Microchip Technology - PIC16F18345-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18345-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10	Device Overview	11
2.0	Guidelines for Getting Started With PIC16(L)E183XX Microcontrollers	
3.0	Enhanced Mid-Range CPU	25
4.0	Memory Organization	20
5.0	Device Configuration	63
6.0	Resets	70
7.0	Oscillator Module	78
8.0	Interrupts	
9.0	Power-Saving Operation Modes	
10.0	Watchdog Timer (WDT)	
11.0	Nonvolatile Memory (NVM) Control	
12.0	I/O Ports	
13.0	Peripheral Pin Select (PPS) Module	
14.0	Peripheral Module Disable	
15.0	Interrupt-on-Change	
16.0	Fixed Voltage Reference (FVR)	
17.0	Temperature Indicator Module	
18.0	Comparator Module	
19.0	Pulse-Width Modulation (PWM)	
20.0	Complementary Waveform Generator (CWG) Module	
21.0	Configurable Logic Cell (CLC)	
22.0	Analog-to-Digital Converter (ADC) Module	
23.0	Numerically Controlled Oscillator (NCO1) Module	
24.0	5-bit Digital-to-Analog Converter (DAC1) Module	
25.0	Data Signal Modulator (DSM) Module	
26.0	Timer0 Module	
27.0	Timer1/3/5 Module with Gate Control	
28.0	Timer2/4/6 Module	
29.0	Capture/Compare/PWM Modules	
30.0	Master Synchronous Serial Port (MSSPx) Module	
31.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART1)	
32.0	Reference Clock Output Module	
33.0	In-Circuit Serial Programming™ (ICSP™)	
34.0	Instruction Set Summary	
35.0	Electrical Specifications	
36.0	DC and AC Characteristics Graphs and Charts	
37.0	Development Support	
38.0	Packaging Information	
The N	/licrochip Website	
Custo	mer Change Notification Service	
Custo	omer Support	
Produ	ct Identification System	

2.0 GUIDELINES FOR GETTING STARTED WITH PIC16(L)F183XX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC16(L)F183XX family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

All VDD and VSS pins

```
(see Section 2.2 "Power Supply Pins")
```

• MCLR pin (when configured for external operation)

(see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins**")
- OSC1 and OSC2 pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and Vss) is required. All VDD and Vss pins must be connected. None can be left floating.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

TABLE 4-4: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

MDCLPOL

							•					
Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 7												
					CPU CORE RE	EGISTERS; see ⁻	Table 4-2 for spe	ecifics				
39Ah	CLKRCON		CLKREN	—	—	CLKRD	C<1:0>		CLKRDIV<2:0>		01 0000	01 0001
39Bh	—	-				Unimple	emented				-	-
39Ch	MDCON		MDEN	—	—	MDOPOL	MDOUT	—	_	MDBIT	00 00	00 00
39Dh	MDSRC		_	_	_	_		MDMS	6<3:0>		xxxx	0 uuuu
39Eh	MDCARH		_	MDCHPOL	MDCHSYNC			MDCH	1<3.0>		-xx- xxxx	-1111- 1111111

MDCL<3:0>

-xx- xxxx

-uu- uuuu

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

MDCLSYNC

Note 1: Only on PIC16F18325/18345.

MDCARL

2: Register accessible from both User and ICD Debugger.

39Fh

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON0 register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during Normal Operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

PIC16(L)F18325/18345

FIGURE 8-2:	INTERRUPT LA	TENCY				
						Rev. 10-000289E 8/31/2016
				Q1 Q2 Q3 Q4		
INT pin	Valid Interrupt I window ⁽¹⁾	1 Cycle In	struction at	PC		
Fetch PC	- 11 PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006
Execute PC	- 21 PC - 1	PC	NOP	NOP	PC = 0x0004	PC = 0x0005
	Indeterminate Laten cy ⁽²⁾		Latency			
Note 1: An inter 2: Since a	rupt may occur at any n interrupt may occur a	time during the in any time during th	terrupt window. e interrupt wind	ow, the actual lat	ency can vary.	

Register Definitions: Interrupt Control 8.6

R/W/HS/HC-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R-1/1
GIE	PEIE	—	_	—	—	—	INTEDG
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is unchang	ged	x = Bit is unki	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
HS = hardware se	et	HC = Hardwa	ire clear				
bit 7	GIE: Global I	nterrupt Enable	e bit				
	1 = Enables a 0 = Disables	all active interro all interrupts	upts				
bit 6	PEIE: Periphe 1 = Enables a	eral Interrupt E all active peripl	Enable bit neral interrup	ts			
bit 5-1		all periprierar il ited: Read as	nenupis				
bit 0		arrunt Edge Se	o. Iect hit				
bit o	1 = Interrupt	on rising edge	of INT pin				
	0 = Interrupt	on falling edge	of INT pin				
Note: Bit PE	IE of the INTC	CON register m	nust be				

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

						<u> </u>	
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF
bit 7			•			•	bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	is unchanged x = Bit is unknown -n/n = Value at POR a			x = Bit is unknown -n/n = Value at POR and			
'1' = Bit is set		'0' = Bit is cle	ared	HS = Hardwa	ire set		
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1	OSFIF: Oscill. 1 = Fail-Safe 0 = External of CSWIF: Clock 1 = The clock 0 = The clock TMR3GIF: Tir 1 = The TMR3 0 = The TMR3 0 = The TMR3 CLC4IF: CLC 1 = The CLC4 0 = No CLC4 CLC3IF: CLC 1 = The CLC3 0 = No CLC3 CLC2IF: CLC 1 = The CLC2 0 = No CLC2	ator Fail-Safe I Clock Monitor scillator opera & Switch Comp switch module switch module switch module ner3 Gate Inte 3 gate has gon 3 gate has not 3 Overflow Inte al Overflow occurred overflow occurred overflow occurred overflow occurred interrupt Flag 3 Interrupt Flag 3 OUT interrupt interrupt 2 Interrupt Flag 2 OUT interrupt Flag	Interrupt Flag I module has de ting normally. lete Interrupt F e has complete e has not comp rrupt Flag bit e inactive gone inactive gone inactive terrupt Flag bit (must be clea rred g bit condition has g bit condition has	bit etected a failed Flag bit ed the clock sw bleted clock sw ared in softwar been met been met	d oscillator /itch; new oscilla /itch.	ator is ready	
bit 0	CLC1IF: CLC 1 = The CLC1 0 = No CLC1	1 Interrupt Fla OUT interrupt interrupt	g bit condition has	been met			

REGISTER 8-10: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

PIC16(L)F18325/18345

EXAMPLE 11-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY

; This sample row erase routine assumes the following: ; 1.A valid address within the erase row is loaded in variables ADDRH:ADDRL ; 2.ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F)

BANKSEL	NVMADRL	
MOVF	ADDRL,W	
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary
MOVF	ADDRH,W	
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary
BCF	NVMCON1,NVMREGS	; Choose Program Flash Memory area
BSF	NVMCON1, FREE	; Specify an erase operation
BSF	NVMCON1,WREN	; Enable writes
BCF	INTCON,GIE	; Disable interrupts during unlock sequence
;	RE	QUIRED UNLOCK SEQUENCE:
MOLT II	E E b	· I and EEb to got woody for unlock company
MOVLW	5511	, Load 55h to get ready for unlock sequence
MOVWF		
	NVMCON2	; First step is to load 55h into NVMCON2
MOVLW	NVMCON2 AAh	; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W
MOVLW MOVWF	NVMCON2 AAh NVMCON2	; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W ; Third step is to load AAh into NVMCON2
MOVLW MOVWF BSF	NVMCON2 AAh NVMCON2 NVMCON1,WR	<pre>; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W ; Third step is to load AAh into NVMCON2 ; Final step is to set WR bit</pre>
MOVLW MOVWF BSF ;	NVMCON2 AAh NVMCON2 NVMCON1,WR	; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W ; Third step is to load AAh into NVMCON2 ; Final step is to set WR bit
MOVLW MOVWF BSF ; BSF	NVMCON2 AAh NVMCON2 NVMCON1,WR INTCON,GIE	<pre>; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W ; Third step is to load AAh into NVMCON2 ; Final step is to set WR bit</pre>
MOVLW MOVWF BSF ; BSF BCF	NVMCON2 AAh NVMCON2 NVMCON1,WR INTCON,GIE NVMCON1,WREN	<pre>; First step is to load 55h into NVMCON2 ; Second step is to load AAh into W ; Third step is to load AAh into NVMCON2 ; Final step is to set WR bit</pre>

TABLE 11-2: NVM ORGANIZATION AND ACCESS INFORMATION

	Master Values	NV	MREG Acce	SS	FSR Access			
Memory Function	Program Counter (PC), ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR <14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
User Memory	0001h	Program	0	0001h		8001h		
	0003h	Flash		0003h	READ	8003h		
INT Vector	0004h	Memory	0	0004h	WRITE	8004h	READ-ONET	
User Memory	0005h		0	0005h		8005h		
	17FFh			17FFh		FFFFh		
User ID		Program	1	0000h				
		Flash Memory		0003h	READ			
Reserved		_	—	0004h	_			
Rev ID			1	0005h		No	Access	
Device ID	No PC Address	_	1	0006h		110	100000	
CONFIG1		Program	1	0007h				
CONFIG2		Memory	1	0008h	READ			
CONFIG3			1	0009h				
CONFIG4				000Ah				
User Memory		EEPROM	1	7000h	READ	7000h	READ-ONLY	
				70FFh	WRITE	70FFh		

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
NCOMD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets			
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion				
bit 7	NCOMD: Disa	able Numerical	ly Control Osci	illator bit						
	1 = NCO1 m 0 = NCO1 m	odule disabled								
bit 6	TMR6MD: Dis	sable Timer TM	IR6 bit							
	1 = TMR6 mc	dule disabled								
	0 = TMR6 mc	dule enabled								
bit 5	TMR5MD: Dis	sable Timer TM	IR5 bit							
	1 = TMR5 mc	dule enabled								
bit 4	TMR4MD: Di	sable Timer TM	IR4 bit							
	1 = TMR4 mc	dule disabled								
	0 = TMR4 mc	dule enabled								
bit 3	TMR3MD: Dis	sable Timer TM	IR3 bit							
	1 = TMR3 mc	dule disabled								
	0 = IMR3 mc	dule enabled								
bit 2	TMR2MD: Dis	sable Timer TM	IR2 bit							
	1 = TMR2 m	odule enabled								
bit 1	TMR1MD: Di	sable Timer TM	IR1 bit							
	1 = TMR1 m	odule disabled								
	0 = TMR1 m	odule enabled								
bit 0	TMR0MD: Dis	sable Timer TM	IR0 bit							
	1 = TMR0 m	odule disabled								
	0 = IMR0 m	odule enabled								

REGISTER 14-2: PMD1: PMD CONTROL REGISTER 1

19.1.3 PWM RESOLUTION

PWM resolution, expressed in number of bits, defines the maximum number of discrete steps that can be present in a single PWM period. For example, a 10-bit resolution will result in 1024 discrete steps, whereas an 8-bit resolution will result in 256 discrete steps.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 19-4.

EQUATION 19-4:

Resolution = $\frac{\log[4(PR2+1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

19.1.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

19.1.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 7.0, Oscillator Module** for additional details.

19.1.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

19.1.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 19-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 19-2.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Select the Timer2 prescale value by configuring the T2CKPS bit of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
 - Clear the associated TRIS bit(s) to enable the output driver.
 - Route the signal to the desired pin by configuring the RxyPPS register.
 - Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
TRISA		—	TRISA5	TRISA4	_(2)	TRISA2	TRISA1	TRISA0	143			
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144			
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_		_	149			
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	—	_	_	150			
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156			
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157			
PWM5CON	PWM5EN	_	PWM5OUT	PWM5POL	_	_		_	196			
PWM5DCH				PWM5DC<	9:2>				196			
PWM5DCL	PWM5	DC<1:0>	_	—	_	—						
PWM6CON	PWM6EN	_	PWM6OUT	PWM6POL	_	—		—	196			
PWM6DCH				PWM6DC<	9:2>							
PWM6DCL	PWM6	DC<1:0>	—	—	—	—	_	—	196			
PWMTMRS	_	_	—	—	P6TSE	L<1:0>	P5TSE	P5TSEL<1:0>				
INTCON	GIE	PEIE	—	—	—	—	_	INTEDG	101			
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108			
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	109			
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103			
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	104			
T2CON			T2OUTPS	S<3:0>		TMR2ON	T2CKP	'S<1:0>	298			
T4CON	_		T4OUTPS	S<3:0>		TMR4ON	T4CKP	'S<1:0>	292			
T6CON			T6OUTPS	S<3:0>		TMR6ON	T6CKP	'S<1:0>	292			
TMR2				TMR2<7:()>				299			
TMR4				TMR4<7:()>				299			
TMR6				TMR6<7:0)>				299			
PR2				PR2<7:0	>				299			
PR4				PR4<7:0	>				299			
PR6				PR6<7:0	>				299			
CWGxDAT	_	—	— — DAT<3:0>									
CLCxSELy			LCxDyS<5:0>									
MDSRC	_	—	—	—		MDMS	\$<3:0>		272			
MDCARH	—	MDCHPOL	MDCHSYNC	—		MDCH	l<3:0>		273			
MDCARL	_	MDCLPOL	MDCLSYNC	—		MDCL	<3:0>		274			

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

20.2.4.4 Dead-Band Delay in Full-Bridge Mode

Dead-band delay is important when either of the following conditions is true:

- 1. The direction of the CWG output changes when the duty cycle of the data input is at or near 100%, or
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

The dead-band delay is inserted only when changing directions, and only the modulated output is affected. The statically-configured outputs (CWGxA and CWGxC) are not afforded dead band, and switch essentially simultaneously.

Figure 20-7 shows an example of the CWG outputs changing directions from forward to reverse, at near 100% duty cycle. In this example, at time t1, the output of CWGxA and CWGxD become inactive, while output CWGxC becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shootthrough current will flow through power devices QC and QD for the duration of 't'. The same phenomenon will occur to power devices QA and QB for the CWG direction change from reverse to forward.

If changing the CWG direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce the CWG duty cycle for one period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

FIGURE 20-7: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143	
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144	
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	—	_	149	
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	—	_	150	
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156	
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157	
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	111	
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	106	
CWG1CON0	EN	LD	—	—	—	Ν	/IODE<2:0	ODE<2:0>		
CWG1CON1	—	—	IN	_	POLD	POLC	POLB	POLA	214	
CWG1CLKCON		—			-	_	—	CS	214	
CWG1DAT	—	—	-	_		DAT	DAT<3:0>			
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	216	
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	C<1:0>	.0>			
CWG1AS1	—	—	-	AS4E	AS3E	AS2E	AS1E	AS0E	218	
CWG1DBR	—	—			DBR	<5:0>			218	
CWG1DBF	—	—			DBF∙	<5:0>			219	
CWG1PPS	—	—	-		CV	VG1PPS<4	1:0>		162	
CWG2CON0	EN	LD	_	_	_	Ν	/IODE<2:0	>	213	
CWG2CON1	—	—	IN	_	POLD	POLC	POLB	POLA	214	
CWG2CLKCON	—	—	-	_	_	_	—	CS	214	
CWG2DAT	—	—	_	_		DAT	<3:0>		215	
CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	216	
CWG2AS0	SHUTDOWN	REN	LSBD•	<1:0>	LSAC	C<1:0>	—	—	217	
CWG2AS1	—	—	—	AS4E	AS3E	AS2E	AS1E	AS0E	218	
CWG2DBR	—	_			DBR	<5:0>			218	
CWG2DBF	—	—			DBF∙	<5:0>			219	
CWG2PPS	—	_	_		CV	VG2PPS<4	4:0>		162	

TABLE 20-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWGx

Legend: -= unimplemented location, read as '0'. Shaded cells are not used by interrupts.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '0'.

PIC16(L)F18325/18345

28.0 TIMER2/4/6 MODULE

Timer2/4/6 modules are 8-bit timers that incorporate the following features:

- · 8-bit Timer and Period registers (TMR2/4/6 and PR2/4/6, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2/4/6 match with PR2/4/6

FIGURE 28-1:

· Optional use as the shift clock for the MSSPx module

See Figure 28-1 for a block diagram of Timer2/4/6.

- Note 1: In devices with more than one Timer module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the T2CON and T4CON control the same operational aspects of two completely different Timer modules.
 - 2: Throughout this section, generic references to Timer2 module in any of its operating modes may be interpreted as being equally applicable to Timerx module. Register names, module signals, I/O pins and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

TIMER2/4/6 BLOCK DIAGRAM

29.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains four standard Capture/Compare/PWM modules (CCP1, CCP2, CCP3 and CCP4).

The Capture and Compare functions are identical for all CCP modules.

29.1 CCP/PWM Clock Selection

The PIC16(L)F18325/18345 devices allow each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2, Timer4, and Timer6), PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

29.2 Capture Mode

Capture mode makes use of either the 16-bit Timer0 or Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR0H:TMR0L or TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxMODE<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 29-1 shows a simplified diagram of the capture operation.

29.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a Capture condition.

The capture source is selected by configuring the CCPxCTS<3:0> bits of the CCPxCAP register. The following sources can be selected:

- CCPxPPS input
- C1_output
- C2_output
- NCO_output
- IOC_interrupt
- LC1_output
- LC2_output
- LC3_output
- LC4_output

REGISTER 29-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—		CCPxC	TS<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CCPxCTS<3:0>: CCPx Capture Mode Data Select bits

CCAP<3:0>	CCP1CAP CAPTURE INPUT	CCP2CAP CAPTURE INPUT	CCP3CAP CAPTURE INPUT	CCP4CAP CAPTURE INPUT					
0000	CCP1PPS	CCP1PPS CCP2PPS CCP3PPS CC		CCP4PPS					
0001		C10	JUT						
0010		C20	JUT						
0011		NC	01						
0100		IOC_interrupt							
0101		LC1_	output						
0110		LC2_	output						
0111		LC3_	output						
1000		LC4_	output						
1001									
 1111		Rese	erved						

30.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM<3:0> bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generation
- Stop condition generation
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

30.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 30.7** "**Baud Rate Generator**" for more detail.

					SYNC	I = 1, BRG16 = 0						
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_		—	—	—		_	—		—	_
1200	—	—	_	—	—	—	—	—	—	—	—	—
2400	—	—	_	—	—	—	—	—	—	—	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

TABLE 31-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

					SYNC	C = 0, BRGH	H = 1, BRG16 = 0					
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_		_	_		_	_	_	300	0.16	207
1200		—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	—
115.2k	—	_	_	—	_	_	115.2k	0.00	1	_	_	_

		SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz					
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303			
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575			
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287			
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71			
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65			
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35			
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11			
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5			

R/W-0/0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
CLKREN	_	_	CLKR	DC<1:0>		CLKRDIV<2:0>	•		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	CLKREN: Re	ference Clock	Module Enabl	e bit					
	1 = Referen	ce clock modu	le enabled						
	0 = Referen	ce clock modu	le is disabled						
bit 6-5	Unimplemen	ted: Read as '	0'.						
bit 4-3	CLKRDC<1:0	>: Reference	Clock Duty Cy	cle bits ⁽¹⁾					
	11 = Clock ou	utputs duty cycl	e of 75%						
	10 = Clock ou	ck outputs duty cycle of 50%							
	01 = Clock ou	utputs duty cyc	e of 25%						
	00 = Clock ou	utputs duty cycl	e of 0%						
bit 2-0	CLKRDIV<2:	0>: Reference	Clock Divider	bits					
	111 = Fosc d	livided by 128							
	110 = Fosc d	livided by 64							
	101 = FOSC d	livided by 32							
	100 = FOSC d	livided by 16							
	011 = FOSC d 010 = FOSC d	livided by 8							
	001 = Fosc d	livided by 2							
	000 = Fosc	· · · · · · · · · · · · · · · · · · ·							

REGISTER 32-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

Note 1: Bits are valid for Reference Clock divider values of two or larger, the base clock cannot be further divided.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	-	—	-	—	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
CLKRCON	CLKREN	—	—	CLKRE)C<1:0>		CLKRDIV	/<2:0>	227
CLCxSELy	—	—			LCxDy	S<5:0>			229
MDCARH	_	MDCHPOL	MDCHSYNC — MDCH<3:0>				273		
MDCARL	—	MDCLPOL	MDCLSYNC	_			274		

TABLE 32-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.