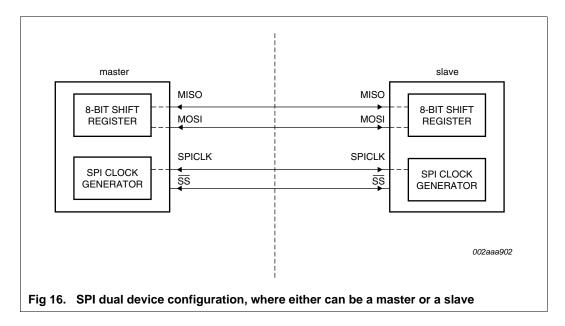
7.22.5 Baud rate generator and selection

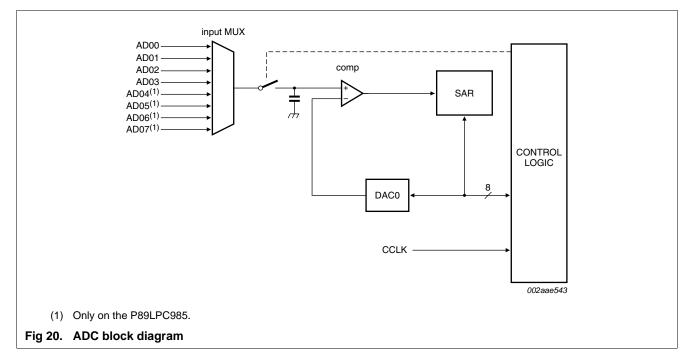

The P89LPC980/982/983/985 enhanced UART has an independent baud rate generator. The baud rate is determined by a baud-rate preprogrammed into the BRGR1 and BRGR0 SFRs which together form a 16-bit baud rate divisor value that works in a similar manner as Timer 1 but is much more accurate. If the baud rate generator is used, Timer 1 can be used for other timing functions.

The UART can use either Timer 1 or the baud rate generator output (see <u>Figure 11</u>). Note that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared. The independent baud rate generators use OSCCLK.



• The I²C-bus may be used for test and diagnostic purposes.


A typical I²C-bus configuration is shown in <u>Figure 12</u>. The P89LPC980/982/983/985 device provides a byte-oriented I²C-bus interface that supports data transfers up to 400 kHz.


8-bit microcontroller with accelerated two-clock 80C51 core

7.24.1 Typical SPI configurations

8-bit microcontroller with accelerated two-clock 80C51 core

8.3 Block diagram

8.4 ADC operating modes

8.4.1 Fixed channel, single conversion mode

A single input channel can be selected for conversion. A single conversion will be performed and the result placed in the result register pair which corresponds to the selected input channel. An interrupt, if enabled, will be generated after the conversion completes.

8.4.2 Fixed channel, continuous conversion mode

A single input channel can be selected for continuous conversion. The results of the conversions will be sequentially placed in the eight result register. The user may select whether an interrupt can be generated after every four or every eight conversions. Additional conversion results will again cycle through the result register pairs, overwriting the previous results. Continuous conversions continue until terminated by the user.

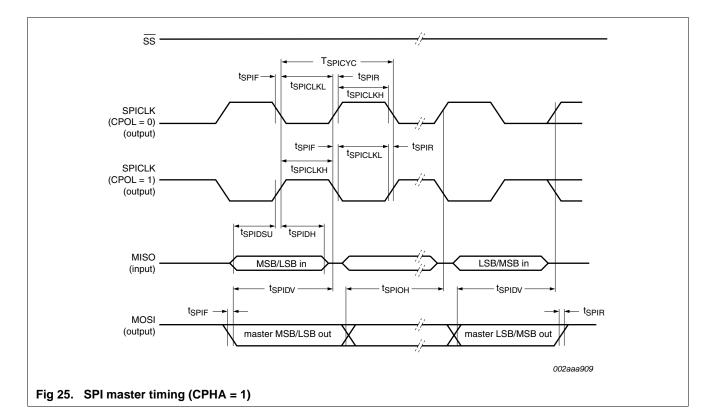
8.4.3 Auto scan, single conversion mode

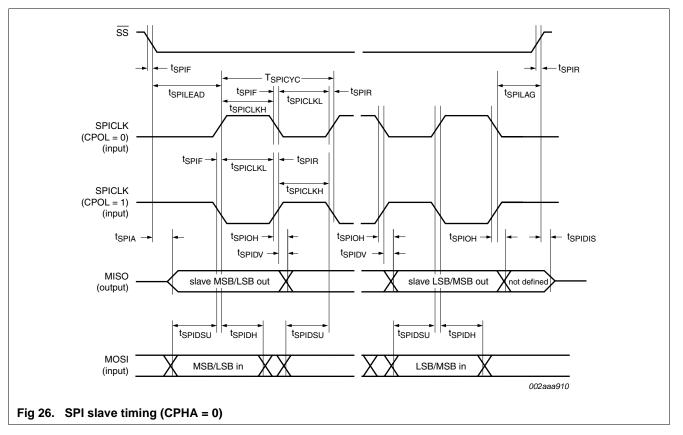
Any combination of the eight input channels can be selected for conversion. A single conversion of each selected input will be performed and the result placed in the result register pair which corresponds to the selected input channel. The user may select whether an interrupt, if enabled, will be generated after either the first four conversions have occurred or all selected channels have been converted. If the user selects to generate an interrupt after the four input channels have been converted, a second interrupt will be generated after the remaining input channels have been converted. If only a single channel is selected this is equivalent to single channel, single conversion mode.

8-bit microcontroller with accelerated two-clock 80C51 core

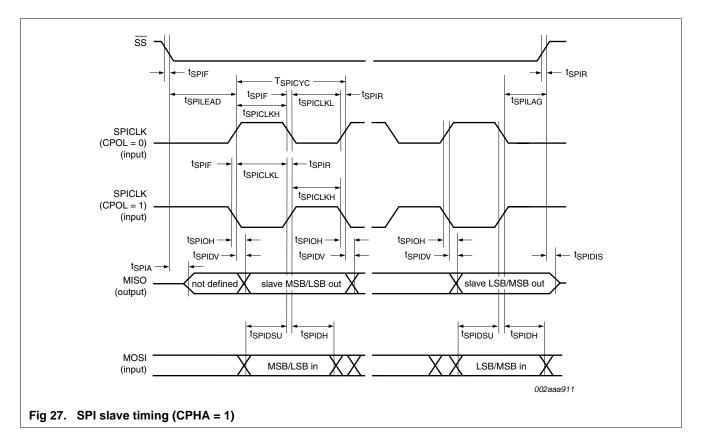
Table 15. Dynamic characteristics (18 MHz) ... continued

 V_{DD} = 3.6 V to 5.5 V unless otherwise specified.


 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified } \frac{[1][2]}{2}$


Symbol	Parameter	Conditions	Variab	Variable clock			Unit
			Min	Max	Min	Max	
SPILEAD	SPI enable lead time	see <u>Figure 26</u> , <u>27</u>			l		
	slave		250	-	250	-	ns
SPILAG	SPI enable lag time	see <u>Figure 26, 27</u>					
	slave		250	-	250	-	ns
SPICLKH	SPICLK HIGH time	see Figure 24, 25, 26, 27					
	slave		³ / _{CCLK}	-	167	-	ns
	master		² / _{CCLK}	-	111	-	ns
SPICLKL	SPICLK LOW time	see <u>Figure 24, 25, 26, 27</u>					
	slave		³ / _{CCLK}	-	167	-	ns
	master		² / _{CCLK}	-	111	-	ns
SPIDSU	SPI data set-up time	see <u>Figure 24, 25, 26, 27</u>					
	master or slave		100	-	100	-	ns
SPIDH	SPI data hold time	see <u>Figure 24, 25, 26, 27</u>					
	master or slave		100	-	100	-	ns
SPIA	SPI access time	see <u>Figure 26,</u> <u>27</u>					
	slave		0	80	0	80	ns
SPIDIS	SPI disable time	see <u>Figure 26, 27</u>					
	slave		0	160	-	160	ns
t _{SPIDV}	SPI enable to output data valid time	see <u>Figure 24</u> , <u>25</u> , <u>26</u> , <u>27</u>					
	slave		-	160	-	160	ns
	master		-	111	-	111	ns
t _{SPIOH}	SPI output data hold time	see <u>Figure 24</u> , <u>25</u> , <u>26</u> , <u>27</u>	0	-	0	-	ns
SPIR	SPI rise time	see Figure 24, 25, 26, 27					
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns
SPIF	SPI fall time	see Figure 24, <u>25, 26, 27</u>					
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns
	SPI inputs (SP <u>IC</u> LK, MOSI, MISO, SS)		-	2000	-	2000	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.


[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.

8-bit microcontroller with accelerated two-clock 80C51 core

8-bit microcontroller with accelerated two-clock 80C51 core

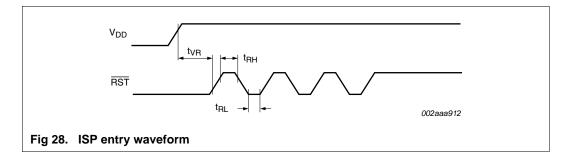
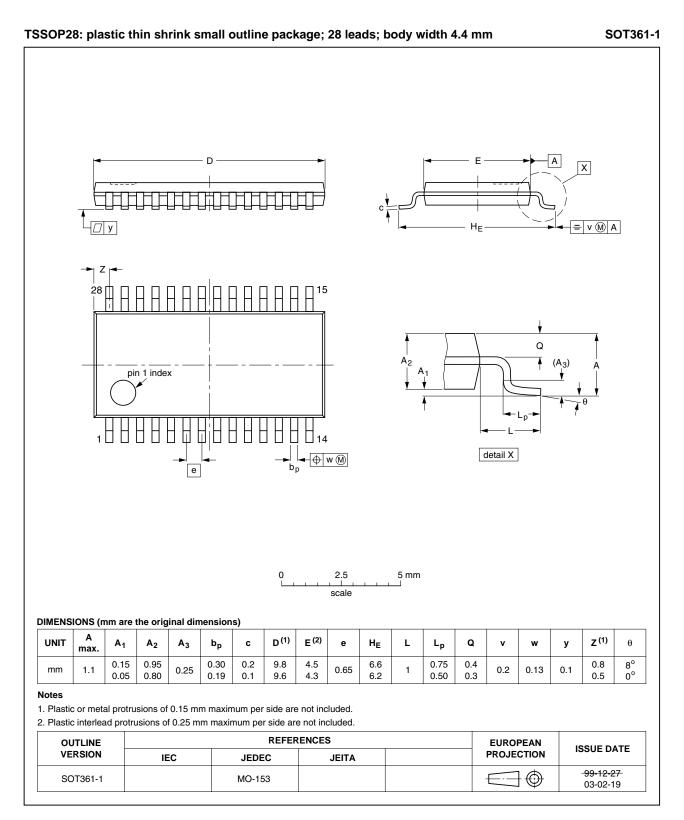
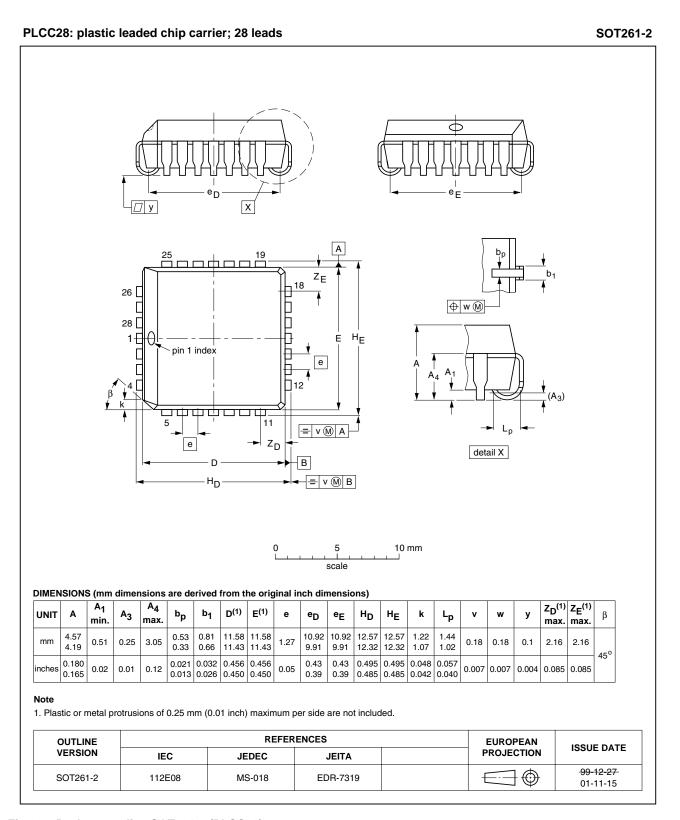

11.2 ISP entry mode

Table 16. Dynamic characteristics, ISP entry mode

 $V_{DD} = 2.4$ V to 5.5 V, unless otherwise specified.


 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VR}	V_{DD} active to \overline{RST} active delay time	pin P1.5/RST	50	-	-	μs
t _{RH}	RST HIGH time	pin P1.5/RST	1	-	32	μs
t _{RL}	RST LOW time	pin P1.5/RST	1	-	-	μs


8-bit microcontroller with accelerated two-clock 80C51 core

13. Package outline

Fig 29. Package outline SOT361-1 (TSSOP28)

8-bit microcontroller with accelerated two-clock 80C51 core

Fig 30. Package outline SOT261-2 (PLCC28)

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.