

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18345-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F18325/18345

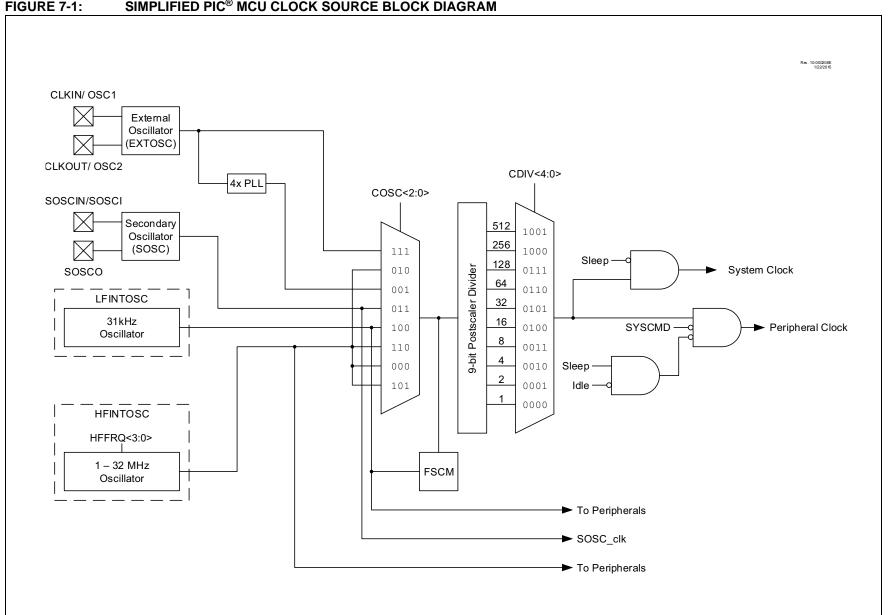
FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F18325/18345

	PC<14:0>	1
CAL		1
RETUR	N, RETLW	
Interrup	ot, RETFIE	, I
	Stack Level 0 Stack Level 1	-
	Stack Level 15	-
	Older Level 10	
	Reset Vector	0000h
	•	
	Interrupt Vector	0004h
On-chip Program Memory	Page 0-3	0005h 1FFFh
	Rollover to Page 0	2000h
	:	
	Rollover to Page 0	7FFFh

4.1.1 READING PROGRAM MEMORY AS DATA

There are three methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory. The third method is to use the NVMCON registers to access the program memory.

4.1.1.1 RETLW Instruction


EVAMOLE 4 4.

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 4-1.

DEPENDENCE INCLUCION

EXAMPLE 4-1:	RETLWINSTRUCTION
constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CO	DE
MOVLW DA	TA_INDEX
call constants	S
; THE CONSTAN	NT IS IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, computed GOTO method must be used because the BRW instruction is not available in some devices, such as the PIC16F6XX, PIC16F7XX, PIC16F8XX, and PIC16F9XX devices.

PIC16(L)F18325/18345

SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM FIGURE 7-1:

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) (PIEx bits) for the specific interrupt event(s)
- PEIE bit of the INTCON register

The PIR1, PIR2, PIR3 and PIR4 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The interrupt is sampled during Q1 of the instruction cycle. The actual interrupt latency then depends on the instruction that is executing at the time the interrupt is detected. See Figure 8-2 and Figure 8-3 for more details.

12.2.6 ANALOG CONTROL

The ANSELA register (Register 12-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 12-5) controls the individual weak pull-ups for each PORT pin.

PORTA pin RA3 includes the $\overline{\text{MCLR}}$ /VPP input. The MCLR input allows the device to be reset, and can be disabled by the MCLRE bit of Configuration Word 2. A weak pull-up is present on the RA3 port pin. This weak pull-up is enabled when $\overline{\text{MCLR}}$ is enabled ($\overline{\text{MCLRE}} = 1$) or the WPUA3 bit is set. The weak pull-up is disabled when is disabled and the WPUA3 bit is clear.

12.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
_	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is un	a = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared		ared					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-4	LATA<5:4> : F	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾					
bit 3	Unimplemen	Unimplemented: Read as '0'					
bit 2-0	LATA<2:0> : F	LATA<2:0>: RA<2:0> Output Latch Value bits ⁽¹⁾					

REGISTER 12-3: LATA: PORTA DATA LATCH REGISTER

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-4:	: ANS	ELA: PORTA A	ANALOG SEL	ECT REGI	STER	
U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/V

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	 ANSA<5:4>: Analog Select between Analog or Digital Function on pins RA<5:4>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0
bit 7							bit 0
Logond							
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets	
'1' = Bit is set '0' = Bit is cleared		ared					
bit 7-6	Unimplement	ted: Read as '	0'				
bit 5-4	bit 5-4 SLRA<5:4>: PORTA Slew Rate Enable bits For RA<5:4> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate						
bit 3	Unimplemented: Read as '0'						
bit 2-0	 SLRA<2:0>: PORTA Slew Rate Enable bits For RA<2:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate 						

REGISTER 12-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 12-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
_	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

REGISTER 13-3: PPSLOCK: PPS LOCK REGISTER

D - Doodoblo	hit	\A/ = \A/ritable	hit.		antad hit raa	d aa '0'	
Legend:							
							Dit U
bit 7	•	•		•	•	•	bit 0
—	—	—	—	—	—	_	PPSLOCKED
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0

'1' = Bit is set	'0' = Bit is cleared	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
R = Readable bit	VV = VVritable bit	U = Unimplemented bit, read as '0'

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit 1= PPS is locked. PPS selections can not be changed. 0= PPS is not locked. PPS selections can be changed.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PPSLOCK	_	_	_	_	—	_	_	PPSLOCKED	164
INTPPS	—		_			INTPPS<	4:0>		162
TOCKIPPS	—		_			T0CKIPPS	<4:0>		162
T1CKIPPS	—		_			T1CKIPPS	<4:0>		162
T1GPPS	—	_	—			T1GPPS<	:4:0>		162
T3CKIPPS	—	_	—			T3CKIPPS	<4:0>		162
T3GPPS	—	_	—			T3GPPS<	:4:0>		162
T5CKIPPS	—	_	—			T5CKIPPS	<4:0>		162
T5GPPS	—	—	—			T5GPPS<	:4:0>		162
CCP1PPS	—	_	—			CCP1PPS	<4:0>		162
CCP2PPS	—	_	—			CCP2PPS	<4:0>		162
CCP3PPS	—		_			CCP3PPS	<4:0>		162
CCP4PPS	—	_	—			CCP4PPS	<4:0>		162
CWG1PPS	—	_	—			CWG1PPS	s<4:0>		162
CWG2PPS	—	_	—			CWG2PPS	s<4:0>		162
MDCIN1PPS	—	_	—		Ν	/IDCIN1PP	S<4:0>		162
MDCIN2PPS	—	_	—		Ν	/IDCIN2PP	S<4:0>		162
MDMINPPS	—	_	—		I	MDMINPPS	S<4:0>		162
SSP1CLKPPS	—	_	—		S	SP1CLKPF	PS<4:0>		162
SSP1DATPPS	—	_	—		S	SP1DATPF	PS<4:0>		162
SSP1SSPPS	—		_		5	SP1SSPP	S<4:0>		162
SSP2CLKPPS	—	—	—		S	SP2CLKPF	PS<4:0>		162
SSP2DATPPS	_	—	—		S	SP2DATPF	PS<4:0>		162
SSP2SSPPS	_	_	_		5	SP2SSPP	S<4:0>		162

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: PIC16(L)F18345 only.

15.0 INTERRUPT-ON-CHANGE

All pins on all ports can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable
- Rising and falling edge detection
- · Individual pin configuration
- · Individual pin interrupt flags

Figure 15-1 is a block diagram of the IOC module.

15.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

15.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

15.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIR0 register reflects the status of all IOCxF bits.

15.3.1 CLEARING INTERRUPT FLAGS

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 15-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

15.4 Operation in Sleep

The interrupt-on-change interrupt event will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCxF register will be updated prior to the first instruction executed out of Sleep.

18.12 Register Definitions: Comparator Control

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT		CxPOL	—	CxSP	CxHYS	CxSYNC
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unc		x = Bit is unk			at POR and BC		other Resets
'1' = Bit is set	•	'0' = Bit is cle					
bit 7	CxON: Com	parator Enable	bit				
		ator is enabled					
		ator is disabled		s no active pow	/er		
bit 6		mparator Outpu					
		1 (inverted pola	<u>rity):</u>				
	1 = CxVP < 0 = CxVP >						
		0 (non-inverted	polarity):				
	1 = CxVP >		<u>,</u>				
	0 = CxVP <	< CxVN					
bit 5	Unimpleme	nted: Read as	'0'				
bit 4	CxPOL: Co	mparator Outpu	it Polarity Sele	ct bit			
	1 = Compara	ator output is in	verted				
	0 = Compara	ator output is n	ot inverted				
bit 3	Unimpleme	nted: Read as	'0'				
bit 2	CxSP: Com	parator Speed/l	Power Select b	bit			
		ator operates ir ed. (do not use)	Normal-Powe	r, High-Speed ı	mode		
bit 1	CxHYS: Cor	mparator Hyste	resis Enable b	it			
	•	rator hysteresis rator hysteresis					
bit 0	-	omparator Out		us Mode bit			
	1 = Compar	rator output to	Timer1 and I/C) pin is synchr		ges on Timer1	clock source
		updated on the rator output to 기					

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	IN	—	POLD	POLC	POLB	POLA
bit 7						1 	bit (
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7-6	Unimplem	ented: Read as	0'				
bit 5	IN: CWGx	Data Input Signa	l (read-only)				
bit 4	Unimplem	ented: Read as	0'				
bit 3	POLD: WG	xD Output Polar	ity bit				
	-	output is inverted					
	•	output is normal					
bit 2		xC Output Polar					
	•	output is inverted					
	•	output is normal					
bit 1		xB Output Polar	•				
		output is inverted output is normal					
bit 0	0	SxA Output Polar	. ,				
		output is inverted	•				
	0 = Signal o	•					

REGISTER 20-2: CWGxCON1: CWGx CONTROL REGISTER 1

REGISTER 20-3: CWGxCLKCON: CWGx CLOCK INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	_	_	_	_	—	_	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

CS: CWG Clock Source Selection Select bits

CS	Clock Source
0	Fosc
1	HFINTOSC (remains operating during Sleep)

bit 0

26.0 TIMER0 MODULE

The Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- · Selectable clock sources
- Programmable prescaler (independent of Watchdog Timer)
- · Programmable postscaler
- Operation during Sleep mode
- · Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

26.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

When used with the FOSC/4 clock source, the module is a timer and increments on every instruction cycle. When used with any other clock source, the module can be used as either a timer or a counter and increments on every rising edge of the external source.

26.1.1 16-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

26.1.1.1 Timer0 Reads and Writes in 16-bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is neither directly readable nor writable (see Figure 26-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

26.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

In 8-bit mode, TMR0H no longer functions as the Timer0 high byte, but instead functions as the Period Register (PR). The value of TMR0L is compared to that of TMR0H on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- · TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh.

Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers.
- Any device Reset Power-on Reset (POR),MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR)

26.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

26.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 26-4) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

26.1.5 ASYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is set (T0ASYNC = 1), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

EQUATION 29-2: PULSE WIDTH

 $Pulse Width = (CCPRxH:CCPRxL register pair) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 29-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$

The CCPRxH:CCPRxL register pair and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering provides glitchless PWM operation.

The 8-bit timer TMR2/4/6 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 29-4).

29.4.6 PWM RESOLUTION

PWM resolution, expressed in number of bits, defines the maximum number of discrete steps that can be present in a single PWM period. For example, a 10-bit resolution will result in 1024 discrete steps, whereas an 8-bit resolution will result in 256 discrete steps.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 29-4.

EQUATION 29-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TADIE 20.4.	EXAMPLE DWM EDECLIENCIES AND DESCLUTIONS (Ease - 20 MHz)	
IADLE 29-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)	

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

29.4.7 OPERATION IN SLEEP MODE

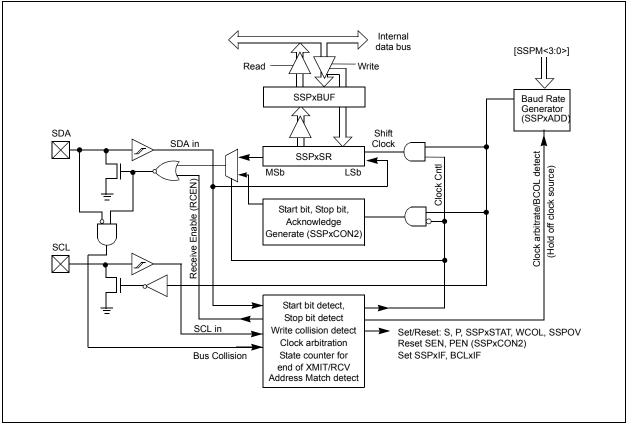
In Sleep mode, the TMR2/4/6 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2/4/6 will continue from its previous state.

29.4.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 7.0** "Oscillator Module" for additional details.

29.4.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.


PIC16(L)F18325/18345

The I²C interface supports the following modes and features:

- · Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- General call address matching
- · Address masking
- · Selectable SDA hold times

Figure 30-2 is a block diagram of the I^2C interface module in Master mode. Figure 30-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 30-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

30.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM<3:0> bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generation
- Stop condition generation
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

30.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 30.7** "**Baud Rate Generator**" for more detail.

31.6 Register Definitions: EUSART1 Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unki	nown	•	at POR and BOF		other Resets
'1' = Bit is set	-	'0' = Bit is cle	ared				
bit 7	Asynchronou Unused in thi Synchronous 1 = Master	is mode – value	e ignored nerated intern)		
bit 6	TX9: 9-bit Tra 1 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	oit ion	,			
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit		1)				
bit 4	SYNC: EUSA 1 = Synchro 0 = Asynchro		lect bit				
bit 3	Asynchronou 1 = Send SY bit; clear 0 = SYNCH Synchronous	NCH BREAK	on next transr e upon comple iission disable	etion	bit, followed by	12 '0' bits, fol	lowed by Sto
bit 2	BRGH: High Asynchronouu 1 = High spe 0 = Low spe Synchronous	Baud Rate Sel <u>is mode</u> : eed ed	ect bit				
bit 1	TRMT: Trans 1 = TSR em 0 = TSR full	mit Shift Regisi pty	ter Status bit				
bit 0	TX9D: Ninth Can be addre	bit of Transmit					

REGISTER 31-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

Note 1: SREN/CREN overrides TXEN in Sync mode.

REGISTER 31-4: RC1REG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RC1F	REG<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	inged	x = Bit is unknow	/n	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 **RC1REG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 31-2)

Note 1: RC1REG (including the ninth bit) is double buffered, and data is available while new data is being received.

REGISTER 31-5: TX1REG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TX1REG<7:0>								
bit 7 bit								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TX1REG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 31-1)

Note 1: TX1REG (including the ninth bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 31-6: SP1BRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SP1BR	RG<7:0>			
bit 7							bit 0
Legend:							
P - Poodablo bi	+	M = M/ritable bit	•	II – Unimplor	nontod hit road	ac 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SP1BRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SP1BF	RG<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	inged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 31-7: SP1BRGH^(1, 2): BAUD RATE GENERATOR HIGH REGISTER

bit 7 SP1BRG<15:8>: Upper eight bits of the Baud Rate Generator

Note 1: SP1BRGH value is ignored for all modes unless BAUD1CON<BRG16> is active.

2: Writing to SP1BRGH resets the BRG counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	_	TRISA5	TRISA4	_(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—			—	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	—	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE				_	_	INTEDG	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	384
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	383
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	385
RC1REG				RC1RE	G<7:0>				386
TX1REG				TX1RE	G<7:0>				386
SP1BRGL				SP1BR	G<7:0>				386
SP1BRGH	SP1BRG<15:8>							387	
RXPPS					F	RXPPS<4:0	>		162
CLCxSELy		_			L	.CxDyS<4:0	>		229
MDSRC	—	—		—		MDMS	S<3:0>		272

TABLE 31-2: SUMMARY OF REGISTERS ASSOCIATED WITH EUSART1

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART1 module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

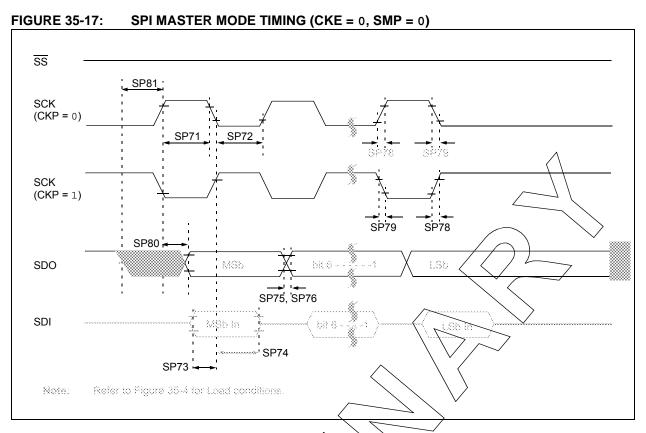
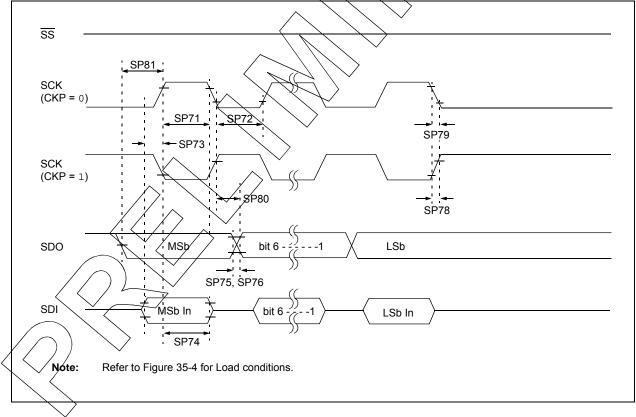
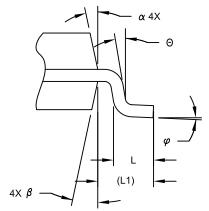

IABLE	55-7: EX	TERNAL CLOCK/USCILLAT		NG KEQ		ENIS			
Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions		
ECL Os	cillator								
OS1	FECL	Clock Frequency	—	—	500	kHz			
OS2	TECL_DC	Clock Duty Cycle	40	—	60	%			
ECM Os	cillator								
OS3	Fecm	Clock Frequency	—	—	4	MHz	Nøte 4		
OS4	TECM_DC	Clock Duty Cycle	40	—	60	%			
ECH Os	cillator								
OS5	Fech	Clock Frequency	—	—	32	MHz			
OS6	TECH_DC	Clock Duty Cycle	40	—	60	%			
LP Osci	llator				~				
OS7	Flp	Clock Frequency	—	—	(100	KHz	Note 4		
XT Osci	llator					\sum			
OS8	Fхт	Clock Frequency	—	~	4	MHz	Note 4		
HS Osci	llator			$\langle \rangle$		$\langle \rangle$			
OS9	FHS	Clock Frequency	- /		20	∕∕MHz	Note 4		
System	System Clock								
OS20	Fosc	System Clock Frequency		$\langle - \rangle$	32	MHz	Note 2, Note 3		
OS21	FCY	Instruction Frequency	\sum	Fosc/4	$\rangle -$	MHz			
OS22	Тсү	Instruction Period	125	1/Fey	—	ns			
	.		<u></u>	<u> </u>					

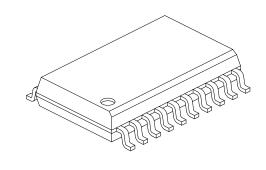
TABLE 35-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS


These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (Tcy) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" no clock) for all devices.
 - 2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 7.3 "Clock Switching".
 - 3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 35.2 "Standard Operating Conditions". LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device.
 - 4: For clocking the device with an external square wave, one of the EC mode selections must be used.





20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS				
Dimension Lim	nits	MIN	NOM	MAX	
Number of Pins	N		20		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - $\label{eq:REF:Reference} \ensuremath{\mathsf{REF:}}\xspace \ensuremath{\mathsf{Reference}}\xspace \ensuremath{\mathsf{Dimension}}\xspace, \ensuremath{\mathsf{uirposes}}\xspace \ensuremath{\mathsf{oirposes}}\xspace \ensuremath{\mathsf{oirposes}}\xspace \ensuremath{\mathsf{uirposes}}\xspace \ensuremath{\mathsf{uirposess}}\xspace \ensuremath{\mathsf{uirpose$
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2