

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18325-e-sl

Email: info@E-XFL.COM

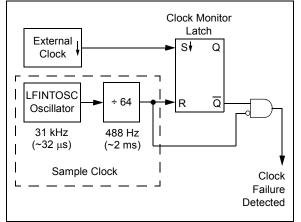
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 28	В											
					CPU CORE RE	EGISTERS; see	Table 4-2 for spe	ecifics				
E0Ch	_					Unimple	mented				_	_
E0Dh	_	_				Unimple					_	
E0Eh						Unimple					_	
E0Fh	PPSLOCK		_	_	_	_	_	_	_	PPSLOCKED	0	
E10h	INTPPS		_	_	_			INTPPS<4:0>			0 0010	u uuu
E11h	TOCKIPPS		_	_	_			T0CKIPPS<4:0>			0 0010	u uuu
E12h	T1CKIPPS		_	—	_				0 0101	u uuu		
E13h	T1GPPS		_	—	_				0 0100	u uuu		
E14h	CCP1PPS		_	_	_		CCP1PPS<4:0>					u uuu
E15h	CCP2PPS		_	_	_		CCP2PPS<4:0>					u uuu
E16h	CCP3PPS		_	_	_	CCP3PPS<4:0>					0 0010	u uuu
E17h	CCP4PPS	X —	_	_	_		CCP4PPS<4:0>					u uuu
		— X	_	_	_			CCP4PPS<4:0>			0 0100	u uuu
E18h	CWG1PPS		—	_	_			CWG1PPS<4:0>			0 0010	u uuuu
E19h	CWG2PPS		—	—				CWG2PPS<4:0>			0 0010	u uuui
E1Ah	MDCIN1PPS		_	_			N	IDCIN1PPS<4:0	>		1 0010	u uuu
E1Bh	MDCIN2PPS		_	_			N	IDCIN2PPS<4:0	>		1 0101	u uuu
E1Ch	MDMINPPS		_	—	_		1	MDMINPPS<4:0>			1 0011	u uuuu
E1Dh	SSP2CLKPPS	X —	_	—	-		S	SP2CLKPPS<4:0)>		1 0100	u uuu
		— X	_	_	_		S	SP2CLKPPS<4:0)>		0 1111	u uuu
E1Eh	SSP2DATPPS	Х —	_	—	_		-	SP2DATPPS<4:0			1 0101	u uuuu
		— X	_	_	_			SP2DATPPS<4:0			0 1101	u uuuu
E1Fh	SSP2SSPPS	Х —	_	_	_			SP2SSPPS<4:0			0 0000	u uuuu
		— X	—	—	—			SP2SSPPS<4:0			0 0001	u uuuu
E20h	SSP1CLKPPS	X —	—	_	_			SP1CLKPPS<4:0			1 0000	u uuuu
		— X	—	—	_		S	SP1CLKPPS<4:0)>		0 1110	u uuu

e on ther sets PIC16(L)F18325/18345

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.


Note 1: Only on PIC16F18325/18345.

2: Register accessible from both User and ICD Debugger.

7.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL, ECM, ECH, and Secondary Oscillator).

7.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 7-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

7.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR3 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE3 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC<2:0> and NDIV<3:0>bits of the OSCCON1 register.

7.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC<2:0> and NDIV<3:0> bits of the OSCCON1 register. When switching to the external oscillator or external oscillator with PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again be set by hardware.

R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0			
EXTOEN	HFOEN	_	LFOEN	SOSCEN	ADOEN	_	_			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	EXTOEN: External Oscillator Manual Request Enable bit 1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC 0 = EXTOSC could be enabled by another module									
bit 6	1 = HFINTOS		enabled, opera	quest Enable b ating as specifie aer module		(Register 7-6)				
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	1 = LFINTOS	ITOSC (31 kHz C is explicitly e C could be ena	nabled	anual Request er module	Enable bit					
bit 3	1 = Secondar	SOSCEN: Secondary Oscillator Manual Request Enable bit 1 = Secondary Oscillator is explicitly enabled 0 = Secondary Oscillator could be enabled by another module								
bit 2	1 = ADOSC is	ADOEN: ADOSC (600 kHz) Oscillator Manual Request Enable bit 1 = ADOSC is explicitly enabled 0 = ADOSC could be enabled by another module								
bit 1	Unimplemen	ted: Read as '	0'							
bit 0	Unimplemen									

REGISTER 7-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

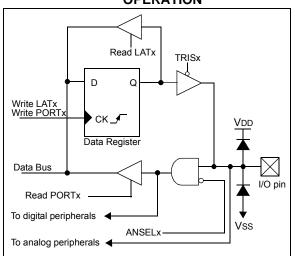
12.0 I/O PORTS

TABLE 12-1: PORT AVAILABILITY PER DEVICE

DEMO	_	-	_
Device	PORTA	PORTB	РОКТС
PIC16(L)F18325	٠		•
PIC16(L)F18345	٠	•	٠

Each port has ten standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- · ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- · SLRCONx registers (slew rate)
- ODCONx registers (open-drain)


Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT OPERATION

12.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 13.0** "**Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

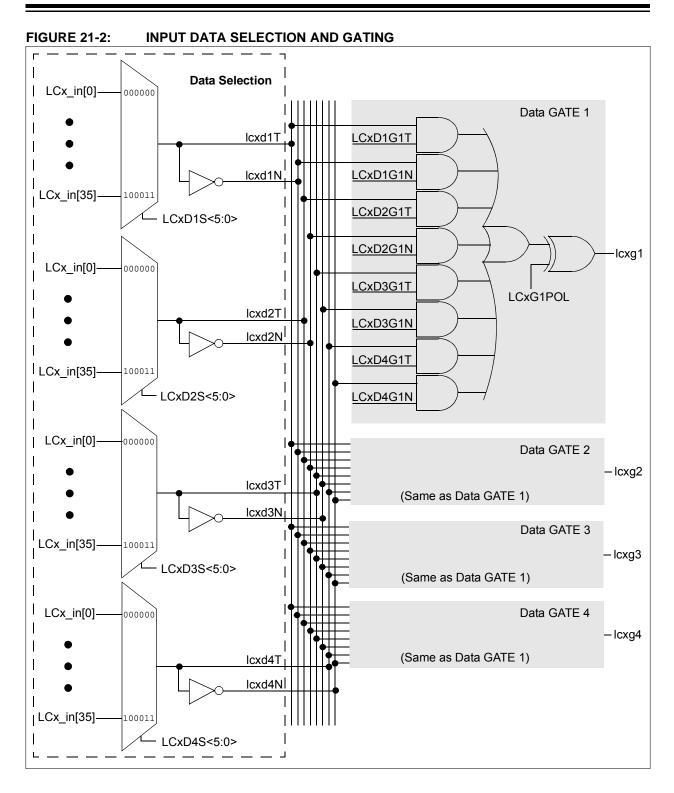
TABLE 13-1.									,
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
RXPPS	—	_				RXPPS<	4:0>		162
CLCIN0PPS					(CLCIN0PP	S<4:0>		162
CLCIN1PPS	—	—	_		(CLCIN1PP	S<4:0>		162
CLCIN2PPS	—	_			(CLCIN2PP	S<4:0>		162
CLCIN3PPS	—	_	—		(CLCIN3PP	S<4:0>		162
RA0PPS	—	—	_			RA0PPS<	:4:0>		163
RA1PPS	—	—	_			RA1PPS<	:4:0>		163
RA2PPS	—	—	_			RA2PPS<	:4:0>		163
RA4PPS						RA4PPS<	:4:0>		163
RA5PPS						RA5PPS<	:4:0>		163
RB4PPS ⁽¹⁾						RB4PPS<	:4:0>		163
RB5PPS ⁽¹⁾						RB5PPS<	:4:0>		163
RB6PPS ⁽¹⁾	—	—	_			RB6PPS<	:4:0>		163
RB7PPS ⁽¹⁾	—	—	_			RB7PPS<	:4:0>		163
RC0PPS	—	—	_			RC0PPS<	:4:0>		163
RC1PPS	—	—	_			RC1PPS<	:4:0>		163
RC2PPS	—	—	_			RC2PPS<	:4:0>		163
RC3PPS	—	—	_			RC3PPS<	:4:0>		163
RC4PPS	—	—	—			RC4PPS<	:4:0>		163
RC5PPS	—	—	—			RC5PPS<	:4:0>		163
RC6PPS ⁽¹⁾	—					RC6PPS<	:4:0>		163
RC7PPS ⁽¹⁾	—					RC7PPS<	:4:0>		163

SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED) **TABLE 13-1:**

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: PIC16(L)F18345 only.

OVRD bit 7	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	OTD (2)			
hit 7					00	0110.7	STRA ⁽²⁾			
							bit 0			
Legend:										
R = Readable bi	t	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is unchar	nged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion				
bit 7	OVRD: Steeri	ng Data D bit								
bit 6	OVRC: Steeri	ng Data C bit								
pit 5 🛛	OVRB: Steeri	ng Data B bit								
pit 4 🛛	OVRA: Steeri	ng Data A bit								
oit 3	STRD: Steering Enable bit D ⁽²⁾									
-	1 = CWGxD c	output has the Q	CWGx data inp	out waveform w	ith polarity conf	rol from POLD	bit			
		= CWGxD output is assigned to value of OVRD bit								
bit 2	STRC: Steerin	ng Enable bit C	(2)							
1	1 = CWGxC output has the CWGx data input waveform with polarity control from POLC bit									
		output is assign		OVRC bit						
		ng Enable bit B								
	1 = CWGxB output has the CWGx data input waveform with polarity control from POLB bit									
		utput is assign		OVRB bit						
		ng Enable bit A								
			•		vith polarity cont	rol from POLA	bit			
		output is assign								
	•	ister apply only			egister 20-1, st	eering modes).				


REGISTER 20-5: CWGxSTR⁽¹⁾: CWG STEERING CONTROL REGISTER

2: This bit is double-buffered when MODE < 2:0 > = 0.01.

R/W/HS/SC-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN	REN	LSBD)<1:0>	LSAC	<1:0>	—	—
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unchan	ged	x = Bit is unkr	nown	-n/n = Value at	POR and BOR	Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depe	ends on condition	on	
bit 7	1 = An auto	: Auto-Shutdov -shutdown stat -shutdown eve	e is in effect				
bit 6	1 = Auto-re	estart Enable b start is enabled start is disabled					
bit 5-4	11 = A logic 10 = A logic 01 = Pin is tr 00 = The ina	1' is placed on 0' is placed on i-stated on CW active state of	CWGxB/D wl CWGxB/D wl GxB/D when a the pin, inclu	Shutdown State (hen an auto-shut hen an auto-shut an auto-shutdow ding polarity, is utdown event oc	down event occ down event occ n event occurs. placed on CW	curs.	he required
bit 3-2	11 = A logic 10 = A logic 01 = Pin is tr 00 = The ina	1' is placed on 0' is placed on i-stated on CW ictive state of	CWGxA/C wl CWGxA/C wl G1A/C when a the pin, inclu	Shutdown State (hen an auto-shut hen an auto-shut an auto-shutdow ding polarity, is utdown event oc	down event occ down event occ n event occurs. placed on CW	curs.	he required
bit 1-0	Unimplemer	ted: Read as '	0'				
	•			0-1), to place the	•		•

REGISTER 20-6: CWGxAS0: CWG AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the CWG data input after this bit is cleared.

© 2015-2016 Microchip Technology Inc.

DS40001795C-page 225

23.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCO1 Interrupt Flag bit, NCO1IF, of the PIR2 register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- N1EN bit of the NCO1CON register
- NCO1IE bit of the PIE2 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCO1IF bit in the Interrupt Service Routine.

23.6 Effects of a Reset

All of the NCO1 registers are cleared to zero as the result of a Reset.

23.7 Operation in Sleep

The NCO1 module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO1 module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO1 clock source, when the NCO1 is enabled, the CPU will go idle during Sleep, but the NCO1 will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

27.2.1 TIMER1 (SECONDARY) OSCILLATOR

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is designed to be used in conjunction with an external 32.768 kHz crystal. The oscillator circuit is enabled by setting the T1SOSC bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1SOSC should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

27.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

27.4 Timer1 Operation in Asynchronous Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 27.4.1 "Reading and Writing Timer1 in Asynchronous Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

27.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

27.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

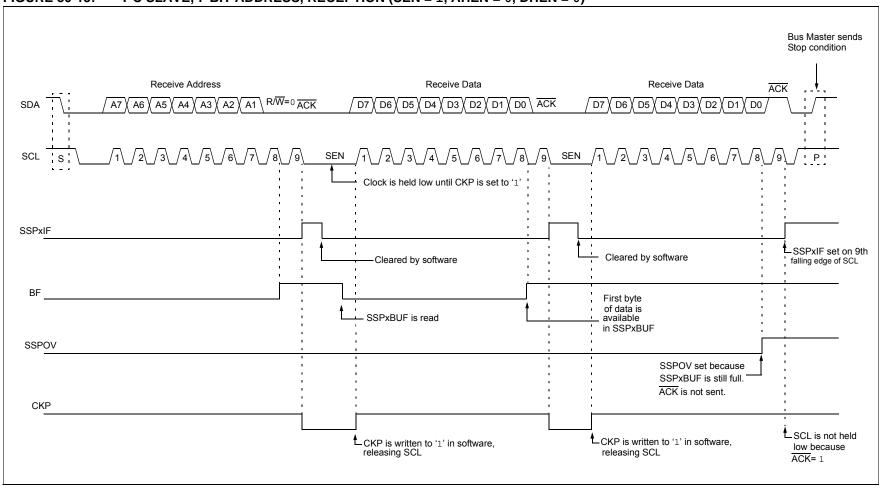
Timer1 gate can also be driven by multiple selectable sources.

27.5.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 27-3 for timing details.

TABLE 27-3:	TIMER1 GATE ENABLE
	SELECTIONS


T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
1	0	1	Holds Count
1	1	0	Holds Count
1	1	1	Counts

28.5 Register Definitions: Timer2/4/6 Control

REGISTER									
U-0	R/W-0/0		R/W-0/0 PS<3:0>	R/W-0/0	R/W-0/0 TMRxON	R/W-0/0	R/W-0/0		
		TXOUT	-2<3:0>		TWIRXON	TXCKP	S<1:0>		
bit 7							bit		
Legend:									
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all other Rese			
'1' = Bit is s	set	'0' = Bit is clea	ared						
bit 7	Unimplem	ented: Read as '	٥'						
bit 6-3	•			er Select hits					
		TxOUTPS<3:0>: Timerx Output Postscaler Select bits 1111 = 1:16 Postscaler							
		1111 – 1.16 Postscaler							
		4 Postscaler							
	1100 = 1 :1	1100 = 1:13 Postscaler							
	1011 = 1 :1	1011 = 1:12 Postscaler							
	1010 = 1 :1	1010 = 1:11 Postscaler							
	1001 = 1 :1	0 Postscaler							
	1000 = 1 :9	Postscaler							
		:8 Postscaler							
		0110 = 1:7 Postscaler							
		0101 = 1:6 Postscaler 0100 = 1:5 Postscaler							
		Postscaler Postscaler							
		Postscaler							
		Postscaler							
bit 2		Timer2 On bit							
	1 = Timer 0 = Timer								
bit 1-0		1:0>: Timerx Cloc	k Prescale Se	elect bits					
	11 = Pres o	aler is 64							
	10 = Preso	aler is 16							
	01 = Preso	aler is 4							
	00 = Presc	aler is 1							
Note 1:	'x' refers to eith	er '2.' 4' or '6' for	the respective	Timer2/4/6 rec	listers				

REGISTER 28-1: TxCON⁽¹⁾: TIMERX CONTROL REGISTER

Note 1: 'x' refers to either '2,' 4' or '6' for the respective Timer2/4/6 registers.

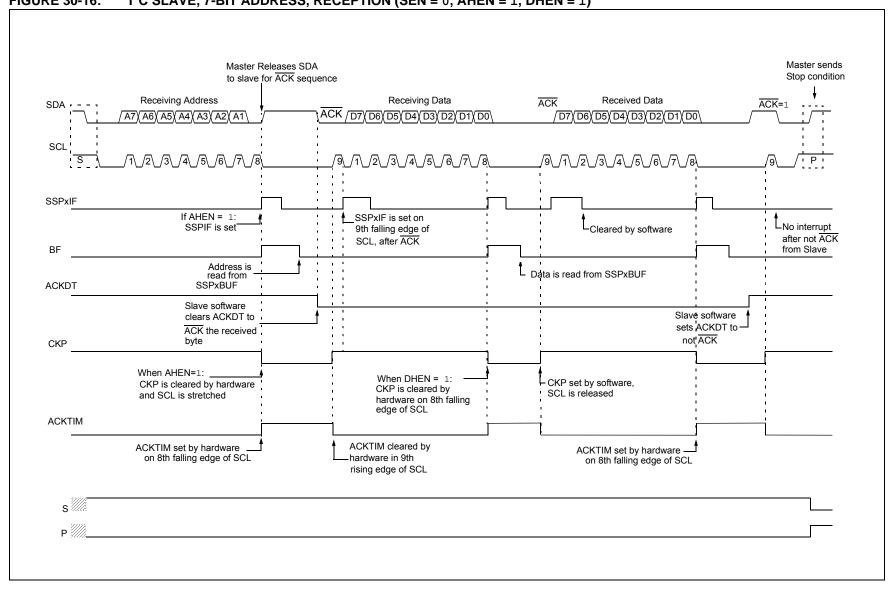
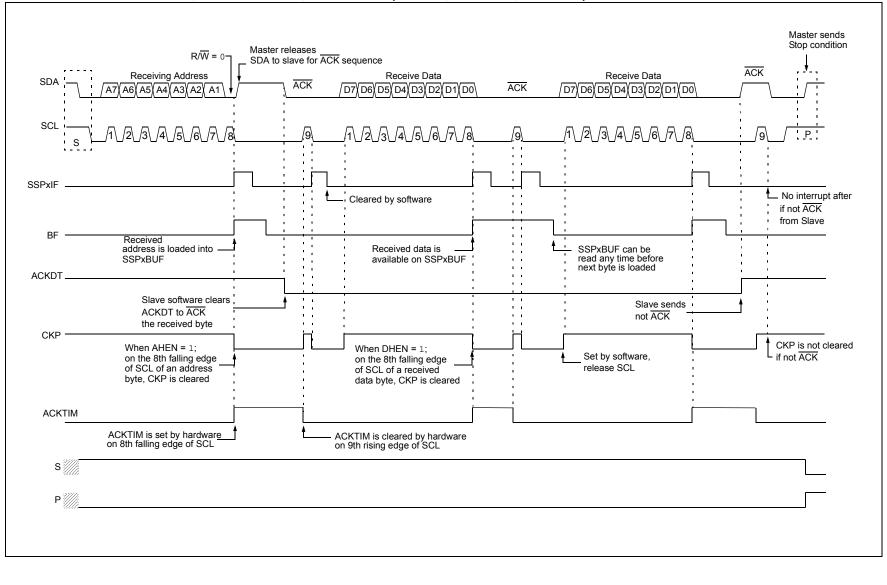


FIGURE 30-15: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

© 2015-2016 Microchip Technology Inc


Preliminary

PIC16(L)F18325/18345

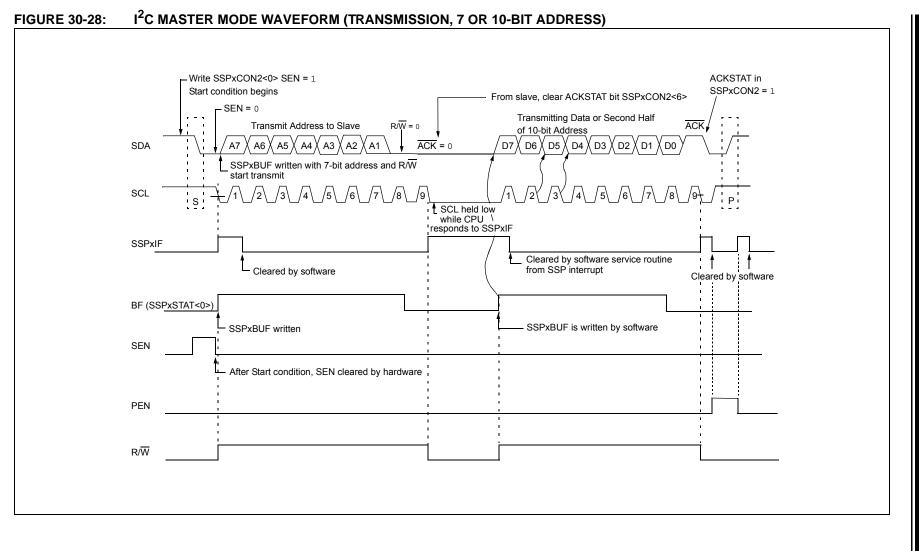


FIGURE 30-16: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)

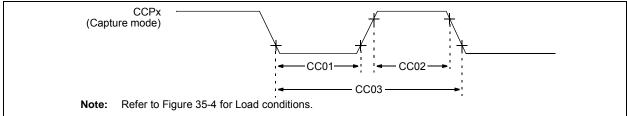
PIC16(L)F18325/18345

FIGURE 30-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

CALLW Subroutine Call With W				
Syntax:	[label] CALLW			
Operands:	None			
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>			
Status Affected:	None			
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.			


COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f		
Syntax:	[label] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

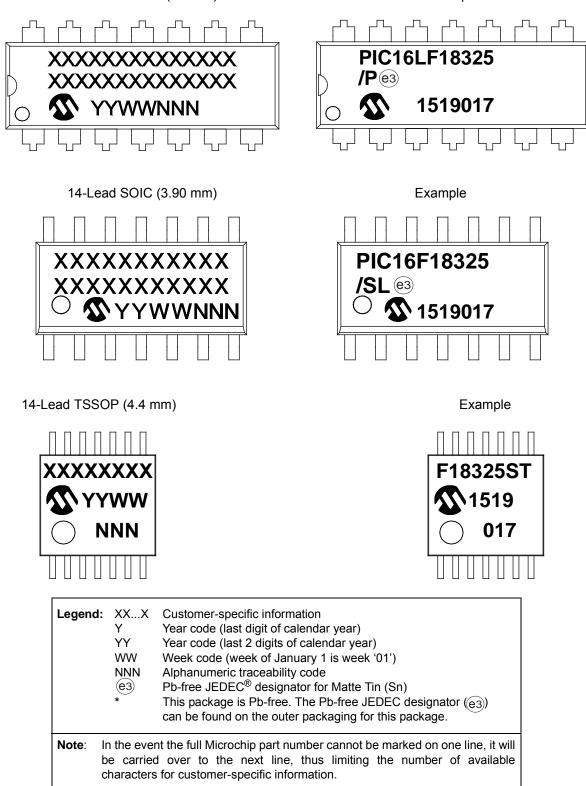
CLRWClear WSyntax:[label] CLRWOperands:NoneOperation: $00h \rightarrow (W)$
 $1 \rightarrow Z$ Status Affected:ZDescription:W register is cleared. Zero bit (Z) is
set.

FIGURE 35-13: **CAPTURE/COMPARE/PWM TIMINGS (CCP)**

TABLE 35-18: CAPTURE/COMPARE/PWM CHARACTERISTICS (CCP)

Daram	Sym.	ating Conditions (unless otherwise sta Characteristic		Min.	Тур.†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns	
			With Prescaler	20	—	—	ns	
CC02*	ТссН	CCPx Input High Time	No Prescaler	0.5Tcy + 20	—	<i>, ,</i>	æ//	
			With Prescaler	20	—	_/	ns	\sim
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	\langle	_ `	ns	N = prescale value

These parameters are characterized but not tested.

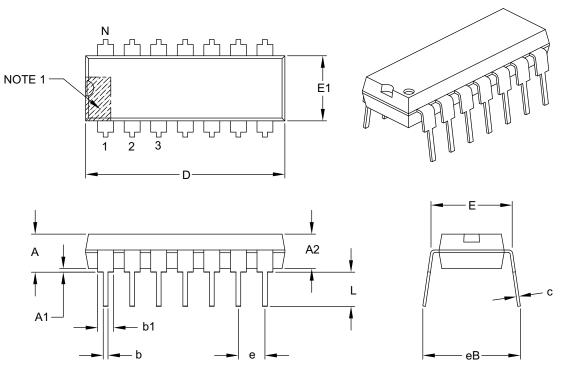

t Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Example

38.0 PACKAGING INFORMATION

38.1 Package Marking Information

14-Lead PDIP (300 mil)



38.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

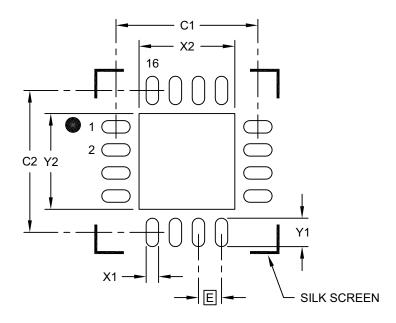
	Units			INCHES			
Dimension	Dimension Limits		NOM	MAX			
Number of Pins	N		14				
Pitch	е		.100 BSC	_			
Top to Seating Plane	Α	-	-	.210			
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.735	.750	.775			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Units		MIN		MAX
Dimensio	Dimension Limits		_	IVIAA
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			2.70
Optional Center Pad Length	Y2			2.70
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X16)	X1			0.35
Contact Pad Length (X16)	Y1			0.80

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A