E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18345-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							- ((-)	,,											
I/O ⁽²⁾	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	WSQ	Timers	ССР	PWM	CWG	dssm	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	19	16	ANA0	—	C1IN0+	—	DAC1OUT	—	—	—	—	—			—		IOC	Y	ICDDAT ICSPDAT
RA1	18	15	ANA1	VREF+	C1IN0- C2IN0-	—	DAC1REF+	—	-	—	—	—	SS2		—		IOC	Y	ICDCLK ICSPCLK
RA2	17	14	ANA2	VREF-	—	—	DAC1REF-	_	T0CKI ⁽¹⁾	CCP3 ⁽¹⁾	_	CWG1IN ⁽¹⁾ CWG2IN ⁽¹⁾	-		CLCIN0 ⁽¹⁾	-	IOC INT ⁽¹⁾	Y	_
RA3	4	1	—	—	—	—	_	—	—	—	_	_	—	_	—	-	IOC	Y	MCLR VPP
RA4	3	20	ANA4	—	_	_		—	T1G ⁽¹⁾ T3G ⁽¹⁾ T5G ⁽¹⁾ SOSCO	CCP4 ⁽¹⁾	_	_		_	—	_	IOC	Y	CLKOUT OSC2
RA5	2	19	ANA5	_	_	_		_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T5CKI ⁽¹⁾ SOSCIN SOSCI	_	_	_					IOC	Y	CLKIN OSC1
RB4	13	10	ANB4	_	_	—		—	—	-	—	—	SDI1 ⁽¹⁾ SDA1 ^(1,3,4)		CLCIN2 ⁽¹⁾		IOC	Y	_
RB5	12	9	ANB5	_	—	—	_	—	—	Ι	—	_	SDI2 ⁽¹⁾ SDA2 ^(1,3,4)	RX ⁽¹⁾	CLCIN3 ⁽¹⁾		IOC	Y	—
RB6	11	8	ANB6	-	-	—	—	-	-	Ι	_	-	SCK1 ⁽¹⁾ SCL1 ^(1,3,4)	—	-	-	IOC	Y	—
RB7	10	7	ANB7	—	—	—	_	—	—	—	_	_	SCK2 ⁽¹⁾ SCL2 ^(1,3,4)	_	—	-	IOC	Y	_
RC0	16	13	ANC0		C2IN0+	_	_	_	_		_	_	_	—	_	—	IOC	Y	—
RC1	15	12	ANC1	—	C1IN1- C2IN1-	—	—	—	—	—	—	—	_	_	—	_	IOC	Y	—
RC2	14	11	ANC2	-	C1IN2- C2IN2-	—	_	MDCIN1 ⁽¹⁾	—	—	—	—	—	—	—	—	IOC	Y	—
Note 1	: De	fault p	eriphera	l input. li	nput can be	moved to a	any other pin wit	th the PPS inp	out selection	n registers.									

TABLE 2: 20-PIN ALLOCATION TABLE (PIC16(L)F18345)

Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. 1:

All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. 2:

These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 3:

These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to other pins (e.g. RA5) will operate, but logic levels will be standard 4: TTL/ST as selected by the INLVL register.

PIC16(L)F18325/18345

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)
------------	--

					-	(,				
Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 9												
CPU CORE REGISTERS; see Table 4-2 for specifics												
48Ch to 497h — — Unimplemented										-	_	
498h	NCO1ACCL					NCO1AC	C<7:0>				0000 0000	0000 0000
499h	NCO1ACCH					NCO1AC	C<15:8>				0000 0000	0000 0000
49Ah	NCO1ACCU		—	—		—		NCO1AC	C<19:16>		0000	0000
49Bh	NCO1INCL					NCO1IN	C<7:0>				0000 0001	0000 0001
49Ch	NCO1INCH					NCO1IN	C<15:8>				0000 0000	0000 0000
49Dh	NCO1INCU		_	_	_	_		NCO1IN	C<19:16>		0000	0000
49Eh	NCO1CON		N1EN	_	N1OUT	N1POL	_		—	N1PFM	0-000	0-000
49Fh	NCO1CLK		1	N1PWS<2:0>		_	_	_	N1CK	S<1:0>	00000	00000

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18325/18345. Legend:

Note 1:

2: Register accessible from both User and ICD Debugger.

7.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 7.3 "Clock Switching" for more information.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates up to 32 MHz.
- The LFINTOSC (Low-Frequency Internal Oscillator) is factory calibrated and operates at 31 kHz.

7.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (1 MHz) or '000' (32 MHz) to set the oscillator upon device Power-up or Reset
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time

The HFINTOSC frequency can be selected by setting the HFFRQ<2:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the output of the selected clock source by a range between 1:1 and 1:512.

7.2.2.2 2x PLL

The oscillator module contains a PLL that can be used with the HFINTOSC clock source to provide a system clock source. The input frequency to the PLL is limited to 8, 12, or 16 MHz, which will yield a system clock source of 16, 24, or 32 MHz, respectively.

The PLL may be enabled for use by one of two methods:

- Program the RSTOSC bits in the Configuration Word 1 to '000' to enable the HFINTOSC (32 MHz). This setting configures the HFFRQ<2:0> bits to '110' (16 MHz) and activates the 2x PLL.
- Write '000' the NOSC<2:0> bits in the OSCCON1 register to enable the 2x PLL, and write the correct value into the HFFRQ<3:0> bits of the OSCFRQ register to select the desired system clock frequency. See Register 6-6 for more information.

		IIX -T . I					11 7					
R/W/HS-0/0	R/W/H	S-0/0	R/W/HS-0/0	R/W/HS-0)/0 R/W/HS-0/0	R/W/HS-0/	0 R/W/HS-0/0	R/W/HS-0/0				
CWG2IF	CWG	1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF				
bit 7								bit (
Legend:												
R = Readable	bit		W = Writable	bit	U = Unimpler	mented bit, re	ead as '0'					
u = Bit is uncha	anged		x = Bit is unkn	iown	-n/n = Value a	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set			'0' = Bit is cleared HS = Hardware set									
bit 7 bit 6 bit 5 bit 4 bit 3	CWG2II 1 = CW 0 = CW CWG1II 1 = CW 0 = CW TMR5G TMR5IF	F: CW G2 ha G2 is o F: CW G1 ha G1 is o IF: Tir 1 = Th 0 = Th 1 = TM 0 = Nc CCP	G 2 Interrupt F s gone into shu operating norm G1 Interrupt Fl s gone into shu operating norm ner5 Gate Inter ne TMR5 gate f er TMR5 gate f er 5 Overflow In MR5 overflow o o TMR5 overflow o TMR5 overflow	ilag bit utdown hally, or inte ag bit utdown hally, or inte rrupt Flag b has gone in has not gor terrupt Flag occurred (m w occurred	errupt cleared errupt cleared bit hactive (the gate i he inactive. g bit hust be cleared in	s closed). software)						
					ССРМ М	ode						
	value		Capture		Compa	ire	PWI	N				
	1	Captu (must	ure occurred t be cleared in	software)	Compare match (must be cleared	occurred in software)	Output trailing en (must be cleared	dge occurred d in software)				
	0	Captu	ure did not occ	ur	Compare match occur	ompare match did not Output trailing edge did occur						
bit 2	CCP3IF	CCP	23 Interrupt Flag	g bit								
	Value				CCPM N	lode						
	value		Capture		Compa	are	PW	Μ				
	1	Capti (mus	ure occurred t be cleared in	software)	Compare match (must be cleared	occurred in software)	Output trailing e (must be cleared	dge occurred d in software)				

REGISTER 8-11: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

© 2015-2016 Microchip Technology Inc.

0

Capture did not occur

occur

Compare match did not

Output trailing edge did not

occur

9.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes: DOZE mode, IDLE mode, and Sleep mode.

9.1 DOZE Mode

Doze mode allows for power savings by reducing CPU operation and program memory access, without affecting peripheral operation. Doze mode differs from Sleep mode because the system oscillators continue to operate, while only the CPU and program memory are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 100, the instruction cycle ratio is 1:32. The CPU and memory execute for one instruction cycle and then lay idle for 31 instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

9.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 9-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the program memory fetches for the next instruction cycle. The instruction clocks to the peripherals continue throughout.

9.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-on-Interrupt (ROI) bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 9-1, the interrupt occurs during the 2^{nd} instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-on-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

© 2015-2016 Microchip Technology Inc.

11.4.3 NVMREG WRITE TO EEPROM

Writing to the EEPROM is accomplished by the following steps:

- 1. Set the NVMREGS and WREN bits of the NVMCON1 register.
- 2. Write the desired address (address +7000h) into the NVMADRH:NVMADRL register pair (Table 11-2).
- 3. Perform the unlock sequence as described in Section 11.4.2 "NVM Unlock Sequence".

A single EEPROM byte is written with NVMDATA. The operation includes an implicit erase cycle for that byte (it is not necessary to set the FREE bit), and requires many instruction cycles to finish. CPU execution continues in parallel and, when complete, WR is cleared by hardware, NVMIF is set, and an interrupt will occur if NVMIE is also set. Software must poll the WR bit to determine when writing is complete, or wait for the interrupt to occur. WREN will remain unchanged.

Once the EEPROM write operation begins, clearing the WR bit will have no effect; the operation will run to completion.

11.4.4 NVMREG ERASE OF PROGRAM FLASH MEMORY

Program Flash memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write to program Flash memory.

To erase a program Flash memory row:

- Clear the NVMREGS bit of the NVMCON1 register to erase program Flash memory locations, or set the NVMREGS bit to erase user ID locations.
- 2. Write the desired address into the NVMADRH:NVMADRL register pair (Table 11-2).
- 3. Set the FREE and WREN bits of the NVMCON1 register.
- 4. Perform the unlock sequence as described in Section 11.4.2 "NVM Unlock Sequence".

If the program Flash memory address is write-protected, the WR bit will be cleared and the erase operation will not take place.

While erasing program Flash memory, CPU operation is suspended, and resumes when the operation is complete. Upon completion, the NVMIF is set, and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations, and WREN will remain unchanged.

FIGURE 11-3: NVM ERASE

FLOWCHART

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
TRISA	—	—	TRISA5	TRISA4	_(2)	TRISA2	TRISA1	TRISA0	143		
ANSELA	—	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144		
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_		_	149		
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	—	_	_	150		
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156		
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157		
PWM5CON	PWM5EN	_	PWM5OUT	PWM5POL	_	_		_	196		
PWM5DCH				PWM5DC<	9:2>				196		
PWM5DCL	PWM5I	DC<1:0>	_	—	_	—		—	196		
PWM6CON	PWM6EN	—	PWM6OUT	PWM6POL	_	—		—	196		
PWM6DCH	PWM6DC<9:2>										
PWM6DCL	PWM6I	DC<1:0>)C<1:0> — — — —		_	—	196				
PWMTMRS	—	P6TSEL<1:0> P5TSEL<1:0>					197				
INTCON	GIE	PEIE	—	—	—	—	_	INTEDG	101		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108		
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	109		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103		
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	104		
T2CON			T2OUTPS	S<3:0>		TMR2ON	T2CKP	'S<1:0>	298		
T4CON	—		T4OUTPS	S<3:0>		TMR4ON	T4CKP	'S<1:0>	292		
T6CON	—		T6OUTPS	S<3:0>		TMR6ON	T6CKP	'S<1:0>	292		
TMR2				TMR2<7:()>				299		
TMR4				TMR4<7:()>				299		
TMR6				TMR6<7:0)>				299		
PR2				PR2<7:0	>				299		
PR4				PR4<7:0	>				299		
PR6				PR6<7:0	>				299		
CWGxDAT	—	—		—		DAT<	<3:0>		215		
CLCxSELy	—				LCxDyS<	5:0>			229		
MDSRC	—	—	—	—		MDMS	\$<3:0>		272		
MDCARH	—	MDCHPOL	MDCHSYNC	—		MDCH	1<3:0>		273		
MDCARL		MDCLPOL	MDCLSYNC	—		MDCL	<3:0>		274		

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

22.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

22.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined									
	as a digital input may cause the input									
	buffer to conduct excess current.									

22.1.2 CHANNEL SELECTION

There are several channel selections available:

- Five PORTA pins (RA0-RA2, RA4-RA5)
- Four PORTB pins (RB4-RB7, PIC16(L)F18345 only)
- Six PORTC pins (RC0-RC5, PIC16(L)F18325)
- Eight PORTC pins (RC0-RC7, PIC16(L)F18345 only)
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- Vss (ground)

The CHS<5:0> bits of the ADCON0 register (Register 22-1) determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 22.2** "**ADC Operation**" for more information.

Note: It is recommended that when switching from an ADC channel of a higher voltage to a channel of a lower voltage, the software selects the Vss channel before switching to the channel of the lower voltage. If the ADC does not have a dedicated Vss input channel, the Vss selection (DAC1R<4:0> = b'00000') through the DAC output channel can be used. If the DAC is in use, a free input channel can be connected to Vss, and can be used in place of the DAC.

22.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bit of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 16.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

22.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS<2:0> bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- ADCRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 12 TAD periods as shown in Figure 22-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 35-13 for more information. Table 22-1 gives examples of appropriate ADC clock selections.

Note: Unless using the ADCRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

PIC16(L)F18325/18345

FIGURE 27-5: TIMER1 GATE SINGLE-PULSE MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	-	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA		—	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	_	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6(1)	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE	_	_	—	_	_	INTEDG	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103
PIR3	OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	110
PIE3	OSFIE	CSWIE	TMR3GIE	TMR3IE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	105
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	111
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	106
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1SOSC	T1SYNC	_	TMR10N	292
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	293
TMR1L				TMR	1L<7:0>				294
TMR1H	TMR1H<7:0>								294
T1CKIPPS	— — — T1CKIPPS<4:0>							162	
T1GPPS	_	_	_		T1G	PPS<4:0>			162
T3CON	TMR3C	:S<1:0>	T3CKP	S<1:0>	T3SOSC	T3SYNC	_	TMR3ON	292
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	293
TMR3L				TMR	3L<7:0>				294
TMR3H				TMR	3H<7:0>				294
T3CKIPPS	_	_	_		T3CK	IPPS<4:0>			162
T3GPPS	_	_	_		T3G	PPS<4:0>			162
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	T5SOSC	T5SYNC	—	TMR5ON	292
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	293
TMR5L				TMR	5L<7:0>				294
TMR5H				TMR	5H<7:0>				294
T5CKIPPS	_	_	_		T5CK	IPPS<4:0>			162
T5GPPS	_	—	_		T5G	PPS<4:0>			162
T0CON0	T0EN	_	TOOUT	T016BIT		T0OUTPS-	<3:0>		280
CMxCON0	CxON	CxOUT		CxPOL	—	CxSP	CxHYS	CxSYNC	190
CCPTMRS	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<	1:0>	C1TSE	L<1:0>	311
CCPxCON	CCPxEN	—	CCPxOUT	CCPxFMT	(CCPxMODE	=<3:0>		308
CLCxSELy	—	—			LCxDyS<5	:0>			229
ADACT	_	—	—		ADA	ACT<4:0>			246

TABLE 27-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/	TABLE 27-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5
--	-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

30.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 30-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step-by-step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- 2. Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

FIGURE 30-21: $I^{2}C$ SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

PIC16(L)F18325/18345

FIGURE 30-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F18325/18345

PIC16(L)F18325/18345

I²C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)

Inc

30.7 Baud Rate Generator

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 30-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 30-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 30-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 30-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 30-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

© 2015-2016 Microchip Technology Inc.

	1 30-4. 33FX			EGISTER 3			D 444 6 / 6			
R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
Dit 7							bit 0			
Logond										
D - Doodo	ble bit	M = M/ritable	hit	II – I Inimplei	mented bit read	1 ac 'O'				
n – Reaua		v = Rit is unk		- on implemented bit, read as 0 -n/n = Value at POR and BOR/Value at all other Resets						
1' = Bit is 4	set	(0) = Bit is cle	ared							
bit 7	ACKTIM: Act	knowledae Tim	e Status bit (l ²	² C mode only)	(3)					
	1 = Indicates	the I ² C bus is	in an Acknowl	edge sequenc	e, set on eighth	falling edge of	SCL clock			
	0 = Not an Ao	cknowledge se	quence, cleare	ed on ninth risi	ng edge of SCL	clock				
bit 6	PCIE: Stop C	ondition Interru	upt Enable bit	(I ² C mode only	y)					
	1 = Enable in	terrupt on dete	ction of Stop	condition						
L:1 F			s are disabled	,-, ,,,20,						
DIT 5	J - Enable in	ondition Interru	upt Enable bit	(I-C mode only	y) ditions					
	0 = Start dete	ection interrupt	s are disabled	(2)						
bit 4	BOEN: Buffe	r Overwrite En	able bit							
	In SPI Slave	<u>mode:</u> (1)								
	1 = SSP	BUF updates e	every time that	a new data by	/te is shifted in i	gnoring the BF	bit			
	0 = If ne	ew byte is rece	ived with BF to is set, and the	oit of the SSP	STAT register a	ready set, SSI	POV bit of the			
	In I ² C Master	mode and SP	I Master mode	<u>: 13 1101 0</u>	ipualeu					
	This bit is	s ignored.								
	In I ² C Slave r	<u>mode:</u> PUE is undeted	and \overline{ACK} is a	porated for a		o/data byta jan	oring the state			
	of the	e SSPOV bit or	nly if the BF bi	t = 0.		sidala byte, igri	uning the state			
	0 = SSP	BUF is only up	dated when S	SPOV is clear						
bit 3	SDAHT: SDA	Hold Time Se	lection bit (I ² C	mode only)						
	1 = Minimum	of 300 ns hold	time on SDA	after the falling	g edge of SCL					
1.11.0		of 100 ns hold	time on SDA	after the falling	g edge of SCL					
DIT 2	SBCDE: Slav	/e Mode Bus C	OIIISION Detect		C Slave mode o	niy)				
	If, on the risil BCL1IF bit of	ng edge of SC the PIR1 regis	L, SDA is sar iter is set, and	npled low whe bus goes idle	en the module is	s outputting a f	high state, the			
	1 = Enable sl 0 = Slave bus	ave bus collision inter	on interrupts rupts are disat	oled						
bit 1	AHEN: Addre	ess Hold Enabl	e bit (I ² C Slav	e mode only)						
	1 = Following	g the eighth fa	lling edge of S	SCL for a mat	ching received a	address byte; (CKP bit of the			
	SSPCON ∩ = Address I	N1 register will bolding is disat	be cleared an	d the SCL will	be held low.					
hit 0	DHEN: Data	Hold Enable bi	t (l ² C Slave m	ode only)						
bit o	1 = Following	the eighth fall	ing edge of SC	CL for a receiv	ed data byte: sla	ave hardware c	lears the CKP			
	bit of the	SSPCON1 reg	gister and SCL	is held low.						
	0 = Data hold	ling is disabled								
Note 1:	For daisy-chained	SPI operation;	allows the use	er to ignore all	but the last rece	ived byte. SSP	OV is still set			
	when a new byte is	s received and	BF = 1, but ha	ardware contin	ues to write the	most recent by	te to SSPBUF.			
2:	This bit has no effe	ect in Slave mo	des that Start	and Stop cond	dition detection i	s explicitly liste	d as enabled.			
3:	The ACKTIM Statu	us bit is only ac	tive when the	AHEN bit or D	HEN bit is set.					

REGISTER 30-4: SSPxCON3: SSP CONTROL REGISTER 3

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

© 2015-2016 Microchip Technology Inc.

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	N	20				
Pitch	е	0.65 BSC				
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	с	0.09	-	0.25		
Foot Angle	¢	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B