

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18345-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JED)
J

Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 18	3					•		•	•	•		
	CPU CORE REGISTERS; see Table 4-2 for specifics											
90Ch	_	—				Unimple	mented				_	—
90Dh	_	—				Unimple	mented				—	—
90Eh	_	—				Unimple	mented				—	—
90Fh	_	—		Unimplemented					_	—		
910h	_	—		Unimplemented				—	—			
911h	PMD0		SYSCMD	FVRMD	_	—	_	NVMMD	CLKRMD	IOCMD	00000	00000
912h	PMD1		NCOMD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	0000	0000
913h	PMD2		—	DACMD	ADCMD	—	_	CMP2MD	CMP1MD	—	-000-	-000-
914h	PMD3		CWG2MD	CWG1MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	-00000	-00000
915h	PMD4		—	_	UART1MD	_	_	MSSP2MD	MSSP1MD	_	00-	00-
916h	PMD5		—	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	000	000
917h	_	—				Unimple	mented				—	—
918h	CPUDOZE		IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>		000000	000000
919h	OSCCON1		—		NOSC<2:0>			NDIV	<3:0>		-ddd 0000	-qqq 0000
91Ah	OSCCON2		—		COSC<2:0>			CDIV	<3:0>		-ddd 0000	-qqq 0000
91Bh	OSCCON3		CSWHOLD	SOSCPWR	SOSCBE	ORDY	NOSCR	_	—	—	0000 0	0000 0
91Ch	OSCSTAT1		EXTOR	HFOR	_	LFOR	SOR	ADOR	—	PLLR	dd-d dd-d	dd-d dd-d
91Dh	OSCEN		EXTOEN	HFOEN	_	LFOEN	SOSCEN	ADOEN	—	—	00-0 00	00-0 00
91Eh	OSCTUNE		_	_			HFTUN	N<5:0>			10 0000	10 0000
91Fh	OSCFRQ		_	_	_	_		HFFR	Q<3:0>		0110	0110

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18325/18345. Legend:

Note 1:

2: Register accessible from both User and ICD Debugger.

4.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into four memory regions:

- Traditional/Banked Data Memory
- Linear Data Memory
- Program Flash Memory
- EEPROM

FIGURE 4-8: INDIRECT ADDRESSING

4.5.1 TRADITIONAL/BANKED DATA MEMORY

The banked data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

4.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 4-10: LINEAR DATA MEMORY MAP

4.5.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 4-11: PROGRAM FLASH MEMORY MAP

4.5.4 DATA EEPROM MEMORY

The EEPROM memory can be read or written through the NVMCON register interface (see **Section 11.2** "**Data EEPROM**"). However, to make access to the EEPROM easier, read-only access to the EEPROM contents are also available through indirect addressing via an FSR. When the MSP of the FSR (ex: FSRxH) is set to 0x70, the lower 8-bit address value (in FSRxL) determines the EEPROM location that may be read (via the INDF register).

In other words, the EEPROM address range 0x00-0xFF is mapped into the FSR address space between 0x7000 and 0x70FF. Writing to the EEPROM cannot be accomplished via the FSR/INDF interface. Reads from the EEPROM through the FSR/INDF interface will require one additional instruction cycle to complete.

5.7 Register Definitions: Device and Revision

REGISTER 5-5:	DE\	/ID: DEVICE ID	REGISTER				
		R	R	R	R	R	R
				DEV<	:13:8>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
			DEV	<7:0>			
bit 7							bit 0

Legend:

R = Readable bit

'1' = Bit is set

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values
PIC16F18325	11 0000 0011 1110 (303Eh)
PIC16LF18325	11 0000 0100 0000 (3040h)
PIC16F18345	11 0000 0011 1111 (303Fh)
PIC16LF18345	11 0000 0100 0001 (3041h)

'0' = Bit is cleared

REGISTER 5-6: REVID: REVISION ID REGISTER

R-1	R-0	R	R	R	R
		REV<	:13:8>		
bit 13					bit 8

R	R	R	R	R	R	R	R
			REV	<7:0>			
bit 7							bit 0

Legend:	
R = Readable bit	
'1' = Bit is set	'0' = Bit is cleared

bit 13-0 **REV<13:0>:** Revision ID bits

Note: The upper two bits of the Revision ID Register will always read '10'.

NOSC<2:0> COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC (1 MHz)
101	Reserved
100	LFINTOSC
011	SOSC
010	Reserved
001	EXTOSC with 4xPLL ⁽¹⁾
000	HFINTOSC with 2x PLL (32 MHz)

TABLE 7-1: NOSC/COSC BIT SETTINGS

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

TABLE 7-2: NDIV/CDIV BIT SETTINGS

NDIV<3:0> CDIV<3:0>	Clock Divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

REGISTER 7-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR	SOSCBE	ORDY	NOSCR	—	—	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting			
q = Reset value is determined by hardware					

bit 7	 CSWHOLD: Clock Switch Hold bit 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; if this bit is set at the time that NOSCR becomes '1', the switch and interrupt will occur.
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit <u>If SOSCBE = 0</u> 1 = Secondary oscillator operating in High-Power mode 0 = Secondary oscillator operating in Low-Power mode <u>If SOSCBE = 1</u> x = Bit is ignored
bit 5	 SOSCBE: Secondary Oscillator Bypass Enable bit 1 = Secondary oscillator SOSCI is configured as an external clock input (ST-buffer); SOSCO is not used. 0 = Secondary oscillator is configured as a crystal oscillator using SOSCO and SOSCI pins.
bit 4	 ORDY: Oscillator Ready bit (read-only) 1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC 0 = A clock switch is in progress
bit 3	 NOSCR: New Oscillator is Ready bit (read-only) 1 = A clock switch is in progress and the oscillator selected by NOSC indicates a Ready condition 0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready
bit 2-0	Unimplemented: Read as '0'.

8.3 Interrupts During Sleep

All interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 9.0** "**Power-Saving Operation Modes**" for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the PIE0 register. The INTEDG bit of the INTCON register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the PIR0 register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

R/W/HS-0/0	R/W/HS-0/0	R-0	R/HS/HC-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF
bit 7							bit 0
Legend:	L :4		L 14	II II.			
R = Readable	DIT	vv = vvritable bit		U = Unimplemented bit, read as U			
u = Bit is unch	angeu	x = Dit is unkl	arod			R/Value at all C	iner Reseis
I = BILIS SEL			areu	по – naiuwa	le set		
bit 7	TMR1GIF : Tir 1 = The Time 0 = The Time	ner1 Gate Inte r1 gate has go r1 gate has no	errupt Flag bit ne inactive (th t gone inactive	e gate is close e.	d).		
bit 6	ADIF: Analog 1 = The A/D c 0 = The A/D c	-to-Digital Con conversion con conversion is n	verter (ADC) I npleted ot completed	nterrupt Flag b	it		
bit 5	RCIF: EUSART Receive Interrupt Flag bit (read-only) 1 = The EUSART1 receive buffer is not empty 0 = The EUSART1 receive buffer is empty						
bit 4	t 4 TXIF : EUSART Transmit Interrupt Flag bit (read-only) 1 = The EUSART1 receive buffer is empty 0 = The EUSART1 receive buffer is not empty						
bit 3	SSP1IF : Synchronous Serial Port (MSSP) Interrupt Flag bit 1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software) 0 = Waiting for the Transmission/Reception/Bus Condition in progress			re)			
bit 2	BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = A bus collision was detected (must be cleared in software) 0 = No bus collision was detected						
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred						
bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = TMR1 overflow occurred (must be cleared in software) 0 = No TMR1 overflow occurred							

REGISTER 8-8: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of				
	its corresponding enable bit or the Global				
	Enable bit, GIE, of the INTCON register.				
	User software should ensure the				
	appropriate interrupt flag bits are clear				
	prior to enabling an interrupt.				

9.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes: DOZE mode, IDLE mode, and Sleep mode.

9.1 DOZE Mode

Doze mode allows for power savings by reducing CPU operation and program memory access, without affecting peripheral operation. Doze mode differs from Sleep mode because the system oscillators continue to operate, while only the CPU and program memory are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 100, the instruction cycle ratio is 1:32. The CPU and memory execute for one instruction cycle and then lay idle for 31 instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

9.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 9-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the program memory fetches for the next instruction cycle. The instruction clocks to the peripherals continue throughout.

9.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-on-Interrupt (ROI) bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 9-1, the interrupt occurs during the 2^{nd} instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-on-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

© 2015-2016 Microchip Technology Inc.

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See Table 35-8 for the LFINTOSC specification.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

10.2.4 WDT IS ALWAYS OFF

When the WDTE bits are set to '00', the WDT is disabled, and the SWDTEN bit of the WDTCON is ignored.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
1.0	x -	Awake	Active
10		Sleep	Disabled
01	1	х	Active
10			Disabled
00	х	Х	Disabled

TABLE 10-1: WDT OPERATING MODES

10.3 Time-out Period

The WDTPS<4:0> bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep due to an interrupt
- Oscillator fail
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 7.0** "Oscillator **Module**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See STATUS Register (Register 4-1) for more information.

TABLE 10-2: WDT CLEARING CONDITIONS

Conditions	WDT	
WDTE = 00	Olaszad az d Disablad	
WDTE = 01 and SWDTEN = 0		
Exit Sleep due to a Reset + System Clock = XT, HS, LP		
Exit Sleep due to a Reset + System Clock = HFINTOSC, LFINTOSC, EC, SOSC	Cleared until the end of US I	
Exit Sleep due to an interrupt		
Enter Sleep		
CLRWDT Command	Cleared	
Oscillator Failure (see Section 7.4 "Fail-Safe Clock Monitor")		
System Reset		
Any clock switch or divider change (see Section 7.3 "Clock Switching")	Unaffected	

17.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN2092, *"Using the Temperature Indicator Module"* (DS0002092) for more details regarding the calibration process.

17.1 Circuit Operation

Figure 17-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 17-1 describes the output characteristics of the temperature indicator.

EQUATION 17-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 16.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower VDD voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 17-1: TEMPERATURE CIRCUIT DIAGRAM

17.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 17-1 shows the recommended minimum $\mathsf{V}\mathsf{D}\mathsf{D}$ vs. range setting.

TABLE 17-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

17.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is provided for the temperature circuit output. Refer to **Section 22.0** "**Analog-to-Digital Converter (ADC) Module**" for detailed information.

PIC16(L)F18325/18345

22.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

22.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined				
	as a digital input may cause the input				
	buffer to conduct excess current.				

22.1.2 CHANNEL SELECTION

There are several channel selections available:

- Five PORTA pins (RA0-RA2, RA4-RA5)
- Four PORTB pins (RB4-RB7, PIC16(L)F18345 only)
- Six PORTC pins (RC0-RC5, PIC16(L)F18325)
- Eight PORTC pins (RC0-RC7, PIC16(L)F18345 only)
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- Vss (ground)

The CHS<5:0> bits of the ADCON0 register (Register 22-1) determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 22.2** "**ADC Operation**" for more information.

Note: It is recommended that when switching from an ADC channel of a higher voltage to a channel of a lower voltage, the software selects the Vss channel before switching to the channel of the lower voltage. If the ADC does not have a dedicated Vss input channel, the Vss selection (DAC1R<4:0> = b'00000') through the DAC output channel can be used. If the DAC is in use, a free input channel can be connected to Vss, and can be used in place of the DAC.

22.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bit of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 16.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

22.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS<2:0> bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- ADCRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 12 TAD periods as shown in Figure 22-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 35-13 for more information. Table 22-1 gives examples of appropriate ADC clock selections.

Note: Unless using the ADCRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

29.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains four standard Capture/Compare/PWM modules (CCP1, CCP2, CCP3 and CCP4).

The Capture and Compare functions are identical for all CCP modules.

29.1 CCP/PWM Clock Selection

The PIC16(L)F18325/18345 devices allow each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2, Timer4, and Timer6), PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

29.2 Capture Mode

Capture mode makes use of either the 16-bit Timer0 or Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR0H:TMR0L or TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxMODE<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 29-1 shows a simplified diagram of the capture operation.

29.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a Capture condition.

The capture source is selected by configuring the CCPxCTS<3:0> bits of the CCPxCAP register. The following sources can be selected:

- CCPxPPS input
- C1_output
- C2_output
- NCO_output
- IOC_interrupt
- LC1_output
- LC2_output
- LC3_output
- LC4_output

FIGURE 30-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F18325/18345

30.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM<3:0> bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generation
- Stop condition generation
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

30.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 30.7** "**Baud Rate Generator**" for more detail.

	1 30-4. 33FX			EGISTER 3			D 444 6 46
R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
Dit 7							bit 0
Logond							
D - Doodo	ble bit	M = M/ritable	hit	II – I Inimplei	mented bit read	1 ac 'O'	
n – Reaua		v = Vinable bit		n/n = Value	at POR and BO	RA/alue at all c	thar Resets
1' = Bit is 4	set	(0) = Bit is cle	ared				
bit 7	ACKTIM: Act	knowledae Tim	e Status bit (l ²	² C mode only)	(3)		
	1 = Indicates	the I ² C bus is	in an Acknowl	edge sequenc	e, set on eighth	falling edge of	SCL clock
	0 = Not an Ad	cknowledge se	quence, cleare	ed on ninth risi	ng edge of SCL	clock	
bit 6	PCIE: Stop C	ondition Interru	upt Enable bit	(I ² C mode only	y)		
	1 = Enable in	terrupt on dete	ction of Stop	condition			
L:1 F			s are disabled	,-, ,,,20,			
DIT 5	J - Enable in	ondition Interru	upt Enable bit	(I-C mode only	y) ditions		
	0 = Start dete	ection interrupt	s are disabled	(2)			
bit 4	BOEN: Buffe	r Overwrite En	able bit				
	In SPI Slave	<u>mode:</u> (1)					
	1 = SSP	BUF updates e	every time that	a new data by	/te is shifted in i	gnoring the BF	bit
	0 = If ne	ew byte is rece	ived with BF to is set, and the	oit of the SSP	STAT register a	ready set, SSI	POV bit of the
	In I ² C Master	mode and SP	I Master mode	<u>: 13 1101 0</u>	ipualeu		
	This bit is	s ignored.					
	In I ² C Slave r	<u>mode:</u> PUE is undeted	and \overline{ACK} is a	porated for a		o/data byta jan	oring the state
	of the	e SSPOV bit or	nly if the BF bi	t = 0.		sidala byte, igri	uning the state
	0 = SSP	BUF is only up	dated when S	SPOV is clear			
bit 3	SDAHT: SDA	Hold Time Se	lection bit (I ² C	mode only)			
	1 = Minimum	of 300 ns hold	time on SDA	after the falling	g edge of SCL		
1.11.0		of 100 ns hold	time on SDA	after the falling	g edge of SCL		
DIT 2	SBCDE: Slav	/e Mode Bus C	OIIISION Detect		C Slave mode o	niy)	
	If, on the risil BCL1IF bit of	ng edge of SC the PIR1 regis	L, SDA is sar ster is set, and	npled low whe bus goes idle	en the module is	s outputting a f	high state, the
	1 = Enable sl 0 = Slave bus	ave bus collision inter	on interrupts rupts are disat	oled			
bit 1	AHEN: Addre	ess Hold Enabl	e bit (I ² C Slav	e mode only)			
	1 = Following	g the eighth fa	lling edge of S	SCL for a mat	ching received a	address byte; (CKP bit of the
	SSPCON ∩ = Address I	N1 register will bolding is disat	be cleared an	d the SCL will	be held low.		
hit 0	DHEN: Data	Hold Enable bi	t (l ² C Slave m	ode only)			
bit o	1 = Following	the eighth fall	ina edae of SC	CL for a receiv	ed data byte: sla	ave hardware c	lears the CKP
	bit of the	SSPCON1 reg	gister and SCL	is held low.			
	0 = Data hold	ling is disabled					
Note 1:	For daisy-chained	SPI operation;	allows the use	er to ignore all	but the last rece	ived byte. SSP	OV is still set
	when a new byte is	s received and	BF = 1, but ha	ardware contin	ues to write the	most recent by	te to SSPBUF.
2:	This bit has no effe	ect in Slave mo	des that Start	and Stop cond	dition detection i	s explicitly liste	d as enabled.
3:	The ACKTIM Statu	us bit is only ac	tive when the	AHEN bit or D	HEN bit is set.		

REGISTER 30-4: SSPxCON3: SSP CONTROL REGISTER 3

31.3.1 AUTO-BAUD DETECT

The EUSART1 module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUD1CON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART1 state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 31-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SP1BRGH, SP1BRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RC1REG needs to be read to clear the RCIF interrupt. RC1REG content should be discarded. When calibrating for modes that do not use the SP1BRGH register the user can verify that the SP1BRGL register did not overflow by checking for 00h in the SP1BRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 31-1. During ABD, both the SP1BRGH and SP1BRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SP1BRGH and SP1BRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 31.3.3 "Auto-Wake-up on Break").

2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART1 baud rates are not possible.

3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SP1BRGH:SP1BRGL register pair.

TABLE 31-1:	BRG COUNTER	CLOCK RATES
-------------	--------------------	--------------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SP1BRGL and SP1BRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 31-6: AUTOMATIC BAUD RATE CALIBRATION

PIC16(L)F18325/18345

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, PD is cleared. Time-out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. See Section 9.3 "Sleep Mode" for more information.

SUBWF	Subtract W from f		
Syntax:	[label] SUBWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) - (W) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.		
	C = 0 W > f		
	C = 1 $W < f$		

DC = 0

DC = 1

SUBWFB	Subtract W from f with Borrow					
Syntax:	SUBWFB f {,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

W<3:0> > f<3:0>

 $W<3:0> \le f<3:0>$

SUBLW	Subtract W from literal						
Syntax:	[<i>label</i>] SUBLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k - (W) \rightarrow (W)$						
Status Affected:	C, DC, Z						
Description: The W register is subtracted (2's complement method) from the 8-l literal 'k'. The result is placed in the register.							
	C = 0 W > k						

0-0	VV > K
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	$W<3:0> \le k<3:0>$

SWAPF	Swap Nibbles in f					
Syntax:	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$					
Status Affected:	None					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.					

PIC16(L)F18325/18345

FIGURE 35-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

	\land			\langle	
TABLE 35-17:	TIMER0 AND TIMER1 EXTERNAL CLOCK RE	QÚI	REMĘ	NΫ	S
		<u> </u>		<u> </u>	

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	с	Characteristic			Тур.†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width		No Prescaler	0.5 TCY + 20	—		ns	
				With Prescaler	10	—	_	ns	
41*	TT0L T0CKI Low Pulse W		Width	No Rrescaler	0.5 TCY + 20	—	_	ns	
			\sim	With Prescaler	10	_	_	ns	
42*	Тт0Р	T0CKI Period		\square	Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronou	s, No Prescaler	0.5 Tcy + 20	—	_	ns	
			Synchronou	s, with Prescaler	15	_	-	ns	
			Asynchrono	us	30	_	_	ns	
46*	TT1L T1CKI Low Time Synchronous		s, No Prescaler	0.5 Tcy + 20	_	_	ns		
		$ \land \land \land$	Synchronou	s, with Prescaler	15	_	_	ns	
			Asynchrono	us	30	_	_	ns	
47*	TT1P	T1CKI Input Synchronous		s	Greater of:		_	ns	N = prescale
		Period			30 or <u>Tcy + 40</u> N				value
		$ $ \backslash $/$ $ $	Asynchronou	us	60	—	_	ns	
48	F71	Secondary Oscillator Input Frequency Range (oscillator enabled by setting bit T10SCEN)			32.4	32.768	33.1	kHz	
49*	TCKEŽTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	_	7 Tosc	_	Timers in Sync mode
*	/ (*) These paramèters are characterized but not tested.								

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t