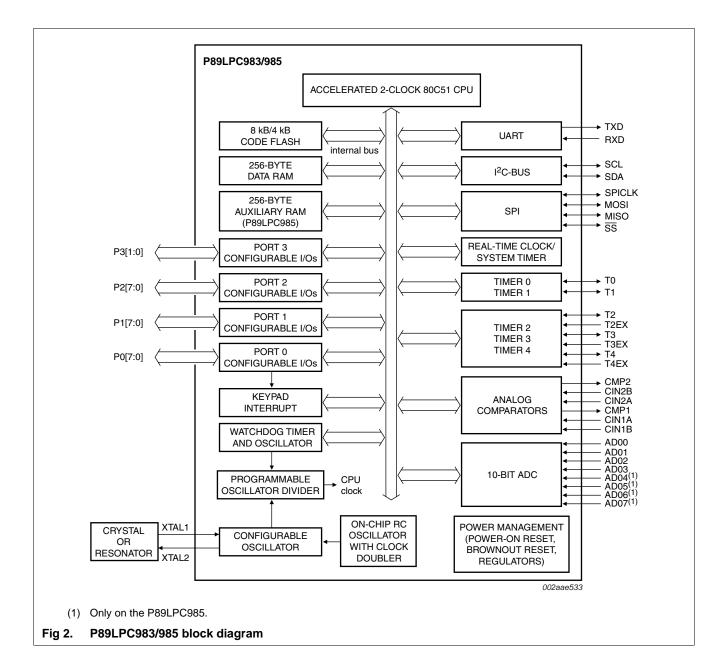

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

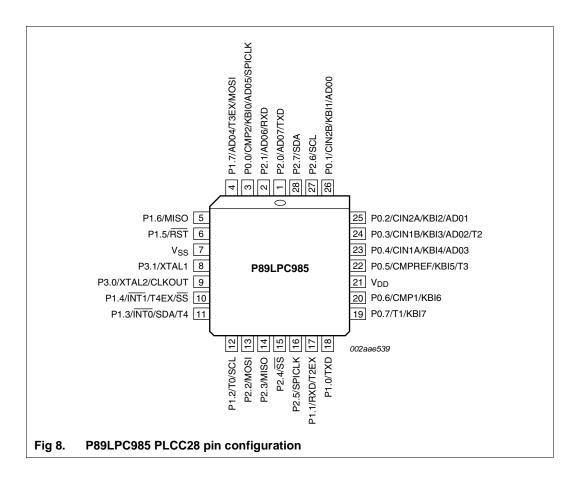

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	26
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc983fdh-529

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



8-bit microcontroller with accelerated two-clock 80C51 core

6. Pinning information

6.1 Pinning

Table 4. Special function registers - P89LPC980/982 ...continued * indicates SFRs that are bit addressable. P89LPC9

Name	Description	SFR	Bit function	ns and addr	esses						Reset	value
		addr.	MSB							LSB	Hex	Binary
IP1H	Interrupt prior high	ity 1 F7H	-	PSTH	-	PXTIMH	PSPIH	PCH	PKBIH	PI2CH	00 <u>[2]</u>	00x0 0000
KBCON	Keypad contro register	ol 94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 <u>[2]</u>	xxxx xx00
KBMASK	Keypad interr mask register										00	0000 000
KBPATN	Keypad patter register	rn 93H									FF	1111 1111
		Bit address	87	86	85	84	83	82	81	80		
P0*	Port 0	80H	T1/KB7	CMP1 /KB6	CMPREF /KB5/T3	CIN1A /KB4	CIN1B /KB3/T2	CIN2A /KB2	CIN2B /KB1	CMP2 /KB0	[2]	
		Bit address	97	96	95	94	93	92	91	90		
P1*	Port 1	90H	T3EX	-	RST	INT1/T4E X	INT0/SDA/ T4	T0/SCL	RXD/T2EX	TXD	[2]	
		Bit address	A7	A6	A5	A4	A3	A2	A1	A0		
P2*	Port 2	A0H	-	-	SPICLK	SS	MISO	MOSI	-	-	[2]	
		Bit address	B7	B6	B5	B4	B3	B2	B1	B0		
P3*	Port 3	B0H	-	-	-	-	-	-	XTAL1	XTAL2	[2]	
P0M1	Port 0 output mode 1	84H	(P0M1.7)	(P0M1.6)	(P0M1.5)	(P0M1.4)	(P0M1.3)	(P0M1.2)	(P0M1.1)	(P0M1.0)	FF <u>[2]</u>	1111 1111
P0M2	Port 0 output mode 2	85H	(P0M2.7)	(P0M2.6)	(P0M2.5)	(P0M2.4)	(P0M2.3)	(P0M2.2)	(P0M2.1)	(P0M2.0)	00 <u>[2]</u>	0000 0000
P1M1	Port 1 output mode 1	91H	(P1M1.7)	(P1M1.6)	-	(P1M1.4)	(P1M1.3)	(P1M1.2)	(P1M1.1)	(P1M1.0)	D3 <u>[2]</u>	11x1 xx11
P1M2	Port 1 output mode 2	92H	(P1M2.7)	(P1M2.6)	-	(P1M2.4)	(P1M2.3)	(P1M2.2)	(P1M2.1)	(P1M2.0)	00 <u>[2]</u>	00x0 xx00
P2M1	Port 2 output mode 1	A4H	(P2M1.7)	(P2M1.6)	(P2M1.5)	(P2M1.4)	(P2M1.3)	(P2M1.2)	(P2M1.1)	(P2M1.0)	FF ^[2]	1111 1111
P2M2	Port 2 output mode 2	A5H	(P2M2.7)	(P2M2.6)	(P2M2.5)	(P2M2.4)	(P2M2.3)	(P2M2.2)	(P2M2.1)	(P2M2.0)	00 <u>[2]</u>	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

Rev. 4 — 15 June 2010

Product data sheet

All rights reserved. 17 of 85

Table 4. Special function registers - P89LPC980/982 ...continued * indicates SFRs that are bit addressable.

Product	P89LPC980_
t data	982_983
sheet	985

Re	
ev.	
4	
1	
G	
5	
5	
e	
N	
2	
ō	

Name	Description		Bit function	Bit functions and addresses							Reset value	
		addr.	MSB							LSB	Hex	Binary
P3M1	Port 3 output mode 1	B1H	-	-	-	-	-	-	(P3M1.1)	(P3M1.0)	03 <u>[2]</u>	xxxx xx11
P3M2	Port 3 output mode 2	B2H	-	-	-	-	-	-	(P3M2.1)	(P3M2.0)	00 <u>[2]</u>	xxxx xx00
PCON	Power control register	87H	SMOD1	SMOD0	-	BOI	GF1	GF0	PMOD1	PMOD0	00	0000 0000
PCONA	Power control register A	B5H	RTCPD	-	VCPD	-	I2PD	SPPD	SPD	-	00 <u>[2]</u>	0000 0000
PINCON	Pin remap control register	CFH	-	-	-	-	-	UART	SPI	I2C	00 <u>[2]</u>	0000 0000
PMUCON	Power Management Unit control register	FAH	LPMOD	-	-	-	-	-	-	HCOK		0xxx xxx1
	Bit a	address	D7	D6	D5	D4	D3	D2	D1	D0		
PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00	0000 0000
PT0AD	Port 0 digital input disable	F6H	-	-	PT0AD.5	PT0AD.4	PT0AD.3	PT0AD.2	PT0AD.1	-	00	xx00 000x
PWMD2H	PWM Free Cycle Register 2 High Byte	AEH									00	0000 0000
PWMD2L	PWM Free Cycle Register 2 Low Byte	AFH									00	0000 0000
PWMD3H	PWM Free Cycle Register 3 High Byte	E9H									00	0000 0000
PWMD3L	PWM Free Cycle Register 3 Low Byte	EAH									00	0000 0000
PWMD4H	PWM Free Cycle Register 4 High Byte	AAH									00	0000 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

© NXP B.V. 2010. All rights reserved. 18 of 85

Table 4. Special function registers - P89LPC980/982 ...continued * indicates SFRs that are bit addressable. P89LPC9

Name	Description	Description	e Description	SFR	Bit function	Bit functions and addresses							Reset value	
		addr.	MSB							LSB	Hex	Binary		
SPCTL	SPI control register	E2H	SSIG	SPEN	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	04	0000 0100		
SPSTAT	SPI status register	E1H	SPIF	WCOL	-	-	-	-	-	-	00	00xx xxxx		
SPDAT	SPI data register	E3H									00	0000 0000		
TAMOD	Timer 0 and 1 auxiliary mode	8FH	-	-	-	T1M2	-	-	-	T0M2	00	xxx0 xxx0		
	Bit a	address	8F	8E	8D	8C	8B	8A	89	88				
TCON*	Timer 0 and 1 control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00	0000 0000		
TH0	Timer 0 high	8CH									00	0000 0000		
TH1	Timer 1 high	8DH									00	0000 0000		
TL0	Timer 0 low	8AH									00	0000 0000		
TL1	Timer 1 low	8BH									00	0000 0000		
TMOD	Timer 0 and 1 mode	89H	T1GATE	T1C/T	T1M1	T1M0	TOGATE	T0C/T	T0M1	T0M0	00	0000 0000		
T2CON	Timer/Counter 2 Control	FFH	PSEL2	ENT2	TIEN2	PWM2	EXEN2	TR2	C/NT2	CP/NRL2	00	0000 0000		
TH2	Timer/Counter 2 High Byte	FEH									00	0000 0000		
TL2	Timer/Counter 2 Low Byte	FDH									00	0000 0000		
T3CON	Timer/Counter 3 Control	EFH	PSEL3	ENT3	TIEN3	PWM3	EXEN3	TR3	C/NT3	CP/NRL3	00	0000 0000		
TH3	Timer/Counter 3 High Byte	EEH									00	0000 0000		
TL3	Timer/Counter 3 Low Byte	EDH									00	0000 0000		
T4CON	Timer/Counter 2 Control	CDH	PSEL4	ENT4	TIEN4	PWM4	EXEN4	TR4	C/NT4	CP/NRL4	00	0000 0000		
TH4	Timer/Counter 4 High Byte	ССН									00	0000 0000		

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

20 of 85

Product data sheet

Rev. 4 — 15 June 2010

Table 6.Special function registers - P89LPC983/985 ... continued* indicates SFRs that are bit addressable. P89LPC98

Name	Description	SFR	Bit functio	Bit functions and addresses							Reset value	
		addr.	MSB							LSB	Hex	Binary
DPL	Data pointer low	82H									00	0000 0000
FMADRH	Program flash address high	E7H									00	0000 0000
FMADRL	Program flash address low	E6H									00	0000 0000
FMCON	Program flash control (Read)	E4H	BUSY	-	-	-	HVA	HVE	SV	OI	70	0111 0000
	Program flash control (Write)	E4H	FMCMD.7	FMCMD.6	FMCMD.5	FMCMD.4	FMCMD.3	FMCMD.2	FMCMD.1	FMCMD.0		
FMDATA	Program flash data	E5H									00	0000 0000
I2ADR	l ² C-bus slave address register	DBH	I2ADR.6	I2ADR.5	I2ADR.4	I2ADR.3	I2ADR.2	I2ADR.1	I2ADR.0	GC	00	0000 0000
	Bit	address	DF	DE	DD	DC	DB	DA	D9	D8		
I2CON*	l ² C-bus control register	D8H	-	I2EN	STA	STO	SI	AA	-	CRSEL	00	x000 00x0
I2DAT	l ² C-bus data register	DAH										
I2SCLH	Serial clock generator/SCL duty cycle register high	DDH									00	0000 0000
I2SCLL	Serial clock generator/SCL duty cycle register low	DCH									00	0000 0000
I2STAT	l ² C-bus status register	D9H	STA.4	STA.3	STA.2	STA.1	STA.0	0	0	0	F8	1111 1000
	Bit	address	AF	AE	AD	AC	AB	AA	A9	A8		
IEN0*	Interrupt enable 0	A8H	EA	EWDRT	EBO	ES/ESR	ET1	EX1	ET0	EX0	00	0000 0000
	Bit	address	EF	EE	ED	EC	EB	EA	E9	E8		
IEN1*	Interrupt enable 1	E8H	EAD	EST	-	EXTIM	ESPI	EC	EKBI	EI2C	00 <u>[2]</u>	00x0 0000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC980/982/983/985

Rev. 4 — 15 June 2010

Product data sheet

Name	Description	SFR addr.	Bit functions and addresses		Reset v	alue
			MSB	LSB	Hex	Binary
AD0DAT0L	ADC0 data register 0, left (MSB)	FFFFH	AD0DA [9:2]		00	0000 0000
AD0DAT0R	ADC0 data register 0, right (LSB)	FFFEH	AD0DA [7:0]		00	0000 000
AD0DAT1L	ADC0 data register 1, left (MSB)	FFFDH	AD0DA [9:2]		00	0000 000
AD0DAT1R	ADC0 data register 1, right (LSB)	FFFCH	AD0DA [7:0]		00	0000 000
AD0DAT2L	ADC0 data register 2, left (MSB)	FFFBH	AD0DA [9:2]		00	0000 000
AD0DAT2R	ADC0 data register 2, right (LSB)	FFFAH	AD0DA [7:0]		00	0000 000
AD0DAT3L	ADC0 data register 3, left (MSB)	FFF9H	AD0DA [9:2]	ТЗ	00	0000 000
AD0DAT3R	ADC0 data register 3, right (LSB)	FFF8H	AD0DA [7:0]		00	0000 000
AD0DAT4L	ADC0 data register 4, left (MSB)	FFF7H	AD0DA [9:2]		00	0000 000
AD0DAT4R	ADC0 data register 4, right (LSB)	FFF6H	AD0DA [7:0]	Τ4	00	0000 000
AD0DAT5L	ADC0 data register 5, left (MSB)	FFF5H	AD0DA [9:2]	Τ5	00	0000 000
AD0DAT5R	ADC0 data register 5, right (LSB)	FFF4H	AD0DA [7:0]	Τ5	00	0000 000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core

P89LPC980/982/983/985

rights reserved. 30 of 85

7.5 Clock output

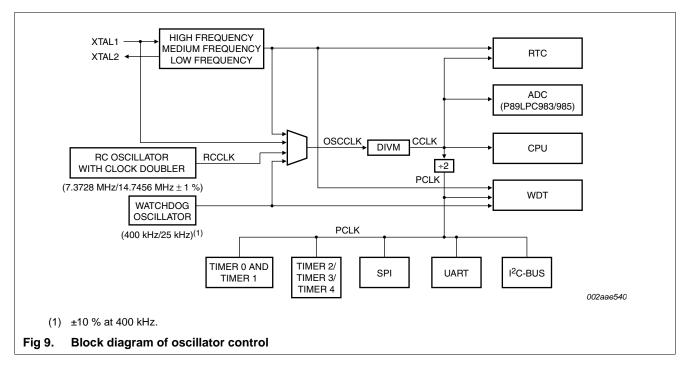
The P89LPC980/982/983/985 supports a user-selectable clock output function on the P3.0/XTAL2/CLKOUT pin when crystal oscillator is not being used. This condition occurs if another clock source has been selected (on-chip RC oscillator, watchdog oscillator, external clock input on XTAL1) and if the RTC and WDT are not using the crystal oscillator as their clock source. This allows external devices to synchronize to the P89LPC980/982/983/985. This output is enabled by the ENCLK bit in the TRIM register.

The frequency of this clock output is $\frac{1}{2}$ that of the CCLK. If the clock output is not needed in Idle mode, it may be turned off prior to entering Idle, saving additional power.

7.6 On-chip RC oscillator option

The P89LPC980/982/983/985 has a 6-bit TRIM register that can be used to tune the frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory preprogrammed value to adjust the oscillator frequency to 7.373 MHz \pm 1 % at room temperature. End-user applications can write to the TRIM register to adjust the on-chip RC oscillator to other frequencies. When the clock doubler option is enabled (UCFG2.7 = 1), the output frequency is 14.746 MHz. If CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to logic 1 to reduce power consumption. On reset, CLKLP is logic 0 allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower. When clock doubler option is enabled, BOE0 to BOE2 bits (UCFG1[3:5]) are required to hold the device in reset at power-up until V_{DD} has reached its specified level.

7.7 Watchdog oscillator option


The watchdog has a separate oscillator which provides two options: 400 kHz and 25 kHz. It is calibrated to ± 10 % at 400 kHz. The oscillator can be used to save power when a high clock frequency is not needed.

7.8 External clock input option

In this configuration, the processor clock is derived from an external source driving the P3.1/XTAL1 pin. The rate may be from 0 Hz up to 18 MHz. The P3.0/XTAL2/CLKOUT pin may be used as a standard port pin or a clock output. When using an oscillator frequency above 12 MHz, BOE0 to BOE2 bits (UCFG1[3:5]) are required to hold the device in reset at power-up until V_{DD} has reached its specified level.

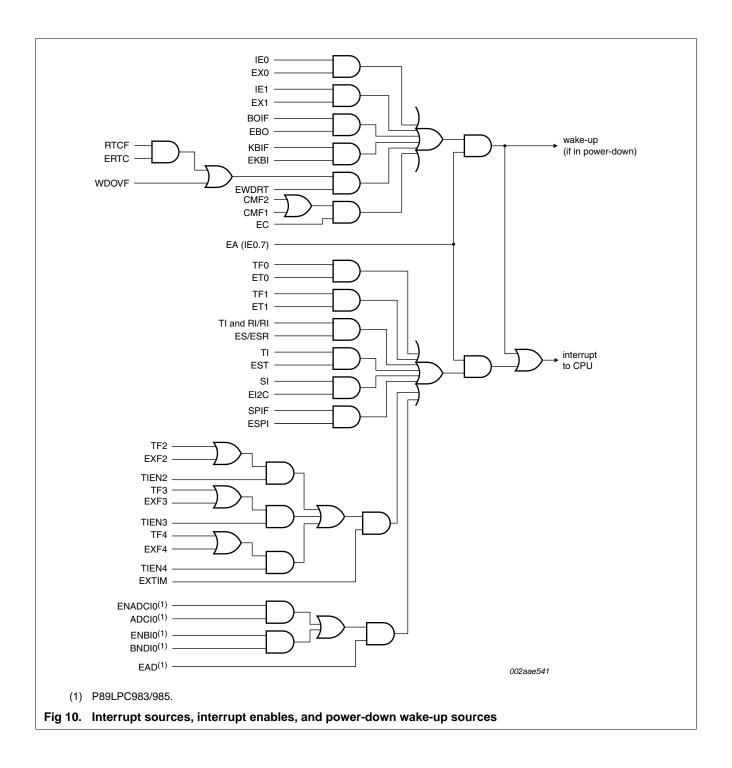
7.9 Clock source switching on the fly

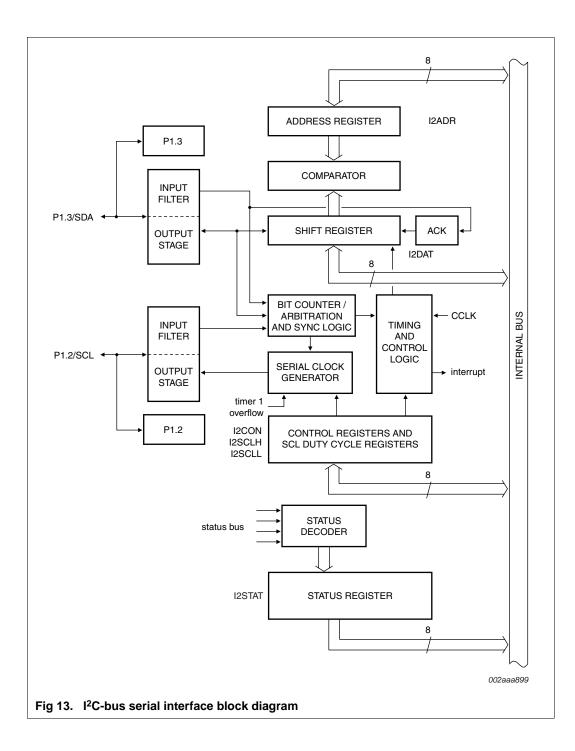
P89LPC980/982/983/985 can implement clock switching on any sources of watchdog oscillator, 7 MHz/14 MHz internal RC oscillator, crystal oscillator and external clock input during code is running. CLKOK bit in CLKCON register is used to indicate the clock switch status. CLKOK is cleared when starting clock source switch and set when completed. Notice that when CLKOK is '0', writing to CLKCON register is not allowed.

7.10 CCLK wake-up delay

The P89LPC980/982/983/985 has an internal wake-up timer that delays the clock until it stabilizes depending on the clock source used. If the clock source is any of the three crystal selections (low, medium and high frequencies) the delay is 1024 OSCCLK cycles plus 60 μ s to 100 μ s. If the clock source is the internal RC oscillator, the delay is 200 μ s to 300 μ s. If the clock source is watchdog oscillator or external clock, the delay is 32 OSCCLK cycles.

7.11 CCLK modification: DIVM register


The OSCCLK frequency can be divided down up to 510 times by configuring a dividing register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can retain the ability to respond to events that would not exit Idle mode by executing its normal program at a lower rate. This can also allow bypassing the oscillator start-up time in cases where Power-down mode would otherwise be used. The value of DIVM may be changed by the program at any time without interrupting code execution.


7.12 Low power select

The P89LPC980/982/983/985 is designed to run at 18 MHz (CCLK) maximum. However, if CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to logic 1 to lower the power consumption further. On any reset, CLKLP is logic 0 allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower.

NXP Semiconductors

P89LPC980/982/983/985

7.26 KBI

The Keypad Interrupt function (KBI) is intended primarily to allow a single interrupt to be generated when Port 0 is equal to or not equal to a certain pattern. This function can be used for bus address recognition or keypad recognition. The port can be configured via SFRs for different tasks.

The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag (KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is matched while the Keypad Interrupt function is active. An interrupt will be generated if enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to define equal or not-equal for the comparison.

In order to use the Keypad Interrupt as an original KBI function like in P87LPC76x series, the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key connected to Port 0 which is enabled by the KBMASK register will cause the hardware to set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in handheld, battery-powered systems that need to carefully manage power consumption yet also need to be convenient to use.

In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer than six CCLKs.

7.27 Watchdog timer

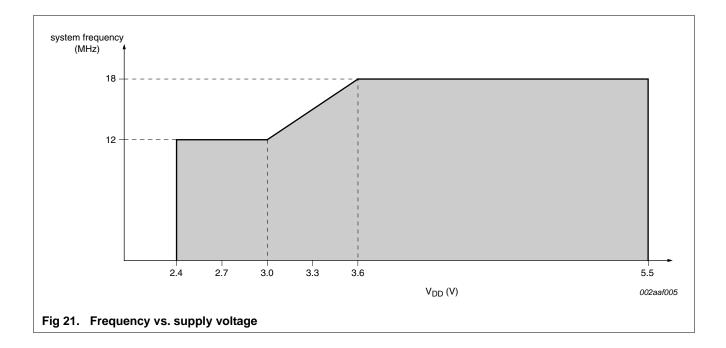
The watchdog timer causes a system reset when it underflows as a result of a failure to feed the timer prior to the timer reaching its terminal count. It consists of a programmable 12-bit prescaler, and an 8-bit down counter. The down counter is decremented by a tap taken from the prescaler. The clock source for the prescaler can be the PCLK, the nominal 400 kHz/25 kHz watchdog oscillator or low speed crystal oscillator. The watchdog timer can only be reset by a power-on reset. When the watchdog feature is disabled, it can be used as an interval timer and may generate an interrupt. Figure 19 shows the watchdog timer in Watchdog mode. Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the watchdog clock and the CPU is powered down, the watchdog is disabled. The watchdog timer has a time-out period that ranges from a few μ s to a few seconds. Please refer to the *P89LPC980/982/983/985 User manual* for more details.

8.6 Boundary limits interrupt

The ADC has both a high and low boundary limit register. The user may select whether an interrupt is generated when the conversion result is within (or equal to) the high and low boundary limits or when the conversion result is outside the boundary limits. An interrupt will be generated, if enabled, if the result meets the selected interrupt criteria. The boundary limit may be disabled by clearing the boundary limit interrupt enable.

An early detection mechanism exists when the interrupt criteria has been selected to be outside the boundary limits. In this case, after the four MSBs have been converted, these four bits are compared with the four MSBs of the boundary high and low registers. If the four MSBs of the conversion meet the interrupt criteria (i.e., outside the boundary limits) an interrupt will be generated, if enabled. If the four MSBs do not meet the interrupt criteria, the boundary limits will again be compared after all 8 MSBs have been converted. A boundary status register (BNDSTA0) flags the channels which caused a boundary interrupt.

8.7 Clock divider


The ADC requires that its internal clock source be in the range of 500 kHz to 6.6 MHz to maintain accuracy. A programmable clock divider that divides the clock from 1 to 8 is provided for this purpose.

8.8 Power-down and Idle mode

In Idle mode the ADC, if enabled, will continue to function and can cause the device to exit Idle mode when the conversion is completed if the A/D interrupt is enabled. In Power-down mode or Total Power-down mode, the ADC does not function. If the ADC is enabled, they will consume power. Power can be reduced by disabling the ADC.

NXP Semiconductors

P89LPC980/982/983/985

10. Static characteristics

Table 13. Static characteristics

 V_{DD} = 2.4 V to 5.5 V unless otherwise specified.

 $T_{amb} = -40$ °C to +85 °C for industrial applications, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <u>[1]</u>	Max	Unit
DD(oper)	operating supply	$V_{DD} = 2.4 V$				
	current	f_{osc} = 12 MHz, high speed mode of regulators	[2] -	6	7	mA
		f_{osc} = 12 MHz, low current mode of regulators	<u>[2]</u> _	5	6	mA
		V _{DD} = 3.3 V				
		f_{osc} = 12 MHz, high speed mode of regulators	[2] _	9	10	mA
		f_{osc} = 12 MHz, low current mode of regulators	[2] _	7	8	mA
		V _{DD} = 5.5 V				
		f_{osc} = 12 MHz, high speed mode of regulators	[2] _	10	11	mA
		f_{osc} = 12 MHz, low current mode of regulators	[2] _	8	9	mA
		f_{osc} = 18 MHz, high speed mode of regulators	[2] _	11	12	mA
DD(idle)	Idle mode supply	$V_{DD} = 2.4 V$				
	current	f_{osc} = 12 MHz, high speed mode of regulators	[2] _	3.5	4.5	mA
		f_{osc} = 12 MHz, low current mode of regulators	[2] -	3	4	mA
		V _{DD} = 3.3 V				
		f_{osc} = 12 MHz, high speed mode of regulators	[2] _	5	6	mA
		f_{osc} = 12 MHz, low current mode of regulators	[2] -	4	5	mA
		V _{DD} = 5.5 V				
		f_{osc} = 12 MHz, high speed mode of regulators	[2] _	6	7	mA
		f_{osc} = 12 MHz, low current mode of regulators	[2] _	4	5	mA
		f_{osc} = 18 MHz, high speed mode of regulators	[2] _	6.5	7.5	mA
DD(pd)	Power-down mode supply current	V _{DD} = 2.4 V; voltage comparators powered down	<u>[3]</u> _	28	35	μΑ
		V _{DD} = 3.3 V; voltage comparators powered down	<u>[3]</u> _	32	40	μA
		V _{DD} = 5.5 V; voltage comparators powered down	[3] _	38	45	μΑ

8-bit microcontroller with accelerated two-clock 80C51 core

Table 14. Dynamic characteristics (12 MHz) ... continued

 $V_{DD} = 2.4$ V to 5.5 V unless otherwise specified.

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C for industrial applications, unless otherwise specified } \frac{[1][2]}{2}$

Symbol	Parameter	Conditions	Varia	Variable clock			Unit	
			Min	Max	Min	Max		
T _{SPICYC}	SPI cycle time	see <u>Figure 24, 25, 26, 27</u>						
	slave		⁶ ∕ _{CCLK}	-	500	-	ns	
	master		4/ _{CCLK}	-	333	-	ns	
t _{SPILEAD}	SPI enable lead time	see Figure 26, 27						
	slave		250	-	250	-	ns	
t _{SPILAG}	SPI enable lag time	see <u>Figure 26,</u> 27						
	slave		250	-	250	-	ns	
t _{SPICLKH}	SPICLK HIGH time	see <u>Figure 24, 25, 26, 27</u>						
	master		² ∕ _{CCLK}	-	165	-	ns	
	slave		³ / _{CCLK}	-	250	-	ns	
t _{SPICLKL}	SPICLK LOW time	see <u>Figure 24, 25, 26, 27</u>						
	master		² / _{CCLK}	-	165	-	ns	
	slave		³ / _{CCLK}	-	250	-	ns	
t _{SPIDSU}	SPI data set-up time	see <u>Figure 24, 25, 26, 27</u>	100	-	100	-	ns	
	master or slave							
t _{SPIDH}	SPI data hold time	see <u>Figure 24, 25, 26, 27</u>	100	-	100	-	ns	
	master or slave							
t _{SPIA}	SPI access time	see <u>Figure 26,</u> <u>27</u>						
	slave		0	120	0	120	ns	
t _{SPIDIS}	SPI disable time	see <u>Figure 26,</u> <u>27</u>						
	slave		0	240	-	240	ns	
t _{SPIDV}	SPI enable to output data valid time	see <u>Figure 24, 25, 26, 27</u>						
	slave		-	240	-	240	ns	
	master		-	167	-	167	ns	
t _{SPIOH}	SPI output data hold time	see <u>Figure 24, 25, 26, 27</u>	0	-	0	-	ns	
t _{SPIR}	SPI rise time	see Figure 24, 25, 26, 27						
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns	
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns	
t _{SPIF}	SPI fall time	see Figure 24, 25, 26, 27						
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns	
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns	

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.

8-bit microcontroller with accelerated two-clock 80C51 core

14. Abbreviations

Table 19.	Abbreviations
Acronym	Description
ADC	Analog to Digital Converter
BOD	BrownOut Detect
CPU	Central Processing Unit
CCU	Capture/Compare Unit
CRC	Cyclic Redundancy Check
DAC	Digital to Analog Converter
EPROM	Erasable Programmable Read-Only Memory
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMI	ElectroMagnetic Interference
GPIO	General Purpose Input/Output
LSB	Least Significant Bit
MSB	Most Significant Bit
PLL	Phase-Locked Loop
PWM	Pulse Width Modulator
RAM	Random Access Memory
RC	Resistance-Capacitance
RTC	Real-Time Clock
SAR	Successive Approximation Register
SFR	Special Function Register
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver/Transmitter
WDT	WatchDog Timer

15. Revision history

Table 20. Revision history							
Document ID	Release date	Data sheet status	Change notice	Supersedes			
P89LPC980_982_983_985 v.4	20100615	Product data sheet	-	P89LPC980_982_983_985_3			
Modifications:	Section 7.4	"Crystal oscillator option"	on page 33: U	pdated text.			
	 Section 7.2 	27 "Watchdog timer" on pag	e 54: Updated	d text.			
P89LPC980_982_983_985_3	20100518	Product data sheet	-	P89LPC980_982_983_985_2			
Modifications:	 Changed d 	ata sheet status to 'Produc	t data sheet'.				
	 Table 13 "Static characteristics": Updated Min/Typ/Max values for BOD interrupt and BOD reset. 						
	 Table 13 "S (dV/dt)_r. 	Static characteristics": Upda	ted conditions	and Min/Max/Unit values for			
P89LPC980_982_983_985_2	20100208	Preliminary data sheet	-	P89LPC980_982_1			
Modifications:	 Added P89 	LPC983 and P89LPC985	devices.				
	 Table 12 "L 	imiting values": Updated V	_{ESD} min/max.				
	 Table 13 "S 	Static characteristics": Upda	ted I _{DD(oper)} ar	nd I _{DD(idle)} .			
P89LPC980_982_1	20091113	Preliminary data sheet	-	-			

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.